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Abstract:  

In the current situation of a pandemic caused by COVID-19 developing models 

accurately predicting the dynamics of the outbreaks in time and space became 

extremely important. 

Individual-based models (IBM) simulating the spread of infection in a 

population have a few advantages compared to classical equation-based 

approach. First, they use individuals as units, which represent the population, 

and reflect the local variations happening in real life. Second, the simplicity of 

modelling the interactions between the individuals, which may not be the case 

when using differential equations.  

We propose to use freely available population density maps to simulate the 

infection spread in the human population on the scale of an individual country 

or a city. We explore the effect of social distancing and show that it can reduce 

the outbreak when applied before or during peak time, but it can also inflict 

the second wave when relaxed after the peak. This can be explained by a large 

proportion of susceptible individuals, even in the large cities, after the first 

wave. 

The model can be adapted to any spatial scale from a single hospital to 

multiple countries. 

Introduction:  

In the last 30 years, the development of personal computers and high-level 

compilators (Kernighan & Ritchie, 1978) has allowed researchers to use 

Individual-Based Models (IBM) (see Gardner, 1970 for one of the first 

examples) to simulate complicated biological systems containing thousands of 

individuals (Mashanov, 1997). The use of object-oriented languages has 

allowed to code the properties of the objects of several classes and describe 

the corresponding functions generating object-specific events for the 

individuals interacting in a three-dimensional space (see Mashanov, 2014 for 
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an example). It would be difficult to model spatially structured biological 

systems using classical mathematics (differential equations). One of the areas, 

where it became apparent, is epidemiology employing Susceptible-Infectious-

Recovered (SIR) model 

https://en.wikipedia.org/wiki/Compartmental_models_in_epidemiology. 

SIR models have been widely used to model infectious disease spread in 

epidemiology although some authors question the validity of these models’ 

predictions because of rather unrealistic assumptions (e.g. Huppert & Katriel, 

2013). One of the common assumptions of SIR models is that populations are 

well-mixed. This means that any individual is equally likely to come into 

contact with any other individual ignoring the fact that people living in large 

cities are much more likely to come into contact with each other. Modelling 

spatial structure explicitly allows overcoming this problem. 

Here, we propose to use Population Density Maps (PDM) to get a realistic 

distribution of the population on a scale of a country or a smaller region. We 

used the simplest IBM with a minimal number of properties, parameters, and 

functions to show the advantages of PDM-based IBM in understanding the 

temporal and spatial dynamics of an epidemics in a real human population. 

Model Description:   

We constructed a basic IBM, where every individual has the following 

properties: floating-point X and Y coordinates, and integer “Infection status”, 

and “Density index” (Table 1). 

Table 1. Properties of individuals 

Name Explanation Variable type 

Position X and Y coordinates defining 
position on the map 

Floating-point 

Infection status “Susceptible” or “infectious”. 
Individual becomes “recovered” 
after a certain number of days 
(defined by “Duration of 
infection”) 

Integer  
(0 – susceptible, 
above 0 - days since 
infection) 

Density index When PDM is used, an individual is 
assigned to pixel values with a 
certain population density. When 
moving or commuting the 
individuals remain within the same 
density 

Integer (1 in “no 
spatial structure”, 1 
to 255 in PDM) 
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The list of parameters is given in Table 2 and the list of functions in Table 3. At 

the start (“NewRun()”), individuals are placed randomly on the plain map, 

randomly inside the shape map, or randomly, but proportionally to PDM 

values, when PDM is loaded. Events happening at every step (equal to one day) 

are described in the “Cycle()” function. At every step, every individual can 

move (“Move()”) and a fraction of individuals (chosen randomly) is allowed to 

commute (“Commuting()”).  Individuals move randomly within the “Mobility” 

distance. The new position should belong to a pixel marked as “land” for the 

model with no spatial structure or, in case of PDM, or to a pixel with the same 

density value, as the pixel were the object was placed at the beginning of the 

run (Table 1). This restriction allowed the individuals to move within populated 

areas, but without spreading across the whole map.  It was also important to 

use “Commuting()” function to allow some individuals to move long distances. 

Commuting is also confined to the pixels with the same density values – so that 

commuters from large cities go to another large city. The fraction of 

commuters could be set to zero to run the model in the “local spread” mode. 

Infections can be introduced at any moment during the model run by clicking 

“Infect” which runs “AddInfection()” function. Specified by “Initial infections” 

number of individuals are selected randomly from the population and become 

infected. “Contagious from day” parameter defines when the infected 

individuals can infect others. For the individuals in the infectious state (time 

interval between “contagiousFrom” and “contagiousTo”), the “Infection()” 

function was used to check for other susceptible individuals within the 

“Infection Distance”. A random number generator was used to determine if 

these individuals became infected according to the “Infection Probability”. 

 

Table 2. Parameters and variables (Population tab) 

Name Explanation Units 

Population size Defines the population size individuals 

Mobility Maximum movement distance Pixels (converted to 
floating-point distance 
during calculations) 

Infection distance Defines the area around an infected 
individual within which susceptible 
individuals might be infected 

Pixels (converted to 
floating-point distance 
during calculations) 

Infection probability Probability that a susceptible 
individual within the infection 

Probability (between 0 and 
1) 
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distance of an infected individual 
become infected 

Commuters The proportion of the population 
with unlimited movement distance 

Percentage 

Duration of infection Period between the moment when a 
susceptible individual becomes 
infected until it recovers 

Days 

Contagious from day The day from which an infected 
individual can infect others 

Days 

Initial infections Defines how many individuals 
become infected when “Infect” is 
clicked 

Individuals 

 

Table 3. Functions used in the model (see Appendix for codes) 

Name Explanation 

NewRun() Initial placement of individuals. Setting infection status to 
“susceptible”. 

Move() Movement of individuals within the defined Mobility 
distance. The actual distance moved is random and not 
exceeding the Mobility parameter. 

Commuting() Movement of a percentage of individuals (defined in 
“Commuters”) within the whole area. Movement is only 
allowed between the areas of the same population density. 

Infection() For every infected individual in the contagious stage, all 
other individuals are checked whether they are within the 
“Infection distance” and are infected with probability 
defined by “Infection probability”. 

AddInfection() A randomly selected number of individuals (the number is 
defined by “Initial infections”) becomes infected. 

Cycle() Define the sequence of the functions at every step -  Move(), 
Commuting(), Infection(). 

 

The model is written in C language using C++ Builder XE7 (Embarcadero, CA). 

The code used to display the results and set the parameters was omitted from 

the code in the Appendix. Otherwise, this is the whole description of the model 

used to produce all the data in this publication. The model is available to 

download from Zenodo DOI:10.5281/zenodo.3763585 or www.mashanov.uk. 

 Results:  

We first tested our model without introducing spatial structure (Fig. 1). In all 

examples shown in Fig. 1, the average population density was kept 0.1 

individual/pixel, mobility 2 pixels, infection probability 0.02, infectious period 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 29, 2020. ; https://doi.org/10.1101/2020.04.24.20077289doi: medRxiv preprint 

http://www.mashanov.uk/
https://doi.org/10.1101/2020.04.24.20077289
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 days, the individual is contagious from day 2 (Table 4). Fig. 1A and movie 1 

show an infection spread in the “plane field” with no commuters. In these 

conditions, we failed to reproduce any spread of the infection with the 

infection distance less than 4 pixels. Without commuting, the spread was very 

slow with less than 2% of the population infected at any time. If we introduce 

“commuting” (3%), the spread accelerates reaching ~30% of the infectious 

individuals at the peak (Fig. 1B). But the epidemic would not start if we reduce 

the infection distance < 3 pixels (data not shown). When we introduced a 

shape map of England and Wales (Fig. 1C) with the same population density of 

0.1 individual/pixel and other conditions as in Fig. 1B, the results of the model 

run were very similar to the results from the “plane map” run. 

Table 4. Parameters for the examples shown in figures 1 and 2. In all examples, 

initial infectious were introduced at the beginning. 

Parameter 1a 1b 1c 2a 2b 2c 2d 

Population size 10000 10000 35000 41500 41500 41500 41500 

Mobility 2 2 2 2 2 2 2 

Infection distance 4 4 4 4 2 1.5 4 

Infection 
probability 

0.02 0.02 0.02 0.02 0.02 0.02 0.01 

Commuters 0 3 3 3 3 3 3 

Duration of 
infection 

20 20 20 20 20 20 20 

Contagious from 
day 

2 2 2 2 2 2 2 

Initial infections 2 2 2 2 2 2 2 

PDM used no no no yes yes yes yes 
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We introduced spatial structure using PDM of England (Census 2011, 

https://en.wikipedia.org/wiki/Demography_of_England), where the map pixel values 

A 

B 

C 

Fig. 1. The infection spread without spatial structure.  A – Individuals are placed on a square map, where 

they are allowed to move and to infect other individuals (see text for the description of the model). The 

map on the left shows the distribution of individuals: blue – susceptible, red – infectious, green – 

recovered (the same colours are used in all other figures). The graph on the right shows the population 

dynamics (colours as on the map). The black line (right Y-axis) shows the average number of individuals 

infected by a single infected individual during the infectious period. B – The same as A, but with 

commuting (3% of the population). C – England and Wales boundary map was used. Population size was 

adjusted to keep the density the same as in B. Other conditions are the same as in B (see text and the 

tables for the full description of the conditions). 
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ranged from 1 to 255 (8-bit greyscale). At the start, the individuals were placed 

randomly but proportionally to the map pixel values. When we run our model 

using the same average population density 0.1 individual/pixel and parameters 

as in Fig. 1BC, we observed a sharp rise of infection reaching the peak of ~50% 

of infectious individuals (~80% recovered at the end of the epidemic, Fig. 2A, 

movie 2). The significant rise in infection can be explained by the fact that, in 

some areas (e.g., in the London area), the population density reached ~40 

individuals/pixel. If we reduce the infection distance by half (2 pixels) the peak 

of infection is reduced to ~15% of infectious individuals (Fig. 2B). Further 

decrease of this value to 1.5 pixels brings the peak of infection to ~3.5% (~25% 

of recovered individuals, Fig. 2C). If instead of reducing infection distance from 

4 to 2 pixel, we reduce the probability of infecting from 0.02 to 0.01 we 

observe the reduction in the peak of infection from ~50% to ~30% (See Fig. 2B 

and 2D for comparison).  

We explored the effect of the reduction of infection distance, which can be 

interpreted as social distancing, during an outbreak. Introducing social 

distancing, in the form of reducing the infection distance from 4 to 1.5 pixels, 

in the middle of an outbreak, which would reach ~50% of infectious individuals 

at its peak, resulted in quick slowing down of the outbreak, reaching the 

plateau at ~32% (Fig. 3A). However, introducing social distancing before 

outbreak leaves a large fraction of the population susceptible. If we remove 

social distancing following the end of the first weak outbreak (increase the 

infection distance from 1.5 to 4 pixels) we can inflict a second outbreak with 

around 25% of infected individuals at its peak, by introducing just two infected 

individuals into the population (Fig. 3B, movie 3).     

The secondary axis in all figures shows “Infection ratio” curve, which is the 

average number of individuals infected by a single infected individual during 

the infectious period. Since it represents the interaction between the basic 

reproductive number R0 and the proportion of susceptible individuals in the 

population, in all graphs it decreases as the number of susceptible individuals 

decrease, and this decrease precedes the peak/decrease of the outbreak. 
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B 

C 

D 

Fig. 2. The infection spread with spatial structure (Population Density Map of England).  A – Conditions as in Fig. 

1C. Population size was adjusted to keep the density as in Fig. 1. The map on the left shows the distribution of 

susceptible (blue), infectious (red), and recovering (green) individuals at the peak of the epidemic. The graph on 

the right shows population dynamics (colours as on the map). The black line (right Y-axis) shows the average 

number of individuals infected by a single infected individual during the infectious period. B  - the same 

conditions as in A, but the infection distance was reduced from 4 to 2 pixels. C  - the same conditions as in A, but 

the infection distance was reduced to 1.5 pixels. D  - the same conditions as in A, but the infection probability 

was reduced from 0.02 to 0.01. NOTE – the graphs show the population dynamics across the whole country. 

These values vary regionally. 
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Discussion:  

In this work, we presented a simple individual-based model, which has around 

100 lines of code and 5 functions describing interactions between individuals. 

The model accurately reproduces the dynamics of classical susceptible-

infectious-recovered (SIR) models (see Fig. 1 for example). It was important to 

introduce the “Commuting()” function into our model, otherwise, the spread 

B 

Fig. 3. The effects of changes in social distancing during and after an outbreak.  A – social distancing was 

introduced in the middle of an outbreak, which would reach 50% of infectious individuals at its peak. 

This measure resulted in quick slowing down of the outbreak, reaching the plateau at ~32%. B – If we 

run the model with severely restricted infection distance (1.5 pixels, See Fig. 2C), we will observe a very 

mild epidemic, reaching ~3.5% of the infectious individuals at its peak. However, if we relax the social 

distancing by increasing infection distance to 4 pixels, we will observe the second outbreak with ~25% of 

infected individuals at its peak. 

A 

Infection Distance 

increased from 

1.5 to 4 pixels 

Infection Distance 

decreased from  

4 to 1.5 pixels 
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of infection from a few individuals was very slow (movie 1), even if large 

infection distance or infection probability values were used.    

It is generally accepted that the population density greatly affects the 

dynamics of infection spread either in human or, in fact, in many animal 

communities (e.g. Tildesley et al. 2010). Population density is often uneven, 

especially in case of developed human society, where the majority of the 

population is concentrated in large settlements (i.e., towns and so on). This 

leads to variation between different regions (Merler & Ajelli 2010, Brizuela et 

al. 2020). To take into account this critically important parameter, we 

introduced Population Density Map concept into our model: the probability of 

placing individuals at the beginning of a run depends on PDM values, and the 

movements are restricted to the pixels with the same population density. The 

use of PDM made our model much more realistic (See Fig. 2 and movie 2).  

Running the model using PDM with the same average density (0.1 

individual/pixel) and other parameters, as in the case of a plane map, we 

observed the very fast epidemics affecting 50% of the population in 50 days 

since the start (Fig. 2A) as opposed to about 30% in 150 days (Fig. 1C).  

We also have found that the infection distance, which can be modified in real 

life by social distancing, severely affects the spread of infection: reducing the 

infection distance from 4 to 2 and 1.5 pixels with all the other parameters kept 

constant, reduced the peak of infection from ~50% of infected individuals to 

15% and 3.5% correspondingly. If we reduce this distance further to 1 pixel, the 

epidemic fails to start at all, even in the situation when the initial infection 

starts in a highly-populated area (for example, in London area). However, the 

model predicts that relaxing social distancing after the first peak led to an even 

higher secondary outbreak started by introducing only 2 new infected 

individuals. The probability of the second outbreak was higher when some big 

cities escaped the first outbreak. 

Dieckmann et al. (2020) reviewed the potential of simulations for the variety of 

uses in the healthcare organisations, including education and optimisation of 

work structure in the light of COVID-19 crisis. Our paper aims to advertise the 

use of IBM models because they are easy to modify and can be applied to 

different situations. The infection spread IBM, presented here can be easily 

expanded to include many important parameters of individuals in real human 

population: age, age-related population distribution and mortality, ethnic 

differences, and many others. 
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Conclusion:  

We propose a very simple IBM using population density maps to simulate the 

infection spread (for example COVID19) in real situations. Any existing PDM, on 

a scale of a country or a smaller region, can be used to explore the temporal 

and, most importantly, spatial dynamics of the epidemics to predict and 

manage the future infection outbreaks.    
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Supplementary materials: 

1. Appendix (see below). The model code. 

2. Movie 1 – Slow spread of the infection on the plane map in the absence 

of commuting. 

3. Movie 2 – Fast spread of infection when using population density map 

(England example). 

4. Movie 3 – The two infection outbreaks. The second, much bigger, 

epidemics was caused by the increase in infection distance from 1.5 to 4 

pixels. 
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Appendix: 

struct INDIVID { int densityIndex,infectionStage; 

       float xPos,yPos; 

     }; 

INDIVID ind[100000]; 

byte map[MAX*MAX],bmpBuf[MAX*MAX]; 

int day; 

//-------------------------------------------------------------------------

void __fastcall TMainForm::NewRun(void) 

{ for ( int x=0; x < MAX; x++ ) // zero map pixels 

    for ( int y=0; y < MAX; y++ ) map[x+y*MAX]=NO_LAND; 

  if ( bmpLoaded ) // use PDM or shape bmp values 

    { for ( int y=0,val; y < bmpHeight; y++ ) 

   for ( int x=0; x < bmpWidth; x++ ) 

     if ( bmpBuf[x+y*bmpWidth] > 0 ) map[x+y*MAX]=LAND; 

    } 

  else  // simple rectangular map  

    { for ( int x=0; x < sizeX; x++ ) 

   for ( int y=0; y < sizeY; y++ ) map[x+y*MAX]=LAND; 

    } 

  int index=0,x,y,limit=0,attempts=200*populationSize,density; 

  while ( index < populationSize && limit++ < attempts ) 

 { x=random(sizeX); y=random(sizeY); 

   if ( map[x+y*MAX] == NO_LAND ) continue; // skip if not land 

   // place individuals according to PDM values 

        if ( bmpLoaded && densityMapON )  

     { density= bmpBuf[x+y*bmpWidth]; 

            if ( random(65025) > density*density ) continue;  

            ind[index].densityIndex=density; 

     } 

   else { ind[index].densityIndex=LAND; } 

   ind[index].xPos=x; 

   ind[index].yPos=y; 

   ind[index].infectionStage=0; // susceptible 

   index++; 

   }   

} 
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//------------------------------------------------------------------------- 

void  __fastcall TMainForm::Move(int index) 

{ float nX=random(2000)-999,nY=random(2000)-999; // random numbers +/-1000 

  nX*=0.001*param.mobRange;nY*=0.001*param.mobRange;  

  // scale to mobility radius 

  nX+=ind[index].xPos;nY+=ind[index].yPos;  // possible new coordinates 

  if ( nX < 0.0 || nY < 0.0 || nX >= sizeX || nY >= sizeY ) return;  

  // check the borders 

  int landInd=map[(int)nX+((int)nY)*MAX]; 

  if ( bmpLoaded && densityMapON ) 

    landInd=bmpBuf[(int)nX+((int)nY)*bmpWidth]; 

  if ( landInd != ind[index].densityIndex )  return;  

  // do nothing if no land or pixel of right density found 

  ind[index].xPos=nX;ind[index].yPos=nY; // move individual 

} 

//------------------------------------------------------------------------- 

void  __fastcall TMainForm::Commuting(int index) 

{ float nX,nY; 

  for ( int density,attempt=0; attempt <= 100; attempt++ ) 

 { nX=random(sizeX),nY=random(sizeY); // any pixel on the map 

   density=map[(int)nX+((int)nY)*MAX]; 

   if ( bmpLoaded && densityMapON ) 

          density=bmpBuf[(int)nX+((int)nY)*bmpWidth]; 

   if ( density == ind[index].densityIndex ) break; // commute allowed 

   if ( attempt > 99 ) return; // too many attempts => do nothing  

 } 

  ind[index].xPos=nX; ind[index].yPos=nY; // move individual 

} 

//------------------------------------------------------------------------- 

void __fastcall TMainForm::Infection(int index) 

{ float x=ind[index].xPos,y=ind[index].yPos; 

  int probability=param.infectProb*1000.0; // make it a big integer N 

  for ( int i=0; i < populationSize; i++ ) 

 { if ( ind[i].infectionStage > 0 ) continue; // not suscept. 

   if ( Absolute(x-ind[i].xPos) > param.infectDist || 

   Absolute(y-ind[i].yPos) > param.infectDist ) 

      continue;  // skip if out of infection distance 

   if ( random(1000) < probability ) ind[i].infectStage=1;  

        // infect new individual 

 } 

} 

//---------------------------------------------------------------------- 

void __fastcall TMainForm::AddInfectionClick(TObject *Sender) 

{ for ( int i=0,index,limit; i < param.infectInd; i++ ) 

    { limit=0; 

 while ( limit++ < 10000 ) 

   { index=random(populationSize); // any random individual 

     if ( ind[index].infectionStage > 0 ) continue; // not suscept. 

          // skip if already has infection/recovered 

     ind[index].infectionStage=1; addedInfected++; break; // infect 

   } 

    } 

} 

//------------------------------------------------------------------------ 

void __fastcall TMainForm::Cycle() 

{ int contagiousFrom=param.contagiousFrom, contagiousTo=param.duration; 

  int commuters=percentCommuters*100.0; // make a big integer N 

  day++;  

  for ( int index=0; index < populationSize; index++ ) 

 { Move(index); 

   if ( random(10000) < commuters ) Commuting(index); 
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   if ( ind[index].infectionStage >= contagiousFrom &&  

             ind[index].infectionStage <= contagiousTo ) 

  Infection(index);     // infect others 

   if ( ind[index].infectionStage > 0 ) ind[index].infectionStage++; 

        // increase infection stage 

 } 

} 

//------------------------------------------------------------------------ 
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