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Abstract SARS-CoV-2 induces delayed type-I/III interferon production, allowing it to escape the10

early innate immune response. The delay has been attributed to a deficiency in the ability of cells11

to sense viral replication upon infection, which in turn hampers activation of the antiviral state in12

bystander cells. Here, we introduce a cellular automaton model to investigate the spatiotemporal13

spreading of viral infection as a function of virus and host-dependent parameters. The model14

suggests that the considerable person-to-person heterogeneity in SARS-CoV-2 infections is a15

consequence of high sensitivity to slight variations in biological parameters near a critical16

threshold. It further suggests that within-host viral proliferation can be curtailed by the presence17

of remarkably few cells that are primed for IFN production. Thus the observed heterogeneity in18

defense readiness of cells reflects a remarkably cost-efficient strategy for protection.19

20

Introduction21

Adaptive immune responses are relatively slow since they require pathogen-specific priming of im-22

mune cells (Sette and Crotty, 2021). For example, the time required for the body to activate adap-23

tive immunity against the SARS-CoV-2 virus upon initial infection is around 10 days, comparable24

to the delay of immunization against SARS-CoV-2 after vaccination (Polack et al., 2020). Instead,25

the earliest infection dynamics are largely governed locally, by infected cells and their neighbor-26

hood. The innate responses including both interferon (IFN) mediated intercellular communication27

and expression of antiviral genes (ISGs) are determinants for confining the viral spread in the res-28

piratory tract. Here, we address the spread of viruses within epithelial tissue, using SARS-CoV-229

as a model pathogen. The overall considerations are similar for other viruses, but the parame-30

ters governing infection may vary considerably due to the specific countermeasures of the virus in31

question, affecting its ability to bypass human antiviral defenses.32

In terms of countermeasures, insufficient type I and III interferon secretion upon infection is a33

main immune signature feature of SARS-CoV-2 infection (Blanco-Melo et al., 2020; Hatton et al.,34

2021; Stanifer et al., 2020;Minkoff and tenOever, 2023). The failure to activate immediate antiviral35

responses with IFNs is also a pathogenic aspect of other viruses including Ebola (Mohamadzadeh36

et al., 2007), Marburg (He et al., 2019) and Herpes simplex (Barreca and O’Hare, 2004). Secretion37

of IFN relies on the cell’s ability to sense viral products during its replication. Despite the presence38

of sensors for DNA and RNA viruses in cells, many species of viruses partially evade detection.39

The SARS-CoV-2 virus is such a case: Only two of 16 putative RNA virus sensors, IFIH1 (MDA5) and40

DHX58 (LGP2) from the RIG-I-like receptor (RLR) family, play roles in inducing IFN upon SARS-CoV-241

infection (Yin et al., 2021) and IFIH1 is antagonized by SARS-CoV-2 (Liu et al., 2021).42
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Intriguingly, evidence shows that pre-activated innate immune states help combat the SARS-43

CoV-2 infection. The higher basal expression of viral sensors, IFIH1 and DDX58 (also from the RLR44

family), in the upper airway of children (relative to adults), reduces the severity of COVID (Loske45

et al., 2022). Furthermore, well-differentiated primary nasal epithelial cells derived from a donor46

with pre-activated IFN𝛾 do show resistance to SARS-CoV-2 infection (Broadbent et al., 2022). Thus,47

the extent to which innate immunity contributes to the observed heterogeneity in responses to48

SARS-CoV-2 between hosts (Schaller et al., 2021; Desai et al., 2020) is a compelling subject for49

investigation.50

To address this question, we reanalyze single-cell RNAseq data (Fiege et al., 2021; Ravindra51

et al., 2021) providing gene expression profiles of virus sensors and antiviral genes in host cells dur-52

ing early SARS-CoV-2 infection. We propose a cellular automaton model based on a few transition53

rules suggested by observed cell states, to explain the heterogeneity in early disease progression54

as a consequence of criticality in the virus-host interaction system.55

Cell states during infection56

Directly observing cell responses and cell state transitions in a patient’s body upon viral infection57

is virtually impossible. However, human bronchial epithelial cells (HBECs) mimic the airway epithe-58

lium and have been used as a representative model for investigating the consequences of the viral59

invasion (de Jong et al., 1993, 1994;Davis et al., 2015). Single-cell RNAseq provides snapshots of the60

states of individual cells indicated by high-dimensional gene expression profiles at the mRNA level61

and can uncover the heterogeneity of cell responses obscured by aggregate measurement. Thus,62

by combining HBECs as a model and single-cell RNAseq data, one can in principle infer cell state63

transitions following viral infection. More importantly, single-cell RNAseq also captures copies of64

viral genes during sequencing, which allows us to simultaneously estimate viral replication inside65

cells.66

To reconstruct the trajectory of cell state transitions during early SARS-CoV-2 infection, we re-67

analyze single-cell RNAseq data from experiments where HBECs are sampled before infection (068

h), as well as 24 and 48 hours post-viral infection (hpi) (Fiege et al., 2021). We focus on genes as-69

sociated with antiviral responses and interferons from the host cells and detected viral genes. We70

project high-dimensional gene expression data onto a 2D plane using Uniform Manifold Approxi-71

mation and Projection (UMAP) and obtain a low-dimensional visualization of single-cell expression72

patterns (Fig. 1a). On the UMAP plane, each dot represents a cell sample and the distance between73

dots correlates with the level of similarity of cellular states. The cells are not divided absolutely into74

discrete clusters and rather show continuous trajectories. For simplicity and convenience, we clus-75

ter the cells according to their gene expression.76

Different clusters on the UMAP indicate distinct cellular states during the progression of infec-77

tion. For instance, there are three sub-clusters of susceptible cells (𝑂1, 𝑂2, 𝑂3). Neither viral genes78

nor IFNs are detected in these cells and only a few antiviral genes are expressed. The viral sensors79

(DHX58, DDX58, and IFIH1) are at their lowest level (Fig. 1b, Fig. S1). We refer to all of these cells80

as 𝑂 cells due to their relatively similar gene expression profiles in terms of viral replication genes.81

The proportion of 𝑂 cells decreases over time as the infection spreads (Fig. 1c).82

We also observe three infected cell clusters where viral genes are primarily detected, 𝑉 𝑖, 𝑉 𝑟,83

and 𝑉 . With the increasing counts of viral genes, we infer that the 𝑉 𝑖 cluster is the earliest state84

after an 𝑂 cell has been infected and the virus begins to replicate. Some but not all antiviral genes85

are activated in the 𝑉 𝑖 cells (IFIT1/2/3 and OAS1/2/3) (Fig. 1b and Fig. S1), indicating that these cells86

are still vulnerable to viral invasion. This cluster is followed by two subsequent clusters, the 𝑉 𝑟
87

cluster with pronounced viral replication and 𝐴 cluster with barely any viral replication.88

In the 𝑉 cluster, the viral genes reach their highest level and antiviral genes are strongly inhib-89

ited, indicating that the virus has fully hijacked the cell. The antiviral genes are expressed most90

strongly in the 𝐴 cluster and partially in the𝑁 cluster, indicating that the antiviral capability of the91
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Figure 1. Cell states during SARS-CoV-2 infection in human tracheal/bronchial epithelial cells. a) 6162 cells(Fiege et al., 2021) covering samples of mock-infected (0 h), 24 hpi (hours post-infection), and 48 hpivisualized with UMAP. b) Average expression of representative viral genes, IFNs, and antiviral genes with eachcell cluster (state). c) Cell proportions of clusters at different time points (hpi = 0, 24, and 48). Cell proportionsare labeled with corresponding colors in a). d) Average expression (0–48h) of antiviral genes (IFIT1, IFIT2, IFIT3,IFIT5, IFIH1, OAS1, OAS2, OAS3, OASL, DDX58). e) Average expression (0–48h) of viral genes (cov.orf1ab, cov.S,cov.orf3a, cov.orf6, cov.M, cov.N). f) Average expression (0–48h) of interferon genes (IFNB1, IFNL1, IFNL2,IFNL3). 103 cells (1.7%) are IFN-positive. g) Progression of viral infection as indicated by changes in cellproportions of different states. Cells are shown separately at each time point in the leftmost column. Theright columns show the average expression of antiviral genes, viral genes, and IFNs in the corresponding cells.

𝑁 cluster is weaker than the full antiviral state. Although the 𝑁 cluster also shows a high level of92

viral genes, it severely lacks one of the viral genes (cov.E, Fig. S2) compared with the most highly93

expressed viral genes of the 𝑉 cluster. This observation implies that viral replication and activa-94

tion of the antiviral state coexist in the IFN-secreting cells (𝑁 cluster). We note the existence of a95
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small subgroup of the 𝑉 𝑟 cluster, close to the 𝐴 cluster, that exhibits relatively high levels of both96

antiviral genes and viral genes but no appreciable IFN (Fig. 1d–f). The viral genes are also partially97

expressed in these cells, but different from the 𝑁 cluster, the antiviral genes are fully expressed98

(Fig. S1 and S2). Thus, these cells are more likely to sustain the antiviral state.99

At 24 hpi, some cells have switched from the pre-infection state (𝑂) to other states. At 48 hpi,100

almost all cells have transitioned to other states and only a few cells remain in the 𝑂 state (Fig.101

1c and g). The aggregated gene expression of representative antiviral genes and detected viral102

genes indicates the cells move from the 𝑂 state towards the three remaining terminal states on103

the considered timescale of 2 days: Antiviral state (𝐴, Fig. 1d), Virus-conquered state (𝑉 , Fig. 1e),104

and IFN producing state (𝑁 , Fig. 1f). Central for the overall defense is the relatively few cells that105

reach the IFN-producing state (𝑁 ). These cells also express 𝐴 and 𝑉 genes.106

When IFN is not expressed, the antiviral genes and viral genes exclude each other (Fig. 1d and107

e), except for a few cells around (UMAP1,UMAP2) ∼ (−2.5, 7.5) (green cells at hpi = 48, Fig. 1g). They108

represent cells where the virus succeeded in stopping IFN secretion, but could not fully hijack the109

cell. We still regard these cells as antiviral cells in our model.110

The 𝑁 state is associated with both high levels of virus sensors and viral genes, in agreement111

with the observation that IFN production is initiated after exposure to the virus (Lei et al., 2020)112

and that IFN can induce an antiviral state inside the same cell (Sanceau et al., 1987). Expression113

of the key SARS-CoV-2 sensitive sensors (IFIH1, DDX58, DHX58) is sparse in the 𝑂 state (Fig. S1),114

indicating that a small fraction of cells have virus-sensing capacity prior to infection and are ready115

to mount a defense – and that this population increases with IFN tissue diffusion.116

Model117

We introduce a cellular automaton model to capture the cell state dynamics during early stages of118

SARS-CoV-2 infection in a sheet of epithelial tissue. At each simulation, we seed an infection site on119

a 2D square lattice and study how the infection spreads as the sites on the lattice switch between120

cell states following a set of simple rules derived from the observations of the single-cell RNAseq121

data.122

In addition to the states corresponding to the dominant clusters observed in the single-cell123

data (Fig. 1a) (𝑂, 𝐴, 𝑉 and 𝑁 states corresponding to 𝑂, 𝐴, 𝑉 and 𝑁 clusters), we introduce a124

transient pre-antiviral state (𝑎) that can switch to the𝑁 state rapidly on viral exposure, considering125

the heterogeneity of viral sensing ability in susceptible cells.126

It follows from this description, that those RNA viruses that can sensed by a large repertoire of127

sensors should be modeled with a larger fraction of cells in the 𝑎 state.128

The model is initialized with cells predominantly in the 𝑂 state and a small fraction, 𝑝𝑎, in the129

pre-antiviral state 𝑎. The parameter 𝑝𝑎 can also be understood as the probability that an 𝑂 cell will130

switch to the𝑁 or 𝐴 state when exposed to the virus or IFNs, respectively. As such, the value of 𝑝𝑎131

depends on both host and virus. In particular, a virus that is able to effectively interfere with the132

defense and signaling of host cells will be modeled by a low 𝑝𝑎 value.133

It is worth noting that the proportion of cells in the 𝑎 state before the onset of SARS-CoV-2134

infection is expected to be higher in hosts with pre-activated antiviral innate immunity (Loske et al.,135

2022; Broadbent et al., 2022), meaning that the value of 𝑝𝑎 will, in general, depend on the exposure136

history of the host.137

We propose the following transitions between five main discrete cell states (Fig. 2a):138

• 𝑁 , IFN-secreting cells. These arise from pre-antiviral cells (𝑎 state) that become infected (but139

not infectious). Here we ignore possible apoptosis (Wen et al., 1997; Tesfaigzi, 2006) of 𝑁140

cells since IFNs still have time to diffuse to the neighborhood.141

• 𝑂, unaffected (susceptible) cells.142

• 𝑉 , infected cells, virus-producing cells. This state arises when a susceptible (𝑂) cell is exposed143

to a virus from another 𝑉 cell.144
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• 𝑎, pre-antiviral state. May develop into either the 𝐴 or𝑁 state upon exposure to signals from145

𝑁 cells or virus from 𝑉 cells.146

• 𝐴, antiviral state. Immune to infection. Achieved when a pre-antiviral (𝑎) cell is exposed to IFN.147

We do not consider the decay of the antiviral state as it may last more than 72 h (Gaajetaan148

et al., 2013).149

Thedynamics are defined in termsof discrete time steps, representing the characteristic timescales150

of cellular viral infection. We explore themodel for an extended time, keeping inmind that in reality151

other immune cells such as NK-killer cells and macrophages may migrate to the infected site and152

reduce viral spread (McNab et al., 2015).153
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Figure 2. NOVAa model. a) The cell state transitions are included in the NOVAa model. The simpler OVAmodel bypasses the 𝑎 and 𝑁 states, by allowing 𝑉 to induce direct 𝑂 → 𝐴 transitions (Fig. S3). b) Final statesof a small lattice (50 × 50) simulations at two different values of 𝑝𝑎 (both at IFN spreading radius 𝑅 = 1). c) Thefraction of cells in each state in the final frozen configuration as a function of 𝑝𝑎. A critical transition isobserved at 𝑝𝑎 = 𝑝𝑐 ∼ 27.8%. At lower values of 𝑝𝑎, most cells terminate in the 𝑉 state, representing anaggressive tissue infection. Simulations were performed on a lattice with linear dimension 𝐿 = 1000.
The four rules of the model are (Fig. 2a):154

𝑁(𝑎) = 𝐴, 𝑁(𝑂) = 𝑎, 𝑉 (𝑎) = 𝑁 , 𝑉 (𝑂) = 𝑉155

where the notation 𝑋(𝑌 ) = 𝑍 denotes a cell in state 𝑋 acting on a cell in state 𝑌 and changing it to156

state 𝑍 in one time-step. Thus, cells in states 𝑂, 𝑎, and 𝐴 are unable to influence their neighbors.157

The 𝑉 state is the only directly self-replicating state.158

Each site of the 𝐿 × 𝐿 lattice is assigned to either the 𝑂 (probability: 1 − 𝑝𝑎) or the 𝑎 state (prob-159

ability: 𝑝𝑎). Infection is initiated by a single 𝑉 cell, and we explore the percolation of the infection160

to larger scales. A time step consists of 𝐿2 updates, in which a random site 𝑖 is selected. If a 𝑉 cell161

is selected, it interacts with its 4 nearest neighbors according to the rules 𝑉 (𝑂) = 𝑉 and 𝑉 (𝑎) = 𝑁 .162

If an 𝑁 cell is selected, it interacts with all cells within a radius 𝑅, according to the rules 𝑁(𝑂) = 𝑎163

and 𝑁(𝑎) = 𝐴. The radius 𝑅 thus quantifies the diffusion range of IFNs relative to the virus.164

Results165

At 𝑅 = 1, the final number of infected cells depends strongly on the value of 𝑝𝑎. At a low 𝑝𝑎 of 0.27,166

infections typically spread to the entire system, while at a higher 𝑝𝑎 of 0.35, the propagation of the167

𝑉 state is inhibited (Fig. 2b).168
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a)

b)

Figure 3. Cluster size distribution. a) The distribution of infected cells (𝑠 = (𝑁 + 𝑉 )∕𝐿2) for different values of
𝑝𝑎, simulated by starting with one infected cell in a 2D square lattice of linear extent 𝐿 = 2000. b) Theexponents from a) are extracted by re-scaling as shown on the 𝑦-axis, yielding 𝜏 = 1.83. The cut-off exponentis estimated as 𝜎 ∼ 1. Simulations plot the final outbreak sizes from 10,000 initial infections of one cell. Thehistogram is log-binned with 5 bins per decade. The critical point at 𝑝𝑎 = 𝑝𝑐 = 0.28 is determined as the valuewith the longest scaling regime.
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Figure 4. Range of IFN. a) Typical cluster for an 𝑅 = 1 simulation at 𝑝𝑎 ∼ 𝑝𝑐 = 0.278. b) The dependence of 𝑝𝑐with 𝑅, approximately reproduced by a fit 𝑝𝑐 ∼ 3−𝑅. For comparison the OVA model as well as percolation has
𝑝𝑐 ∼ 3−𝑅∕2. In all cases, when 𝑝𝑎 is above 𝑝𝑐 then the virus is prevented from spreading. c) Cluster distributionfor 𝑅 = 5 at 𝑝𝑎 ∼ 𝑝𝑐 = 0.004, at a 5 times larger linear scale than a).

We observe a threshold-like behavior of the final attack rate of the virus when the initial 𝑝𝑎169

changes continuously (Fig 2c). The virus spreads macroscopically for 𝑝𝑎 < 𝑝𝑐 ≈ 27.8%. At higher 𝑝𝑎,170

cells are sufficiently prone to convert to the antiviral state to prevent the infection from percolating.171

The size distribution 𝑃 (𝑠) of infection clusters around the critical value of 𝑝𝑎 = 27.8% obeys172

power-law decay (Fig. 3a). In Fig. 3b, the distribution 𝑃 (𝑠) ∝ 1∕𝑠𝜏 is further explored by re-scaling173

and the cluster size exponent is confirmed as 𝜏 = 1.83±0.03when 𝑝𝑎 = 28%. Notably, this exponent174

is below the equilibrium 2D percolation yielding 𝜏 = 2.05 (Stauffer and Aharony, 2018). Further,175

our exponent 𝜏 ∼ 1.8 is above to the percolation-inspired cluster growth model for virus spread of176

ref. (Gönci et al., 2010) which has an exponent between 𝜏 = 1.58 and 𝜏 = 1.64 depending on the177

6 of 11

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 13, 2023. ; https://doi.org/10.1101/2023.12.12.571279doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.12.571279
http://creativecommons.org/licenses/by-nd/4.0/


Manuscript submitted to eLife

distribution of individual cells’ pre-defined ability to become infected.178

The actual critical value of 𝑝𝑎 depends strongly on the choice of neighborhood. In particular, at179

𝑅 = 1, the 𝑉 and 𝑁 states have the same range in the tissue (a proxy for diffusivity), while a more180

realistic scenario is to allow IFNs to diffuse faster in the tissue (𝑅 > 1), facilitating the initiation of181

the antiviral state. The critical percolation threshold 𝑝𝑐 decreases almost exponentially with the182

value of 𝑅 (Fig. 4b), and viral propagation can be stopped for 𝑝𝑎 as low as 0.4% when 𝑅 ≥ 5. Such a183

small fraction of initial cells in the 𝑎 state is consistent with the remarkably few𝑁 cells observed in184

experiments (Fig. 1b). Thus, a higher diffusivity of IFN provides a more than proportional decrease185

in the required number of antiviral cells. As revealed by the reanalysis of RNAseq data in Fig. 1, the186

fraction of IFN-positive cells is relatively low – around 1.7%. Comparing with simulations near the187

critical point, we find that, at 𝑅 = 5, the ratio of 𝑁 cells to all affected cells (𝑁 + 𝐴 + 𝑉 ) in the final188

state, lim𝑡→∞ 𝑁∕(𝑁 +𝐴+𝑉 ) ≈ 2%, i.e. it is of comparable magnitude to the experimental value. This189

holds in a wide range around the critical point, 𝑝𝑎 ∼ 𝑝𝑐 .190

The exponents for the cluster size distribution are the same at 𝑅 = 1 and 𝑅 = 5, while the191

structures of the clusters are different (Fig. 4a and c). Greater 𝑅 leads to a different microscopic192

structure with fewer 𝐴 and 𝑁 cells in the final state (Fig. 4c).193

To put the above findings in perspective we further explore a simplified version of our model194

with only 3 states (supplementary Fig. S3), the OVA model, which may be seen as a rephrasing of195

models for induced antiviral states suggested by Howat et al. (2006); Segredo-Otero and Sanjuán196

(2020); Michael Lavigne et al. (2021). In the OVA model, 𝑝𝑎 is the probability that an infected cell197

produces interferons towarn neighbor cells within radius𝑅. In theOVAmodel, one update consists198

of selecting a random cell. If the cell is in the 𝑉 state then its neighbor cellsmay change by exposure199

to the virus, provided that they are susceptible (𝑂). Each of the four neighbors is now chosen in200

random order, and if a neighbor cell 𝑖 is in the 𝑂 state, a random number 𝑟𝑎𝑛𝑖 ∈ [0, 1] is drawn. If201

𝑟𝑎𝑛𝑖 ≥ 𝑝𝑎 the neighbor is flipped to the 𝑉 state. If, on the other hand, 𝑟𝑎𝑛𝑖 < 𝑝𝑎, all 𝑂 cells within a202

radius𝑅 around the neighbor 𝑖 are converted to the𝐴 state. Thus, for large𝑅 andmoderate 𝑝𝑎, the203

spread of infection will be mitigated. We find that the OVA model has an “outbreak size" exponent204

𝜏 ∼ 1.8, similar to theNOVAamodel. However, the change inmicrostructure as a function of the IFN205

range 𝑅 observed in the NOVAa model (compare Fig. 4 panel a and c) is not observed in the OVA206

model (Fig. S3), where the features instead scale proportionally with𝑅. We also simulated standard207

percolation by randomly adding disks of radius 𝑅 of blocking (“antiviral”) cells and checking for208

percolation of the infected state. While the critical behavior of the standard percolation model209

approximately resembles that of the OVA model (Fig. 4b), the antiviral state of the OVA model is210

somewhat less effective at blocking the spread (reflected in a higher threshold 𝑝𝑐 ).211

Finally, we examined a version of the model where the discrete idealization of 𝑁-cells acting212

at all cells within a specific radius 𝑅 is replaced by a probabilistic conversion with a diffusion-like213

profile. The algorithm for this is described in the supplement, with results in Fig. S4 to be compared214

to Fig. 4. We find that the probabilistic spreading of IFN is more effective, in terms of demanding215

lower 𝑅 for obtaining similar limits on spreading of the infection.216

Discussion217

There are some preexistingmodels of the interplay between virus, host cells and triggered immune218

responses, with an antiviral state triggered by IFN signaling from neighbor cells (Graw and Perel-219

son, 2016). Cellular automaton models of infection dynamics in epithelial tissue were explored220

by (Howat et al., 2006; Segredo-Otero and Sanjuán, 2020; Michael Lavigne et al., 2021), with the221

overall result that spreading depends on competition between the virus and an induced antiviral222

cell state. This competition is recapitulated in our model in terms of the two effective parameters223

𝑝𝑎 and 𝑅. Our model emphasizes the threshold dynamics, with a critical transition between effec-224

tive confinement and unhindered spread that depends sensitively on the details of the relevant225

cell states. In particular, the presence of the specialized IFN-producing 𝑁 cells allows for disease226

confinement at a much lower concentration of pre-antiviral cells (lower value of 𝑝𝑎) in the NOVAa227

7 of 11

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 13, 2023. ; https://doi.org/10.1101/2023.12.12.571279doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.12.571279
http://creativecommons.org/licenses/by-nd/4.0/


Manuscript submitted to eLife

model, than in the OVA model which lacks the 𝑁 state (Fig. 4b). As a consequence of low 𝑝𝑎, the228

number of final 𝑁-state cells is also much lower.229

The low concentration of ready-to-fight cells may seem perplexing, leading one to surmise that230

the organism could easily fight off an infection by only slightly increasing its investment in these231

primed cells. However, one should keep in mind that e.g. the human organism does indeed have232

ready-to-fight cells that are able to eliminatemost foreign RNA, and only leave a few truly infectious233

viruses. As highlighted in the introduction, these select viruses often employ strategies to lower234

the 𝑝𝑎, for example by only being sensed by a small fraction of the RNA virus-sensitive receptors of235

our cells.236

The parameter 𝑝𝑎 can be interpreted as the probability that a cell is sufficiently antiviral to con-237

vert to a𝑁 state upon infection with a given virus. The relevant value of 𝑝𝑎 will depend on the virus238

considered (and will be small for viruses that inhibit cell responses to infection) as well as on the239

host (e.g. on age (Kissler et al., 2020) and recent infection history). Dysregulated IFN responses240

are characteristic of the effective immunomodulatory strategies used by betacoronaviruses (Chan-241

nappanavar et al., 2019; Acharya et al., 2020).242

The parameter𝑅 reflects the signaling efficiency of an interferon-producing cell. Since𝑅 is mea-243

sured in units of the typical distance that the virus spreads, it depends on viral properties, including244

its burst size, diffusion, and adsorption to host cells, with higher adsorption being associated with245

larger 𝑅 values. For SARS-CoV-2 this suggests that lower ACE2 receptor counts would result in less246

adsorption to nearby cells, in turn allowing the virus to spread to more distant tissues (Bastolla,247

2021) suggesting a lower value of 𝑅.248

For viruses that do not delay the production of IFNs, 𝑝𝑎 would be higher than for SARS-CoV-2,249

allowing neighbor cells around an infected site to form a kind of “ring vaccination” as the antiviral250

state dominates. In this sense, our model is consistent with the previous modeling of the roles of251

autocrine and paracrine interferon signaling suppression of viral infection (see e.g. (Michael Lavi-252

gne et al., 2021) for parallels between IFN response and ‘ring vaccination’).253

We do not consider viral particles which enter the bloodstream and seed new infections non-254

locally. This may allow the virus to spread in the tissue at what would otherwise constitute sub-255

critical conditions in our model. Further, there may be tissue-specific variations in both 𝑝𝑎 and 𝑅,256

adding larger-scale heterogeneity to the overall spreading. As the disease progresses one would257

expect additional heterogeneity to emerge, associated with variability in later host responses in-258

cluding macrophage activation and adaptive immunity (Wang et al., 2021).259

The remarkable heterogeneity of disease progression in COVID-19, in the form of widely vari-260

able symptoms (Tabata et al., 2020) and transmission risk (Nielsen et al., 2021; Kirkegaard and261

Sneppen, 2021), has been widely observed. E.g. among university students, just 2% of SARS-CoV-2262

positive hosts provided 90% of total respiratory viral load (Yang et al., 2021). In our formalism,263

we would understand such variability in terms of a 𝑝𝑎 that is comparable to the critical value, but264

varying between hosts. A slight change of 𝑝𝑎 then results in dramatic fluctuations in the outcome265

of an infection.266

To be more quantitative, for SARS-CoV-2 the detected virus count on average grows by a factor267

of 3.5 (Kissler et al., 2020) in one infection generation of 8 hours (not to be confused with the268

between-host ’generation time’ of the infection). This within-host reproductive number is far below269

the number of viruses produced from a cell, indicating severe restrictions from the innate immune270

system. On the other hand, 3.5 is still above the threshold for spreading, indicating that within-host271

amplification is super-critical. However, themeasured amplification includes viruses that “jump" to272

other spots in an infected person, thereby suggesting a local spreading that is closer to the critical273

value than an amplification of 3.5 would suggest.274

Our study finally compared the NOVAa model with the simpler OVA scenario that recapitulates275

earlier modeling of induced antiviral states (Howat et al., 2006; Segredo-Otero and Sanjuán, 2020;276

Michael Lavigne et al., 2021). These papers all build on a more homogeneous role of infected277

cells, each inducing some immunization of surrounding cells. Ref. (Howat et al., 2006) emphasizes278
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the larger range of IFN signals compared to viral diffusion, while the focus of (Segredo-Otero and279

Sanjuán, 2020) is competition between viruses with different abilities to suppress IFN signaling.280

Ref. (Michael Lavigne et al., 2021) introduces a cellular automaton approach where the antiviral281

state leads to a type of ring vaccination that prevents the virus from spreading when more IFN is282

produced. Our OVA model may be seen as a simplified and more stochastic version of this last283

model. The NOVAa model then adds the additional benefits associated with the experimentally284

observed but low-abundance 𝑁 state cells, which by their rarity adds to predicted randomness285

between the fate of individual infection centers during an early viral infection.286
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