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Abstract

In this work, a researcher develop SHEIQRD (Susceptible-Stay at home-Exposed-

Infected-Quarantine-Recovery-Death) coronavirus pandemic spread model. The

disease-free and endemic equilibrium points are calculated and analyzed. The

basic reproductive number R0 is derived and its sensitivity analysis is done.

COVID-19 pandemic spread is die out when R0 ≤ 1 and its persist in the com-

munity whenever R0 > 1. Efficient stay at home rate, high coverage of precise

identification and isolation of expose and infected individuals, and redaction

of transmission and stay at home return rate can be mitigate the pandemics.

Finally, theoretical analysis and numerical results are consistent.

Keywords: Coronavirus disease, Stay at home, Isolation, Theoretical analysis,

Numerical simulation.
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1. Introduction

Coronaviruses are a large family of viruses which may cause illness in animals

or humans. In humans, several coronaviruses are known to cause respiratory

infections ranging from the common cold to more severe diseases such as Middle

East Respiratory Syndrome (MERS) and Severe Acute Respiratory Syndrome

(SARS). The most recently discovered coronavirus causes Coronavirus disease
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2019( COVID-19) [1]. Its the infectious disease caused by the most recently

discovered coronavirus. This new virus and disease were unknown before the

outbreak began in Wuhan, China, in December 2019. The most common symp-

toms of COVID-19 are fever, tiredness, and dry cough. Some patients may have

aches and pains, nasal congestion, runny nose, sore throat or diarrhea. These

symptoms may appear 2-14 days after exposure, most commonly around five

days [2, 3].

China was the index case of COVID-19 pandemic later it rapidly spread

thought the world. People infected by those initial cases spread the disease to

other drastically due to human to human transmission [4]. Although Corona

represents a major public health issue in world, as of March 11, 2020, over

118,000 infections spanning 113 countries have been confirmed by the World

Health Organization (WHO). The WHO declared this public health emergency

as a pandemic [5]. As of 14 April 2020, WHO reported 1, 844, 863 confirmed

case and 117, 021 deaths have been recorded globally [6].

The study about the spread and control of COVID-19 is essential at this

time. Different scholars are study about infectious disease spread control by

using modeling approach [7, 8, 9, 10, 11, 12]. Recently, researcher study a bout

COVID-19 [13, 14, 15, 16]. The model, which is of SEIR form [17], incor-

porates the recommended public health interventions in the current pandemic.

The recommended mitigation strategies of the pandemic are stay at home, and

isolation of expose and infected individuals by efficient identification process. A

researcher focus on the impact of control measures by varying the parameter val-

ues. The model result indicates that the containment of the pandemic requires

high level of both identification and isolation process and the contact tracing

process by stay at home for removing infected individuals from the susceptible

population.
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2. Model Formulation

In this work a researcher consider that the total population is N(t) at time

t. The whole population dividing in to seven compartments. The susceptible

population S(t), they stand for people who are capable of becoming infected.

The quarantine population H(t), they represent people who are stay at home.

The exposed population E(t), they represent people who are incubating the in-

fection. The spreader population I(t), they represent people who are infectious

infected. The quarantine population Q(t), they represent people who are iso-

lated by clinically confirmation. The recovery population R(t), they represent

people who are discharge from the virus. The density of disease induced death

denoted by D(t).

The model flows chart is describes in figure 1.
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Figure 1: Schematic diagram of the model compartments and parameters.

In the process of COVID-19 spreading, the spreading among these seven

states is governed by the following assumptions. It is assumed that β is the con-

tact rate of susceptible individuals with spreaders and the disease transmission

follows the mass action principle. A researcher assume that susceptible individ-

uals home quarantine or stay at home at the rate θ. And at a rate θ0 staying at

home is not fully protected from the virus due to ineffectiveness of home quar-

antine. The one who completed incubation period becomes to infected at a rate

of σ, that means 1
σ is the average duration of incubation. According to clinical

examination, the exposed and infected individuals becomes isolated at a rate
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of η and α respectively. It is assumed that the infectious infected individuals,

leading to disease prevalence. The average duration of infectiousness is 1
γ , when

γ is the transmission rate from infected to recovery or death. In my assumption

recovery from isolated infected is better than and infected class due to clinical

treatment. Infected and isolated infected are recover with a probability of κ1

and κ2, and also they will becomes to death with a probability of (1− κ1) and

(1−κ2) respectively. The parameter Λ is the recruitment, while µ natural birth

and death rate of each state individuals. The parameters are all non-negative.

Based on the above considerations, COVID-19 spreading leads to dynamic

transitions among these states, shown in figure 1. The model can be described

by the following system of nonlinear ordinary differential equations:

dS

dt
= Λ− βSI

N
− (µ+ θ)S + θ0Q,

dE

dt
=
βSI

N
− (σ + η + µ)E,

dI

dt
= σE − (γ + α+ µ)I,

dQ

dt
= ηE + αI − (γ + µ)Q,

dR

dt
= κ1γI + κ2γQ− µR,

dD

dt
= (1− κ1)γI + (1− κ2)γQ− µD,

dH

dt
= θS − (µ+ θ0)H,

N(t) = S(t) +H(t) + E(t) + I(t) +Q(t) +R(t) +D(t).

(1)

We have the non-negative initial conditions (S(0), H(0), E(0), I(0), Q(0), R(0), D(0)) ∈

R7
+.

To make the mathematical analysis more easier, the variables of the model

(1) can be normalized as u(t) = S(t)
N(t) , h(t) = H(t)

N(t) , v(t) = E(t)
N(t) , w(t) = I(t)

N(t) , q(t) =

Q(t)
N(t) , r(t) = R(t)

N(t) , d(t) = D(t)
N(t) , and Λ = µN(t). After substitute it in (1) we can
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get the simplified form of the model

du(t)

dt
= µ− βu(t)w(t)− (θ + µ)u(t) + θ0h(t),

dv(t)

dt
= βu(t)w(t)− (σ + η + µ)v(t),

dw(t)

dt
= σv(t)− (α+ γ + µ)w(t),

dq(t)

dt
= ηv(t) + αw(t)− (γ + µ)q(t),

dr(t)

dt
= κ1γw(t) + κ2γq(t)− µr(t),

dd(t)

dt
= (1− κ1)γw(t) + (1− κ2)γq(t)− µd(t),

dh(t)

dt
= θu(t)− (µ+ θ0)h(t).

(2)

From the normalized form of the model we have to get

u(t) + h(t) + v(t) + w(t) + q(t) + r(t) + d(t) = 1.

Now, the first equation of the system (2) can be reduced and we hold six system

of differential equations

v′(t) = βw(t) (1− h(t)− v(t)− q(t)− w(t)− r(t)− d(t))− φv(t),

w′(t) = σv(t)− ξw(t),

q′(t) = ηv(t) + αw(t)− (γ + µ)q(t),

r′(t) = κ1γw(t) + κ2γq(t)− µr(t),

d′(t) = (1− κ1)γw(t) + (1− κ2)γq(t)− µd(t),

h′(t) = θ (1− h(t)− v(t)− q(t)− w(t)− r(t)− d(t))− (µ+ θ0)h(t)

(3)

where φ = (σ + η + µ) and ξ = (α+ γ + µ).

So, the feasible domain of the system (3) is

Γ =
{

(h, v, w, q, r, d) ∈ R6
+|h+ v + w + q + r + d ≤ 1

}
.

For the well-posedness of the model, we have the following lemma.

Lemma 1. The set Γ is positively invariant to system (3).
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Proof. Denote x(t) = (h(t), v(t), w(t), q(t), r(t), d(t))T and then system (3)

can be rewritten as
dx(t)

dt
= f(x(t)),

where

f(x(t)) = [θ (1− h(t)− v(t)− q(t)− w(t)− r(t)− d(t))− (µ+ θ0)h(t),

βw(t) (1− h(t)− v(t)− q(t)− w(t)− r(t)− d(t))− φv(t),

σv(t)− ξw(t), ηv(t) + αw(t)− (γ + µ)q(t),

κ1γw(t) + κ2γq(t)− µr(t), (1− κ1)γw(t) + (1− κ2)γq(t)− µd(t)]T .

Note that Ω is obviously a compact set. We only need to prove that if x(0) ∈ Γ,

then x(t) ∈ Γ for all t ≥ 0. Note that ∂Γ consists of five plane segments:

P1 = (h, v, w, q, r, 0)|h, v, w, q, r ∈ [0, 1], h+ v + w + q + r ≤ 1,

P2 = (h, v, w, q, 0, d)|h, v, w, q, d ∈ [0, 1], h+ v + w + q + d ≤ 1,

P3 = (h, v, w, 0, r, d)|h, v, w, r, d ∈ [0, 1], h+ v + w + r + d ≤ 1,

P4 = (h, v, 0, q, r, d)|h, v, q, r, d ∈ [0, 1], h+ v + q + r + d ≤ 1,

P5 = (h, 0, w, q, r, d)|h,w, q, r, d ∈ [0, 1], h+ w + q + r + d ≤ 1,

P6 = (0, v, w, q, r, d)|v, w, q, r, d ∈ [0, 1], v + w + q + r + d ≤ 1,

P7 = (h, v, w, q, r, d) ∈ R6
+|, h+ v + w + q + r + d = 1,

which have v1 = (0, 0, 0, 0, 0,−1), v2 = (0, 0, 0, 0,−1, 0), v3 = (0, 0, 0,−1, 0, 0), v4 =

(0, 0,−1, 0, 0, 0), v5 = (0,−1, 0, 0, 0, 0), v6 = (0,−1, 0, 0, 0, 0, 0), v7 = (1, 1, 1, 1, 1, 1)

as their outer normal vectors, respectively. If the dot product of f(x) and nor-

mal vectors (v1, v2, v3, v4, v5, v6, v7) of the boundary lines are less than or equal
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to zero, then x(t) ∈ Γ for all t ≥ 0. So,

〈f(x(t))|x∈p1 , v1〉 = − ((1− κ1)γw(t) + (1− κ2)γh(t)) ≤ 0,

〈f(x(t))|y∈p2 , v2〉 = − (κ1γw(t) + κ2γq(t)) ≤ 0,

〈f(x(t))|y∈p3 , v3〉 = − (ηv(t) + αw(t)) ≤ 0,

〈f(x(t))|y∈p4 , v4〉 = −σv(t) ≤ 0,

〈f(x(t))|y∈p5 , v5〉 = − (βw(t) [1− h(t)− q(t)− w(t)− r(t)− d(t)]) ≤ 0,

〈f(x(t))|y∈p6 , v6〉 = − [θ (1− v(t)− q(t)− w(t)− r(t)− d(t))] ≤ 0,

〈f(x(t))|y∈p7 , v7〉 = −(µ+ θ0)h(t) ≤ 0.

The proof is complete.

Hence, system (1) is considered mathematically and biologically well posed in

Γ[18].

3. Theoretical analysis of the model

3.1. Equilibrium analysis

In this sub section, we show the feasibility of all equilibria by setting the

rate of change with respect to time t of all dynamical variables to zero. The

model (2) has two feasible equilibria, which are listed as follows:

(i) Disease-free equilibrium (DFE)E0

(
µ+θ0
µ+θ+θ0

, θ
µ+θ+θ0

, 0, 0, 0, 0, 0
)

(ii) Endemic equilibrium (EE) E∗ (u∗, h∗, v∗, w∗, q∗, r∗, d∗).

The existence of endemic equilibrium is computed after we have the basic re-

productive number R0.

3.2. Basic reproduction number

Here, we will find the basic reproduction number (R0) of the model (2) using

next generation matrix approach [19]. We have the matrix of new infection
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F(X) and the matrix of transfer V(X). Let X = (v, w, q, h, u, r, d)
T
, the

model (2) can be rewritten as:

dX

dt
= F(X)− V(X),

where

F(X) =



βu(t)w(t)

0

0

0

0

0

0


, V(X) =



φv(t)

ξw(t)− σv(t)

(γ + µ)q(t)− ηv(t)− αw(t)

µr(t)− κ1γw(t)− κ2γq(t)

βu(t)w(t) + (µ+ θ)u(t)− θ0q(t)− µ

µr(t)− γw(t)− ωh(t)

µd(t)− (1− κ1)γw(t)− (1− κ2)γq(t)


.

The Jacobian matrices of F(X) and V(X) at the disease free equilibrium

E0 =
(

µ+θ0
µ+θ+θ0

, θ
µ+θ+θ0

, 0, 0, 0, 0
)

are, respectively,

JF(E0) =

F 0

0 0

 , JV(E0) =

V 0

J1 J2


where,

F =

0
β(µ+ θ0)

(µ+ θ + θ0)

0 0

 and V =

 φ 0

−σ ξ

 .

The inverse of V is computed as

V −1 =


1

φ
0

σ

φξ

1

ξ

 .

The next generation matrix KL = FV −1 is given by

KL =

 βσ(µ+ θ0)

φξ(θ + µ+ θ0)

β(µ+ θ0)

ξ(µ+ θ + θ0)

0 0

 .

Therefore, basic reproduction number isR0 = ρ(KL) = max (|µ| : µ ∈ ρ(KL))

is spectral radius of matrix KL and basic reproduction number (R0) is obtained
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as follows,

R0 =
βσ(µ+ θ0)

φξψ
, where ψ = (θ + µ+ θ0).

3.3. Stability of the disease free equilibrium

In this subsection, we summarize the results of linear stability of the model

(2) by finding the sign of eigenvalues of the Jacobian matrix around the equi-

librium E0.

Theorem 2. If R0 < 1, the disease-free equilibrium E0 of system (2) is locally

asymptotically stable, and it is unstable if R0 > 1.

Proof. In the absence of the disease, the model has a unique disease free

equilibrium E0. Now the Jacobian matrix at equilibrium E0 is given by:

−(µ+ θ) θ0 0 −β(µ+θ0)ψ 0 0 0

θ −(µ+ θ0) 0 0 0 0 0

0 0 −φ β(µ+θ0)
ψ 0 0 0

0 0 σ −ξ 0 0 0

0 0 η α −(µ+ γ) 0 0

0 0 0 κ1γ κ2γ −µ 0

0 0 0 (1− κ1)γ (1− κ2)γ 0 −µ


. (4)

Here, we need find the eigenvalue of the system from the Jacobian matrix

(4). We obtain the characteristic polynomial

P (λ) = (λ+ γ + µ)(λ+ ψ) (λ+ µ)
3 (
λ2 + (φ+ ξ)λ+ φξ(1−R0)

)
. (5)

From the characteristic polynomial in equation (5), it is easy to get five real

negative eigenvalues of J(E0), which are λ1,2,3 = −µ, λ4 = −µ−γ and λ5 = −ψ.

We get the other real negative eigenvalues from the expression

λ2 + (κ+ ξ)λ+ κξ(1−R0). (6)

From the quadratics equation (6), we conclude that λ6,7 are positive if R0 > 1

and negative if R0 < 1. Thus, the equilibrium E0 is locally asymptotically

stable if R0 < 1. E0 becomes unstable whenever E∗ is feasible (i.e., R0 > 1).

The proof is complete.
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Physically speaking, theorem 2 implies that disease can be eliminated if the

initial sizes are in the basin of attraction of the DFE E0. Thus the infected

population can be effectively controlled if R0 < 1. To ensure that the effective

control of the infected population is independent of the initial size of the human

population, a global asymptotic stability result must be established for the DFE.

Theorem 3. If R0 ≤ 1, then the disease-free equilibrium, E0, of system (2) is

globally asymptotically stable in Γ.

Proof. Let X = (u, h, v, w, q, r, d)T and consider a Lyapunov function,

V(X) = σv + φw.

Differentiating V in the solutions of system (2) we get

V̇ = σv̇ + φẇ,

= σ (βuw − φv) + φ (σv − ξw)

= (σβu− φξ)w

= φξ

(
σβ

φξ
u− 1

)
w

Therefore,

V̇ ≤ φξ
(
σβ

φξ
u∗ − 1

)
w, since u ∈ Γ,

= φξ (R0 − 1)w.

V̇ < 0 whenever R0 < 1. Furthermore, V̇ = 0 if and only if R0 = 1.

Thus the largest invariant set in
{
X ∈ Γ|V̇(v, w) = 0

}
is the singleton, E0 =(

µ+θ0
ψ , θψ , 0, 0, 0, 0, 0

)
. By LaSalle’s Invariance Principle the disease-free equi-

librium is globally asymptotically stable in Γ, completing the proof.

Theorem 3 completely determines the global dynamics of model (2) in when

R0 ≤ 1. It establishes the basic reproduction number R0 as a sharp threshold

parameter. Namely, if R0 < 1, all solutions in the feasible region converge to
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the DFE E0, and the disease will die out from the community irrespective of

the initial conditions. If R0 > 1, E0 is unstable and the system is uniformly

persistent, and a disease spread will always exist.

3.4. Endemic equilibrium and its stability

3.4.1. Existence and uniqueness

The feasibility of the equilibrium E0 is trivial. Here, we show the feasibility of

endemic equilibrium E∗. The values of u∗, h∗, v∗, w∗, q∗, r∗ and d∗ are obtained

by solving following set of algebraic equations:

µ− βu(t)w(t)− (θ + µ)u(t) + θ0h(t) = 0,

βu(t)w(t)− φv(t) = 0,

σv(t)− ξw(t) = 0,

ηv(t) + αw(t)− (γ + µ)q(t) = 0,

κ1γw(t) + κ2γq(t)− µr(t) = 0,

(1− κ1)γw(t) + (1− κ2)γq(t)− µd(t) = 0,

θu(t)− (µ+ θ0)h(t) = 0.

(7)

After some algebraic calculations we get the value of E∗ as:

u∗ =
φξ

βσ
, h∗ =

θ

R0ψ
, q∗ =

(
α+

ηξ

σ

)
µψ(R0 − 1)

(µ+ θ0)(γ + µ)
,

v∗ =
ξµψ(R0 − 1))

σ(µ+ θ0)
, w∗ =

µψ)(R0 − 1))

(µ+ θ0)
,

r∗ =
γψ

(µ+ θ0)

(
κ1 +

κ2
µ+ γ

(
α+

ξη

σ

))
(R0 − 1),

d∗ =
γψ

(µ+ θ0)

(
(1− κ1) +

(1− κ2)

µ+ γ

(
α+

ξη

σ

))
(R0 − 1).

Therefore, there exists a unique positive solution only when R0 > 1. This

implies that, it has a unique endemic equilibrium, E∗.

3.4.2. Stability analysis

Theorem 4. If R0 > 1, then the endemic equilibrium point E∗ of system (2)

is locally asymptotically stable.
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Proof. The Jacobian matrix of the model at E∗ is

−A1 θ0 0 −φξσ 0 0 0

θ −(µ+ θ0) 0 0 0 0 0

A2 0 −φ φξ
σ 0 0 0

0 0 σ −ξ 0 0 0

0 0 η α −(µ+ γ) 0 0

0 0 0 κ1γ κ2γ −µ 0

0 0 0 (1− κ1)γ (1− κ2)γ 0 −µ


(8)

where A1 =
βµψ(R0 − 1)

µ+ θ0
− (µ+ θ) and A2 = A1 + (µ+ θ).

From the Jacobian matrix (8) easily to get λ1,2 = −µ, λ3 = −µ − γ and

the other eigenvalues of the system needs further finding. The characteristic

polynomial of (8) is

P (λ) = λ4 + c1λ
3 + c2λ

2 + c3λ+ c4 = 0. (9)

Where

c1 = µ+ ξ + φ+
µσβ(θ0 + µR0)

µ+ θ0

c2 = µ(φ+ ξ) + ψ

(
(µ+ φ+ ξ) +

µ(µ+ φ+ ξ + θ0)(R0 − 1)

µ+ θ0

)
c3 = µψ(ξ + φ)R0 +

µσβ(R0 − 1)

R0

c4 = µφξψ(R0 − 1)

(10)

The polynomial (9) has negative roots (eigenvalues) if all its coefficients terms

are positive, or it satisfies Routh-Hurwitz criteria of stability [20]. From (10)

we can verify that c1 > 0, c4 > 0, c1c2 − c3 > 0 and c3(c1c2 − c3) − c21c4 > 0,

when R0 > 1. Therefore, according to the Routh-Hurwitz criterion, we can get

that all the roots of the above characteristic equation have negative real parts.

Thus, the endemic equilibrium asymptotically stable. The proof is complete.

The local stability analysis of the endemic equilibrium tells that if the initial

values of any trajectory are near the equilibrium E∗, the solution trajectories
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approach to the equilibrium E∗ under the condition R0 > 1. Thus, the initial

values of the state variables u, h, v, w, q, r and d are near to the corresponding

equilibrium levels, the equilibrium number of infected individuals get stabilized

if R0 > 1.

3.5. Sensitivity analysis of R0

We explore R0 sensitivity analysis of system (2) to determine the model

robustness to parameter values. This is a strategy to identify the most signifi-

cance parameters of the model dynamics. The normalized sensitivity index Υλ

is given by

ΥR0

λ =
∂R0

∂λ
× λ

R0

Thus normalized sensitivity indices for parameters are obtained as

ΥR0

β = 1, ΥR0
σ =

µ+ η

φ
, ΥR0

θ0
=

θθ0
(θ0 + µ)ψ

,

ΥR0
η =

−η
φ
, ΥR0

α =
−α
ξ
, ΥR0

γ = −γ
ξ
,

ΥR0
µ = µ

(
1

µ+ θ0
− 1

φ
− 1

ξ
− 1

ψ

)
, ΥR0

θ = − θ
ψ
.

(11)

From the sensitivity indices calculation results, we can identify some parame-

ters that strongly influence the dynamics of disease spread. Parameters β, θ0

and σ have a positive influence on the basic reproduction number R0, that is,

an increase in these parameters implies an increase in R0. While parameters

µ, η, α, θ and γ have a negative influence on the basic reproduction number R0,

that is, an increase in these parameters implies a decrease in R0.

Here, we illustrate graphically the relationship between the basic reproduc-

tive number and the parameters in model (2).

A researcher can find some interesting results, which have been showed in

figure 2, and figure 3, it can be seen that big β or σ can lead to large R0. That is

to say, the larger contact or short incubation period can increase the opportunity

of disease spreading. If we reduce the transmission rate by quarantine or any

appropriate control measure, then the disease outbreak will end.
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Figure 2: R0 vs the parameter β.
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Figure 3: R0 vs the parameter σ.
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Figure 4: R0 vs the parameter θ.
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Figure 5: R0 vs the parameter θ0.

As a result of figure 4, and figure 5, R0 decreasing when θ increases, and

increases whenever θ0 increase respectively. This finding suggested that effective

stay at home intervention have been mitigates the COVID-19 spread, conversely

the ineffectiveness of this intervention measure can rising its spread.

Figure 6, and figure 7, shows that the increment of η or α can reduce R0.

That is to say, effective quarantine of incubated and infectious individuals can

reduce the opportunity of disease spreading.

From figure 8, and figure 9, we find that, short average time from the symp-

tom onset to recovery or death γ and large value of µ can reduce the COVID-19

spread.
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Figure 6: R0 vs the parameter η.
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Figure 7: R0 vs the parameter α.
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Figure 8: R0 vs the parameter γ.
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Figure 9: R0 vs the parameter µ.

4. Numerical results and analysis

In this section, we conduct numerical simulation of the model (2) by using

Matlab standard ordinary differential equations (ODEs) solver function ode45.

4.1. General dynamics

We numerically illustrate the asymptotic behavior of the model (2). We

take the the initial conditions u(0) = 0.9, q(0) = 0, v(0) = 0.06, w(0) =

0.04, h(0) = 0, r(0) = 0, and d(0) = 0.

Figure 10 presents the trajectories of model (2) when β = 0.05, θ = 0, σ =

0.1923, α = 0, γ = 0.0714, µ = 0.01, θ0 = 0.0, thus the basic reproduction

number R0 = 0.5842. From this figure, we can see that the disease die out and
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Figure 10: Each compartment population changes over time when R0 < 1.

the trajectories converge to the racism free equilibrium point (1, 0, 0, 0, 0, 0, 0).

This mean that disease disappears in the community as shown in theorem 2,

and theorem 3. Furthermore, socio-economical crisis caused by COVID-19 are

removed. Finally, we have to get disease free community.
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Figure 11: Each compartment population changes over time when R0 > 1.

Figure 11 gives the trajectory plot when β = 0.3, θ = 0, σ = 0.1923, α =

0, γ = 0.0714, µ = 0.01, θ0 = 0.0, the basic reproduction number is R0 =

3.5054. From this figure, we can see that even for a small fraction of the infec-

tious case at the beginning, the disease is persists in the community and stabilize

in time. This means that the trajectories converge to the endemic equilibrium

point. Thus, as established in theorem 4, the disease persists in the community
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whenever R0 > 1.

4.2. Impact of the transmission rate

In order to investigate the impact of the transmission rate on the spread

of COVID-19, we carry out a numerical simulation to show the contribution of

transmission rate β in fractional infection population density.
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Figure 12: Impact of transmission rate β on infected population w(t) in system (2). Colors

represent different values of β.

We set the transmission rate β as 0.05, 0.2, 0.25, 0.35 and β = 0.5. From

figure 12, we can observe that infectiousness reach a higher peak level as β

increases. This figure illustrates the great influence of transmission rate as shown

in the sensitivity analysis. The transmission rate and the basic reproductive

number are almost symmetrical relationship (i.eR0 = 10×β). It says that, if we

implemented effective contact tracing process between infected and susceptible

population, then the transmission rate is reduced and also the disease spread

will be eliminated. The main public health measure which are implemented

to reduce the transmission rate in the current pandemic are stay at home and

quarantine or isolation of exposed and infected individuals by clinical tests.
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4.3. Impact of public health intervention

Study the recommended containment strategies of the pandemic, we conduct

some numerical simulations to show the contribution of public health interven-

tions.

One of the recommended control measure to reduce the pandemic is quar-

antine or isolation. Here, we observe the isolation of exposed and infected

individuals within different rate:
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Figure 13: Impacts of η on w(t).
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Figure 14: Impacts of α on w(t).

Now, we set the exposed population isolation rates η as 0.6, 0.2, 0.1, 0.05 and

0.0. In figure 13, we can see that the infectiousness increase as η decrease. This

implies that effective isolation of exposed individuals by clinical identification

before the symptom onset can mitigates the COVID-19 pandemic. Similarly,

infected isolation rates α set as 0.25, 0.1, 0.05, 0.03 and 0.0. In figure 14, we ob-

serve that the infectiousness density approaches to highest peak level as α value

decreases. This implies that ineffective quarantine of symptomatic individuals

can lead the prevalence of the pandemic.

In the current critical time the public health experts and government officials

announced that every individuals must stay at home. Due to food security and

ineffectiveness of stay at home peoples my lose this recommendation. To observe

the impact of stay at home efficiency and its lose in the following numerical
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results.
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Figure 15: Impacts of θ on w(t).
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Figure 16: Impacts of θ0 on w(t).

Figure 15, shows that different stay home rates θ, which are chosen as

0.1, 0.015, 0.01, 0.004 and 0.0. Its say that effective stay at home interven-

tion measure can be control the disease propagation. In the other hand if we

can’t implement effectively this control measure, then people becomes to sus-

ceptible at a rate of θ0. To show its impact with θ = 0.1, we chose different θ0

values as 0.6, 0.24, 0.013, 0.0065 and 0.0. We can be see in figure 16, the disease

spread rises as θ0 values increases. This implies if we can’t stay at home with a

recommended time span, then we lead the pandemic prevalence.

Conclusions

In this paper, a researcher investigated the dynamics of the COVID-19

spreading with control measure. An SHEIQRD Corona pandemic model with

public health intervention has been presented, and analyzed theoretically as will

as numerically. The theoretical analysis of the model are done. An essential

epidemiological parameter value R0 is derived by using the next generation ma-

trix approach. Furthermore, we have shown that the disease free equilibrium

globally asymptotically stable if R0 ≤ 1 and unstable otherwise. For the case

where R0 > 1, the exists a unique endemic equilibrium E∗, which is locally
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asymptotically stable. The sensitivity analysis of basic reproductive number

was conducted. Its result suggested that transmission rate β, isolation rates η

and α, stay at home rate θ and stay at home return rate θ0 are the basic control

parameter of the model.

Numerical simulations are conducted aim to support theoretical analysis

and shows the significance of public health intervention to containment these

pandemics. The general dynamics of the model with time is illustrated that the

disease is die out when R0 ≤ 1 (see figure 10), but its persists in the community

whenever R0 > 1 (see figure 11). Moreover, socioeconomically crisis caused

by these pandemic can be minimized and eliminated when we implemented

appropriate control measure.

Also of importance in mitigation of the pandemics are reduced a transmis-

sion rate β (see figure 12) and the stay at home return rate θ0, an efficient

identification and isolation of exposed and infected individual with rate of η

and α (see figures 13, 14) respectively, and enhance the ability of stay at home

rate θ (see figure 15). Finally, robust public health intervention end the current

pandemic and minimizing crisis caused by these outbreak.
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