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Abstract

Background: The COVID-19 pandemic resulted in major inequalities in infection burden

between areas of varying socioeconomic deprivation in many countries, including England.

Areas of higher deprivation tend to have a different population structure - generally younger -

which can increase viral transmission due to higher contact rates in school-going children and

working-age adults. Higher deprivation is also associated with higher presence of chronic

comorbidities, which were convincingly demonstrated to be risk factors for severe COVID-19

disease. These two major factors need to be combined to better understand and quantify their

relative importance in the observed COVID-19 inequalities.

Methods:We used UK Census data on health status and demography stratified by decile of the

Index of Multiple Deprivation (IMD), which is a measure of socioeconomic deprivation. We

calculated epidemiological impact using an age-stratified COVID-19 transmission model, which

incorporated different contact patterns and clinical health profile by decile. To separate the

contribution of each factor, we also considered a scenario where the clinical health profile of all

deciles was at the level of the least deprived. We also considered the effectiveness of school

closures in each decile.

Results: In the modelled epidemics in urban areas, the most deprived decile experienced 9%

more infections, 13% more clinical cases, and a 97% larger peak clinical size than the least

deprived; we found similar inequalities in rural areas. 21% of clinical cases and 16% of deaths in

England observed under the model assumptions would not occur if all deciles experienced the

clinical health profile of the least deprived decile. We found that more deaths were prevented in

more affluent areas during school closures.

Conclusions: This study demonstrates that both clinical and demographic factors synergise to

generate health inequalities in COVID-19, that improving the clinical health profile of populations

would increase health equity, and that some interventions can increase health inequalities.
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Background

The COVID-19 pandemic disproportionately affected people in lower socioeconomic groups

around the world [1], [2]. In England, there were large disparities in COVID-19 burden between

areas of different relative deprivation, measured by the Index of Multiple Deprivation (IMD).

Initial reports by the UK Office for National Statistics (ONS) found that from April-July 2020 the

most deprived 10% of areas in England experienced an age-standardised COVID-19-related

mortality rate more than twice as high as the least deprived 10% [3]. These disparities were

repeatedly observed through the pandemic: between June 2020 and January 2021, the

age-standardised mortality rate in laboratory-confirmed cases of COVID-19 was 371.0 per

100,000 (95% Confidence Interval (CI): 334.2 - 410.7) compared to 118.0 (95% CI: 97.7-141.3)

in the most vs least deprived quintiles [4]. The inequality in mortality rates seen in the early

pandemic exceeded that observed in previous years, indicating that there were further factors

exacerbating the ‘expected’ effects of relative deprivation [5]. Even after adjusting for age, sex,

region, and ethnicity, this report found worse outcomes in more deprived areas, but did not

adjust for prevalence of comorbidities. Other studies have consistently confirmed an association

between comorbidities and more severe COVID-19 outcomes [6], [7].

Morbidity and the presence of underlying health conditions tend to vary greatly by

socioeconomic status (SES), and are a significant risk factor for severe infection [8].

Vulnerability to more severe infection has both direct effects, including a greater risk of

consequential long-term health complications and greater mortality risk, and indirect

population-level effects, such as potentially increased infectiousness of symptomatic cases. In

England, before the COVID-19 pandemic, life expectancy was 9.4 years longer for men in the

least deprived decile than the most, and 7.7 years longer for women [9]. These gaps continue to

widen: female life expectancy in the most deprived decile fell by 4 weeks between 2014-2016
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and 2017-2019, but rose by 11 weeks in the least deprived [9], [10]. The prevalence of

underlying health conditions that affect quality of life is also consistently correlated with local

deprivation levels: men in the most deprived decile could expect to live 18.4 years fewer in good

health than those in the least deprived decile; the corresponding gap for women was 19.8 years

[9].

It is well established that infectious disease burden is associated with SES [11]–[13]. This is

linked to a multitude of complex and interwoven factors including, but not limited to, lack of

access to healthcare, poor housing conditions, inability to avoid high-exposure settings such as

crowded public places, differences in occupation type, and avoiding restrictions or testing due to

mistrust of authorities [14], [15].

Here, we use a novel transmission model to combine differences between socioeconomic

groups in their risk of infection with their risk of severe disease on infection to quantify their

relative importance in the observed COVID-19 inequalities in England. We consider underlying

health conditions as a key determinant of an individual’s risk of developing a clinical case of

COVID-19, and focus on the impact of IMD-specific health and age structure on infectious

disease burden at the population level. By making simplifying assumptions and modelling a

synthetic population, we aim to produce a conceptual exploration of the interaction between

underlying health and demographic structure.
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Methods

We developed an age-stratified dynamic transmission model for SARS-CoV-2, which was

further stratified by IMD decile, and by urban or rural classification in England. Here we detail

how the model was modified to incorporate the characteristics of each decile and geography.

IMD-specific age structure

Each epidemic was simulated on the population of a given IMD decile in either an urban or rural

area, to account for the distinct underlying age structures in these areas. We used 17 age

groups (0-1, 1-5, every 5 years to 75, and over 75). The mid-2020 (30 June) age-specific

population of each lower layer super output area (LSOA), which is on average 1,500 people,

was linked via LSOA codes to their IMD decile and urban/rural classification (where urban is

defined as a settlement with over 10,000 residents) [16]–[19]. We calculated the size of each

age group, specific to each IMD decile and geography, and used this to determine the average

age structure of each IMD- and geography-specific population, , where

in each population. We also calculated the median age for each urban and rural IMD

decile, and the proportion of each IMD decile residing in urban or rural LSOAs (Supplementary

Section 1).

Contact matrices

To define contact between age groups we used age-specific social contact data for the United

Kingdom (UK) for physical and conversational contacts accessed via the socialmixr R package

[20], [21]. The contact matrices are highly age-assortative, with the highest daily contact

patterns occurring between individuals in the same age group for those aged 5-19. We

projected the contact patterns onto the age structure of each population in 2020, using the
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density correction method, by constructing an intrinsic connectivity matrix and scaling this matrix

to match the population’s age structure [22].

The intrinsic connectivity matrix was calculated from the 2006 UK contact matrix

and age structure as

The new contact matrix for a population with age group sizes and

proportions had entries

Age-specific fraction of COVID-19 cases causing clinical symptoms

We separate infections of SARS-CoV-2 as in [23], into clinical or subclinical cases. Clinical

cases of COVID-19 are infections that lead to noticeable symptoms such that an individual may

seek clinical care. Subclinical infections do not seek care in the model, and are less infectious

than clinical cases. We defined a population’s clinical fraction as the probability of an individual

in the population developing a clinical case of COVID-19 upon infection. Here, we extended

previous work by relating an individual’s probability of being a clinical case of COVID-19 to the

self-reported health status of their IMD- and age-specific population in England, and then
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examined how differences in self-reported health status by IMD decile, coupled with differences

in age distribution, affect the burden in each IMD decile.

To define health status, we used data from the 2021 Census, specifically the question ‘How is

your health in general?’, with response options of ‘Very good’, ‘Good’, ‘Fair’, ‘Bad’, and ‘Very

bad’ [24]. This is provided by the Census stratified by IMD and by age. We then defined ‘health

prevalence’ as the proportion of individuals reporting ‘Very good’ or ‘Good’ general health,

stratified by the same age groups and the deciles of IMD:

(1)𝐻𝑒𝑎𝑙𝑡ℎ 𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑖𝑛 ‘𝑉𝑒𝑟𝑦 𝑔𝑜𝑜𝑑’ ℎ𝑒𝑎𝑙𝑡ℎ + 𝑁𝑢𝑚𝑏𝑒𝑟 𝑖𝑛 ‘𝐺𝑜𝑜𝑑’ ℎ𝑒𝑎𝑙𝑡ℎ
𝑁𝑢𝑚𝑏𝑒𝑟 𝑖𝑛 𝑎𝑙𝑙 ℎ𝑒𝑎𝑙𝑡ℎ 𝑠𝑡𝑎𝑡𝑢𝑠𝑒𝑠  

To map the population health prevalence to the model’s age-specific clinical fraction we used

locally weighted least squares regression (LOESS) [23]. Any populations with health

prevalences outside of the training dataset’s range were assigned the most extreme clinical

fractions found by Davies et al. [23], to avoid extrapolation outside of observed values. Health

prevalence was highest in children, but children have separate risk factors for severe disease

(such as smaller airways) and children under 10 have been found to be subject to a higher risk

of clinical COVID-19 cases and a greater infection fatality ratio (IFR) [23], [25] (as observed for

other infections such as influenza [26]). Therefore, we fixed the clinical fraction of the 0-9 age

group at 0.29, matching that found by [23].

COVID-19 transmission model

The transmission model includes a single SARS-CoV-2 variant, no existing immunity in the

population, and natural history parameters drawn from the first wave of the pandemic. We did

not include vaccination, and the only non-pharmaceutical intervention (NPI) considered was
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school closures. We developed an age- and IMD-stratified deterministic compartmental model in

R (version 4.3.1) (Figure 1c). There is no mixing between IMD deciles in the model. The aim is

to demonstrate the importance of health prevalence and differences in age and social mixing in

epidemic impact, rather than to reproduce the COVID-19 epidemic in England.

Individuals are first assumed to be susceptible (S), and become exposed (E) but not yet

infectious after effective contact with an infected individual (Figure 1c). Each exposed individual

then progresses to one of two infected states: subclinical infection (Is), and clinical infection,

which is represented by a pre-symptomatic (but infectious) compartment (Ip) followed by a

symptomatic compartment (Ic). Each individual then moves into the recovered (R) or dead (D)

compartment, at which point they are assumed to no longer be infectious and to be immune to

infection. This Susceptible-Exposed-Infectious-Recovered-Dead (SEIRD) is an extension of

[23], with the addition of a D compartment. We ran the epidemic for 365 days, which allowed

completion of each epidemic in each decile and geography. Each epidemic was run on a

synthetic population of a fixed IMD decile and urban/rural geography, with no births,

non-infection-related deaths, or ageing between age groups, as the time-frame of each

epidemic was less than a year. The model also assumed that contact patterns remain constant

through the epidemic.

The force of infection in age group k is given by:

,

where is the probability of a contact between an infected and susceptible individual resulting in𝑝

transmission of infection, is the mean daily number of contacts that an individual in age
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group a has with individuals in age group k, and is the relative infectiousness of subclinical

cases. The age-specific clinical fraction is denoted by and depends on the IMD decile. Rates

of transition from each disease state are given in Table 1.

Parameter Value Definition Source

0.06 Transmission probability [23]

Varies by age and IMD Daily age-specific contacts Based on [20]

0.5
Relative subclinical

infectiousness
Assumption

Varies by age and IMD Clinical fraction Based on [23]

3 days Duration of latent period [23]

2.1 days
Duration of preclinical

infectious period
[23]

2.9 days
Duration of clinical

infectious period
[23]

5 days
Duration of subclinical

infectious period
[23]

Varies by age, see

Supplementary Table 4
Clinical mortality probability [27]

0 for all age groups
Subclinical mortality

probability
Assumption

Table 1. Model parameters.
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We assumed the relative subclinical infectiousness ( ), to be equal to 0.5, and tested this

assumption in a sensitivity analysis (see Supplementary Section 12). The transmission

probability during a contact was assumed to be as in [23]. Remaining parameter𝑝 = 0. 06

estimates were taken from [23] where possible, to replicate the conditions used to derive the

clinical fraction estimates. The mortality probability of subclinical infections was assumed to be 0

for all age groups ( ). The age-specific probability of mortality of clinical cases were estimated𝑎

using age-specific IFRs ( ) found by Verity et al. in 2020 [27] (Supplementary Table 4). As the

IFR is , since , the age-specific clinical mortality

probabilities were estimated by

where are the age-specific clinical fractions for the general population in [23]

(Supplementary Table 4).

We calculated the total infections, clinical cases, and fatalities per 1,000 people, the peak

number of clinical cases per 1,000 people, the IFR, and the basic reproduction number (R0) for

each IMD decile in urban and rural areas. We also calculated age-standardised measures of

total infections, clinical cases, and fatalities within a specific geography for increased

comparability. The age-standardised results were of the form:

Where is the standard urban population, similarly for rural

areas.
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R0 of each IMD decile in urban and rural areas was calculated as the absolute value of the

largest eigenvalue of the next-generation matrix N:

Counterfactual scenarios

To determine the epidemic burden attributable to the difference in underlying health status

between IMD deciles, we created the counterfactual health prevalence scenario, where all

deciles were assigned the age-specific health prevalence of decile 10 (the least deprived). We

calculated the total clinical cases and fatalities in each IMD decile under this assumption. In

order to reflect the size of each population (while each IMD decile comprises 10% of the

population of England, geography-specific IMD deciles vary widely in size, see Supplementary

Table 1), we scaled mortality to mid-year 2020 population sizes and totalled over the 20

populations.

We also created the counterfactual scenario of constant age structure, where we held the age

structure constant at the average of each geography-specific England population, independent

of IMD decile. This allowed us to determine the impact of clinical vulnerability separately from

the differences in age distribution in each IMD decile. The health prevalence by age remained at

the IMD-specific value.
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School closures

To quantify potential differences in impact of school closures in different IMD deciles, we

calculated the effect of school closures on R0 and total fatalities. We removed the

school-specific contacts from the contact matrix (retaining contacts in home, work, leisure,

transport, or other locations), re-projected onto the 2020 age structure, and recalculated the

next-generation matrix, N, and its largest eigenvalue, R0. While assuming that closure of

schools results in a complete subtraction of school-specific contacts may not be realistic (as

some contacts would likely be replaced by social interactions in other locations [28]), the results

demonstrate the maximum potential impact of school closures.

We simulated closure of schools after a certain cumulative proportion, P, of the population

developed clinical COVID-19 cases. The use of cumulative clinical cases as a threshold for

implementation is reflective of using total confirmed cases as a measure of the size of an early

epidemic. We assumed a value of P = 0.05, but tested different values in sensitivity analyses

(Supplementary Section 11).

Results

Self-reported health prevalence is lower in more deprived areas

There was an older age structure in rural areas compared to urban, and a generally younger

age structure in more deprived areas (Figure 1a). The relationship between IMD decile and age

structure was confirmed by the median age in each population (Supplementary Figure 1); rural

areas have consistently higher median ages than urban areas of the same IMD decile. Median

age monotonously increased with affluence in urban areas, but peaked in the fourth decile for

those living in rural areas.
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Health prevalence was lower in each IMD decile as age increased, and lower in every age

group as relative deprivation increased (Figure 1b). 47% of those aged 65-69 living in the most

deprived decile reported living in ‘Very good’ or ‘Good’ health, compared to 80% of those in the

least deprived decile. Those living in the most deprived decile experienced the same health

prevalence (76%) at age 40-44 as those in the least deprived decile did at age 70-74.

Figure 1. a) Proportion of each geography-specific IMD decile in each age group. b) Age- and

IMD-specific health prevalence (1 most deprived decile, 10 least deprived). c) Age-stratified

SEIRD model, specific to IMD decile and geography. Subscript a denotes age-specificity, c

clinical parameters, and s subclinical parameters.
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Health prevalence was mapped to clinical fraction in the age groups used in [23] as described in

Methods (Figure 2a). Under this assumption, all those over the age of 10 in more deprived

areas had a greater likelihood of developing a clinical case of COVID-19 than in other deciles

(Figure 2b).

Figure 2. Results of mapping underlying health to clinical vulnerability. a) The training

dataset of age-specific health prevalence and clinical fraction estimates for the general

population of England over age 10, and corresponding LOESS smoother, with linear extensions

outside the domain [0.21, 0.69]. b) Resulting age- and IMD-specific clinical fractions (1 most

deprived decile, 10 least deprived).

Epidemic burden increases with relative deprivation

We found that total infections and clinical cases increased with deprivation (Figure 3a, b). In

rural settings, the most deprived decile experienced 72 more crude infections per 1,000
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population than the least deprived decile; this inequality increased to 90 infections in urban

settings. The inequalities in clinical cases were even larger: in rural areas, the most deprived

decile experienced 147 more clinical cases per 1,000 than the least, and 130 more clinical

cases in urban areas. The peak clinical epidemic size was 97% larger in urban areas of the

most deprived decile than the least deprived decile under these model assumptions, and 91%

larger in rural areas (Figure 3c).

Figure 3. Measures of size of a COVID-19 epidemic in each IMD decile and geography.

Solid lines represent crude measures, and dashed lines those age-standardised by geography.

The most deprived decile is decile 1, and the least is decile 10. a) Total infections per 1,000

population. b) Total clinical cases per 1,000 population. c) Clinical cases per 1,000 population at

the clinical peak of the epidemic. d) Total deaths per 1,000 population. e) Infection fatality ratio.

f) Basic reproduction number, R0.
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Mortality inequalities differed between the crude and age-standardised results (Figure 3d). The

crude total number of deaths by IMD decile and geography closely followed the median age

(Supplementary Figure 1). There was a strong positive association between increasing relative

deprivation (decreasing decile) and the age-standardised number of deaths (Figure 3d). In

urban areas, 2.0 more deaths occurred per 1,000 age-standardised population in the most

deprived decile than the least; this inequality increased to 2.9 deaths per 1,000

age-standardised population in rural areas. The IFR followed a very similar pattern to crude

mortality (Figure 3e), likely due to a combination of the relative stability of total infections with

deprivation compared to the large variation in mortality rates, and the strong relationship

between median age and mortality.

R0 was generally higher in more deprived areas (Figure 3f), and ranged from 2.09 in rural areas

of the 7th decile to 2.71 in urban areas of the most deprived decile. The R0 was not strongly

related to median age because the lower clinical fractions in younger populations was

counteracted by their higher contact rates.

Rural areas experienced fewer total infections, lower peak clinical sizes, and lower R0 than

urban areas, but more clinical cases and deaths, at all levels of deprivation. This is likely due to

the older rural age structure, as older individuals had fewer daily contacts than younger

individuals and so produced fewer secondary infections, but were more likely to develop clinical

COVID-19 if infected.

Health-attributable deaths occur at all ages

Under the counterfactual health prevalence scenario, 340,532 deaths occurred, compared to

the 405,695 under the original assumption. Therefore, 16% of deaths, or over 65,000 fatalities,
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would have been prevented by achieving health prevalence equity at the level of the least

deprived decile. These health-attributable deaths did not only occur in those at older ages: over

29,000 prevented deaths were in individuals aged under 65 (Supplementary Figure 6). At all

ages between 30 and 70, over 20% of deaths that occurred under the original model

assumptions were attributable to underlying health inequalities (Supplementary Figure 7). We

similarly found 21% of clinical cases (3.8 million) to be attributable to inequalities in underlying

health under the model assumptions.

Lower clinical infection and mortality rates occurred in the most deprived areas, in both urban

and rural geographies in the counterfactual health prevalence scenario (Figure 4). We also

found that age-standardised deaths were consistent across IMD deciles in both geographies

under the counterfactual health prevalence scenario (Supplementary Figure 10). This result

contradicts observed mortality rates [3], [4], providing evidence for the existence of a

dependency of clinical vulnerability on IMD and more specifically underlying health. The true

relationship between IMD and age-specific clinical fraction may be more complex than the

assumptions made in this paper; for example, pre-existing immunity may be dependent on

previous exposure to coronaviruses [29], which may be associated with SES but is not

considered here.

In the counterfactual scenario of constant age structure, we observed more clinical cases and

deaths in more deprived areas (Figure 4). We also considered an underlying age structure

independent of IMD decile or geography and found that the most deprived decile experiences

40% higher mortality and a clinical peak 1.88 times larger than the least deprived decile

(Supplementary Figure 5), demonstrating the inequality resulting from health prevalence

separately from demographic differences. These results indicate that observed inequalities in

clinical case numbers and mortality are the result of a complex interaction between
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comorbidity-related clinical vulnerability and a population’s demographic structure, the outcome

of which is not necessarily consistently related to deprivation.

Further sensitivity analyses considering epidemiological parameters show consistent patterns of

age-standardised mortality by deprivation, but a change in the pattern of crude deaths as

epidemiological parameters are varied (Supplementary Section 12).

Figure 4. Epidemiological burden in counterfactual scenarios. a) Total clinical cases per

1,000 population, in geography-specific areas of each IMD decile (1 most deprived decile, 10

least deprived), in the counterfactual health prevalence scenario, and the counterfactual

constant age structure scenario. The original model is shown for comparison in pale lines. b)
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Total deaths per 1,000 population, in geography-specific areas of each IMD decile, under the

same scenarios.

School closures prevent more deaths in less deprived areas

With school closures in place in the model, R0 decreased for all geographies and IMD deciles,

but remained larger in urban than rural areas and was consistently higher in more deprived

areas in both geographies (Figure 5a). In urban areas, R0 was 0.38 higher in the most deprived

decile than the least; the equivalent inequality was 0.29 in rural areas. The largest reductions in

R0 occurred in the most and least deprived deciles, with the least impact in the median deciles

(Figure 5b). This U-shaped result is likely a product of the age structure of each population, as

R0 is driven by both high daily contact patterns in young individuals and greater clinical

vulnerability in older individuals (more detail in Supplementary Section 11). In all IMD deciles,

greater reductions in R0 occurred in urban than rural areas, likely due to the greater proportion

of school-aged children and hence larger reduction in contacts. In no scenario was R0 reduced

below 1 (Figure 5a), meaning that school closures were not able to halt COVID-19 transmission

in any rural or urban IMD decile and could only reduce epidemic burden under our model

assumptions.

By implementing school closures after 5% of the population experienced a clinical case of

COVID-19 (P = 0.05), 0.113 more crude deaths were prevented per 1,000 people in the least

deprived urban areas than the most deprived, with a corresponding difference of 0.073 deaths

per 1,000 people in rural areas (Figure 5c). This is likely due to a combination of more crude

deaths occurring in more affluent deciles without intervention, improved health conditions, and

older population structures. The deaths prevented when age-standardised by geography, shown

as dashed lines, were approximately consistent by IMD. We also investigated the pattern of

prevented mortality when changing the school closure implementation threshold
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(Supplementary Section 11) and found that the effectiveness of school closures in less deprived

areas decreased dramatically as P increased.

Figure 5. Results of implementing school closures. a) R0 in each IMD- and

geography-specific population (1 most deprived decile, 10 least deprived), before (pale lines)

and after school closures. b) Reductions in R0 due to school closures. c) Crude (solid lines) and

age-standardised by geography (dashed lines) reductions in deaths observed per 1,000

population after implementing school closures at P = 0.05.

Discussion

We have shown that, under the assumption that vulnerability to clinical COVID-19 infection is a

direct result of a population’s health prevalence, total COVID-19 infections, clinical cases, and

age-standardised deaths consistently increased with relative deprivation, therefore exposing

those living in the most deprived areas to a greater risk of mortality, as well as more non-fatal

consequences such as hospitalisation and long COVID. The peak clinical size of the modelled

COVID-19 epidemics, which describes the worst-case scenario hospitals would have to

withstand, was approximately twice as large in the most deprived decile than the least deprived.

We have found that 16% of the deaths observed under the assumptions of this model, or over

65,000 deaths, would be prevented if every IMD decile experienced the same age-specific
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health as the most affluent 10% of the country. We have also shown that school closures, which

disproportionately negatively affect children’s education and well-being in more deprived areas,

may also disproportionately benefit the most affluent in society in terms of epidemiological

burden [30], [31].

This study used publicly available data and relied on simplified models of infectious disease

transmission; there are hence several limitations to the study. The self-reported nature of the

census data means that there may be systematic differences in how health is reported between

age groups and levels of deprivation, due to social desirability and the acceptability of

self-reporting ill-health varying by demographic, cultural and socioeconomic factors [9]. Census

data and the IMD may exclude mobile communities and the over 270,000 homeless individuals

in England, who are often among the most vulnerable members of society [32], [33].

Self-reported health in 2021 may include effects of the COVID-19 pandemic, and so

pre-emptively confirm the inequities that this model aims to investigate. However, the

IMD-specific health prevalence in 2021 (Supplementary Table 3) is very similar to that found in

the 2011 UK Census (75.0% health prevalence in the most deprived decile, and 86.9% in the

least deprived decile) [34].

Much of the data used in calculating the IMD relate to 2015-2016 [16]. Any changes that have

occurred since are therefore not accounted for in the IMD rankings, such as the wider roll-out of

Universal Credit, which has been shown to have exacerbated existing inequalities and

negatively impacted claimants’ well-being [35], [36]. Health is itself a component of the IMD,

potentially limiting the IMD as an exposure for studies with health outcomes; a brief analysis

confirms that there are associations between domains of deprivation other than health

(Supplementary Figure 13). Other studies have also confirmed the relationship between local

deprivation and health outcomes when factoring out the health component of IMD [37].
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The assumption of a closed population is unrealistic: apart from during the most stringent

lockdowns, which are not represented by the contact patterns used in the above work,

individuals will interact and transmit infection between LSOAs as well as within them. A major

limitation of the contact patterns used is that intrinsic contact patterns are unlikely to be constant

across all IMD deciles and urban and rural geographies. Contact patterns also drastically

change in an epidemic, to an extent which depends on SES. The more affluent can more readily

reduce their mobility and exposures, while many in the most deprived deciles have less control

over their mobility and exposure patterns and are more likely to be in public-facing employment

[38]. The ability to self-isolate may also depend on SES, for instance through the conditions of

sick pay. The assumptions of constant contact patterns were necessary due to a lack of readily

available data on IMD- and age-specific contact patterns, both under NPIs and in daily life, and

as a consequence this study is likely to have underestimated the socioeconomic inequalities in

epidemic burden. SES-specific contact patterns should be incorporated into epidemic models to

include the different contacts that for example arise from different occupational prevalences,

ability to reduce mobility, household size, and classroom size. To this end, further data should

be collected and made accessible for future research.

By restricting clinical fractions between 0.21 and 0.69, clinical fractions converged at the upper

bound in deprived deciles over age 60 while health prevalences were still diverging, meaning

that the assigned clinical fractions may underestimate the potential difference in vulnerability,

and therefore epidemiological burden, between these IMD deciles. The parameters used for the

model, taken from [23] and [27], contain some uncertainty which is included in the original

papers but not considered in this study.
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The presence of drastically worse underlying health conditions in more deprived areas of

England has caused, and will continue to cause, dramatic inequities in the burden of infectious

disease. This study has quantified the potential inequities in epidemic burden under the

assumption that vulnerability to severe infection is a direct result of existing comorbidities. The

most effective way to reduce the inequality of epidemic burden caused by socioeconomic health

inequalities is to improve socioeconomic equity in health in England. The recommendations

made by Health Equity in England: The Marmot Review 10 Years On [10], including maximising

empowerment for all, improving standards of living, creating fair employment, and developing

healthy communities, would reduce avoidable inequalities in health and by extension avoidable

inequalities in epidemic burden.
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