1	Metacell-based differential expression analysis identifies cell type specific temporal			
2	gene response programs in COVID-19 patient PBMCs			
3 4	Kevin O'Leary ¹ , Deyou Zheng ^{1,2,3*}			
5				
6	1. Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA			
7	2. Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA			
8	3. Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA			
9				
10	*Corresponding author:			
11	Deyou Zheng, Ph.D.			
12	Deyou.Zheng@einsteinmed.edu			

13 Abstract

14	Background: By resolving cellular heterogeneity in a biological sample, single cell RNA sequencing
15	(scRNA-seq) can detect gene expression and its dynamics in different cell types. Its application to time-
16	series samples can thus identify temporal genetic programs active in different cell types, for example,
17	immune cells' responses to viral infection. However, current scRNA-seq analysis need improvement. Two
18	issues are related to data generation. One is that the number of genes detected in each cell is relatively
19	low especially when currently popular dropseq-based technology is used for analyzing thousands of cells
20	or more. The other is the lack of sufficient replicates (often 1-2) due to high cost of library preparation
21	and sequencing. The third issue lies in the data analysisusage of individual cells as independent
22	sampling data points leads to inflated statistics.
23	Methods: To address these issues, we explore a new data analysis framework, specifically whether
24	"metacells" that are carefully constructed to maintain cellular heterogeneity within individual cell types
25	(or clusters) can be used as "replicates" for statistical methods requiring multiple replicates. Toward this,
26	we applied SEACells to a time-series scRNA-seq dataset from peripheral blood mononuclear cells
27	(PBMCs) after SARS-Cov-2 infection to construct metacells, which were then used in maSigPro for
28	quadratic regression to find significantly differentially expressed genes (DEGs) over time, followed by
29	clustering analysis of the expression velocity trends.
30	Results: We found that metacells generated using the SEACells algorithm retained greater between-cell
31	variance and produced more biologically meaningful results compared to metacells generated from
32	random cells. Quadratic regression revealed significant DEGs through time that have been previously
33	annotated in the SARS-CoV2 infection response pathway. It also identified significant genes that have not
34	been annotated in this pathway, which were compared to baseline expression and showed unique

35 expression patterns through time.

- 36 **Conclusions:** The results demonstrated that this strategy could overcome the limitation of 1-2 replicates,
- 37 as it correctly identified the known ISG15 interferon response program in almost all PBMC cell types. Its
- 38 application further led to the uncovering of additional and more cell type-specific gene expression
- 39 programs that potentially modulate different levels of host response after infection.
- 40
- 41 **Keywords:** scRNA-seq, metacells, SEACells, COVID-19, SARS-CoV2

42 Background:

43 Single cell RNA sequencing (scRNA-seq) is a powerful tool that can detect distinct gene expression 44 dynamics in different cell types within a sample [1, 2]. One can apply the analysis to time-series samples 45 for the identification of temporal changes in gene expression within each cell type. To do this, a current common practice is to use each cell as a statistical "sample" for determining gene expression change 46 47 between different time points. Statistically, this is not rigorous because cells in the same biological sample do not really represent independent samples, but have intrinsic correlations [3]. Pseudobulking 48 49 has been proposed to overcome this, where gene read counts for all cells of a cell type (or cluster) in a 50 biological sample are aggregated. This approach also has an advantage in increasing gene coverage, as 51 relatively low numbers of genes are detected per cell by current scRNA-seq analysis approaches [4]. The strategy, however, highlights the problem of low numbers of replicates in scRNA-seq studies due to the 52 53 high cost of library preparation and sequencing [5]. In addition, simply aggregating reads in all cells of a 54 type may erase the heterogeneity (or variation) in a cell type (or cluster). In this study, we propose the 55 use of "metacells" to circumnavigate these problems. A metacell represent the transcriptomes of a group of highly similar cells [6]. Multiple methods and algorithms exist to create them [6-8]; however, the 56 57 single-cell aggregation of cell states (SEACells) algorithm has an advantage in retaining heterogeneity 58 within each cell cluster [9], resulting in metacells representing different states. We thus decided to 59 investigate if the metacells from SEACells can be used as pseudo-replicates (referred as "metareplicates") 60 in statistical methods that were developed for time-series data from bulk tissues (vs single cells). 61 Considering the continued importance of understanding the diverse ways in which the immune system responds to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we further decided to test 62 the approach with a time series dataset derived from coronavirus disease 2019 (COVID-19) patients 63 64 following symptom onset [10].

65

66	SARS ICoV I2, the strain of coronavirus responsible for the coronavirus disease 2019 (COVID-19)
67	pandemic [11, 12], continues to infect hundreds of thousands of people around the globe. To date,
68	almost 7 million confirmed deaths have been recorded as a consequence of SARS-CoV-2 infection [13].
69	The desire to understand the mechanisms behind SARS-CoV-2 infection and host defense, especially as it
70	relates to its transmissibility [14, 15] and severity [16], has prompted a vast amount of research in the
71	field of immunology and beyond [17, 18]. One of many topics of interest concerns gene programs within
72	cell types that respond to SARS-CoV-2, specifically peripheral blood mononuclear cells (PBMCs), which
73	are any round nucleus containing blood cells such as dendritic cells, lymphocytes, natural killer cells
74	(NKs), or monocytes [19]. Because PBMCs are responsible for responding to and eliminating viral
75	infections such as SARS-CoV-2, it is important to understand the transcriptomic basis of this process.
76	Researchers have compared gene expression in PBMC cell types between COVID-19 patients and controls
77	using bulk RNA sequencing [20]. Others have implemented scRNA-seq [21, 22], which provides greater
78	resolution at the cellular level, especially as it relates to deducing cell type-specific responses to SARS-
79	CoV-2 infection. Some have even performed time series scRNA-seq analysis of COVID-19 progression.
80	While these studies have provided valuable information relating to cell type-specific changes in
81	expression through time, they were limited by the issues of small replicates as discussed above. For
82	example, some time points in the PBMC scRNA-seq data that we planned to analyze have only 1
83	replicate. Consequently, the authors had to bin samples of different time points to increase statistical
84	power [10]; so did in other studies [20, 23, 24]. In addition to this computational difference, the scope
85	and focus of our current study is also different from the original report [10], e.g., the original authors
86	focused on the response difference between COVID-19 infection and flu and did not study the velocity of
87	the expression changes. The authors of SEACells also studied SARS-CoV-2 gene responses in PBMCs with

88	a different dataset [21], but focused on CD4 T cells and only analyzed a few metacells that differed based
89	on dominance of certain time points [9]. This differs from our study in that we analyzed metacells
90	representing 10 discrete points in time and in many PBMC cell types.

91

92 In short, using the SEACells alogorithm, we created metacells that retained hetergeneity within each cell 93 type and used them as metareplicates. This resulted in up to 12 replicates for some time points and thus 94 provided the statistical power necessary to resolve significant changes in expression through time. With 95 that, we performed strict statistical analysis through a greater number of time points than any other 96 COVID-19 time-series scRNA-seg study to date. To accomplish this, we subset all cells based on time since symptom onset and then used the SEACells algorithm to create metacells. maSigPro [25] was used 97 98 for quadratic regression to find significantly differentially expressed genes (DEGs) through time, due to its 99 robust statistical base, its flexibility with defining degrees of regression, and widespread use for time 100 series analysis. Additionally, quadratic regression was used because we did not want to capture cyclical 101 variation, rather we hoped to find broader changes in expression through four weeks of COVID-19 102 symptoms. We further classified all DEGs by expression velocity trend based on fitted expression curves 103 and their dynamic derivates. With this approach, we identified ISG15 as a DEG through time when PBMC cell types were analyzed together. When cell types were analyzed independently, however, we found 104 105 many immune system-related DEGs, which enabled us to expand upon previous reports of certain gene 106 programs and their relevence to SARS-CoV-2 immune response.

- 107
- 108 Methods:

109 Metacell Creation

110	The COVID-19 scRNA-seq dataset was obtained from a previous study that performed time series
111	analysis on PBMCs from five SARS-CoV-2 infected patients [10]. The date of symptom onset and sample
112	collection was recorded for each patient. Since we did not intend to group patients by disease stage, we
113	simply classified each collected sample by the number of days after symptom onset. Samples from
114	influenza patients were excluded from time series analysis, as were controls, since they were not
115	collected continuously through time. However, we included the normalized expression of three healthy
116	controls as baseline values for comparative purposes.

117

For SEACells, the number of metacells was determined based on the software authors' suggestion of 1 118 metacell per 75 single cells [9]. We rounded to the nearest 10 to enable the creation of more metacells 119 120 for time points with fewer total cells. The assignment of individual cells to metacells was determined 121 using the SEACells algorithm in Python. We applied SEACells to samples of each time point 122 independently. For each of the 10 time points, the input consisted of an Anndata object containing normalized counts from the n most highly variable genes (2000 for our dataset), cell cluster/type 123 124 assignments (as previously determined by the original author [10]), and a low dimensional representation of the data. Subsequent steps for metacell creation were outlined in the SEACells 125 manuscript [9] and in **Figure 1**. The expression of each gene for a given metacell was determined by 126 127 averaging the normalized counts of the cells that were assigned to it (Figure 1A-B). Each metacell was 128 ascribed a cell type based on whichever cell type was most prominent amongst the assigned individual cells. For example, if most cells assigned to a metacell were plasma cells, the metacell would be called a 129 130 plasma metacell. The percentage of cells comprising the metacell that were of the assigned cell type was 131 referred to as its "purity." We call metacells created using the SEACells algorithm "sMetacells."

132

133	To obtain metacells composed of random individual cells by cell type, which we call "rMetacells", we
134	subset the same filtered PBMC dataset by time. We then subset by cell type and took the average
135	normalized expression of 20 randomly selected cells to create an rMetacell. While we intended to use
136	more cells to create metacells that were as comparable to sMetacells as possible, several cell types had
137	less than 75 cells for a particular time point, so we decreased our threshold to maximize metacell
138	assignments. The SEACells algorithm was not confined to this issue due to its ability to assign varying
139	numbers of cells to each metacell based on nearest neighbor determinations.

140

141 maSigPro and Trend Determination

Figure 1 (previous page): Summary of metacell generation and usage. A) An example of metacells generated using the SEACells algorithm (sMetacells) and random single cells (rMetacells) for a time point. An example of the distribution of sMetacells (orange dots) and rMetacells (blue) are shown overlaying all cells of a particular type (either grey or blue). sMetacells, given their propensity to distribute over the full cell type space, are more spread out while rMetacells depend on random assignment of cells and therefore have a higher probability of occupying the space with greatest cell density. **B)** The gene expression of each metacell was computed from the average of the normalized expression amongst all single cells assigned to it. **C)** After the generation of metacells for each time point, quadratic regression trends was assigned to each DEG. For the example of a significantly changing gene is shown here. **D)** One of eight expression with decreasing

143

144	After the creation of metacells (by SEACells or randomly) for each time point, maSigPro was used to find		
145	DEGs through time. maSigPro utilizes regression ANOVA followed by a variable selection procedure [25].		
146	Quadratic regression was used since we expected the change in gene expression to follow one of eight		
147	general trends, as described in Figure 1C-D. For each cell type and gene, a quadratic equation was		
148	generated to represent expression through time. Only genes with false discovery rate (FDR) less than		
149	0.05 and R ² value greater than 0.5 were considered statistically significant and retained. An F statistic-		
150	associated p-value was produced for each coefficient A, B, and C in equation 1.		
151			
152	Equation 1: $y = Ax^2 + Bx + C$		

153

154 The trends with p < 0.05 for coefficient A were determined based on the shape of their fitted curve. If 155 the absolute value of the slope of the line tangent to the expression vs time curve (the expression velocity) decreased through time, we called this decreasing velocity, denoted " \downarrow velocity" in figures. If 156 157 the absolute value of the slope of the tangent line increased, this was referred to as increasing velocity, 158 or " \uparrow velocity." We combined these terms with the overall trend of increasing or decreasing expression. 159 For example, if the expression of a gene was decreasing through time, was not linear, and showed 160 decreasing velocity, we would call this decreasing expression with decreasing expression velocity or 161 "Decreasing, \downarrow velocity" for short. If p > 0.05 for coefficient A, we considered this to be linear and the

162	direction of the curve dictated whether it was considered increasing or decreasing. Increasing linear
163	expression is synonymous with "Increasing, constant" while decreasing linear expression is synonymous
164	with "Decreasing, constant" where constant refers to the expression velocity. If the average expression
165	for the first time point and the last time point were both less than each of the time points between
166	them, this was considered "Maxima". If greater, this was "Minima".
167	
168	It is important to note that DEGs from dendritic cells (DCs), megakaryocytes, monocytes, cycling plasma,
169	and stem cells were eliminated from further analysis due to low cell numbers (less than 500 in total
170	across all time points), which led to numbers of metacells too low for robust statistical analysis, because
171	performing quadratic regression would lead to overfitting for these cell types. Additionally, due to low
172	metacell counts for the first three time points in memory B cells, we eliminated days 3, 7, and 9
173	metacells for trend determination of this cell type due to skewing toward early time point outliers. For all
174	other cell types, all ten time points (days 3, 7, 9, 10, 13, 15, 16, 22, 25, and 28) were included for trend
175	determination.
176	
177	Other Bioinformatics Databases and Tools
178	
179	For classification of the functions of the gene products (i.e., proteins), we used the DAVID Gene Function
180	Annotation Tool [26, 27] and further grouped selected terms into broader function categories, such as
181	transferases, proteases, immunoglobulin-related, and interferon-related. The KEGG [28] COVID-19
182	pathway was used to define known SARS-CoV-2-related genes. Although the KEGG pathway is based on
183	SARS-CoV-2 entry into type 2 pneumocytes, we generalized this response to the cascade of events that
184	follow uptake of the virus by PBMCs to further narrow our search for novel expression responses. We

185	base this generalization on the finding that cell-intrinsic innate immune responses are triggered in
186	PBMCs following exposure to SARS-CoV-2 [29]. The STRING Database [30] was used for network analysis
187	to connect our DEGs to known COVID-19-related genes. To find significantly enriched gene ontology (GO)
188	terms from inputted DEGs, we used geneontology.org [31, 32], set the annotation dataset to "PANTHER
189	GO-slim biological processes", and used the entire human genome as background. Figures were edited
190	using biorender.com.
191	
192	Results:
193	
194	Finding DEGs through time with pseudobulking method:
195	
196	To characterize the dynamics of cell type gene programs in the PBMCs in response to SARS-CoV-2
197	infection, we first applied a pseudobulking approach by aggregating scRNA-seq reads for individual
198	genes, for either all PBMC cells or each of the cell types, for each sample. The samples and scRNA-seq
199	data were collected at 10 time points representing post symptom onset days, from day 3 to day 28 by
200	Zhu et al, as described previously [10]. This generated timeseries pseudobulk RNA-seq data with 1 to 3
201	replicates, which were then used to identify genes exhibiting significant expression changes along the
202	post infection period by maSigPro. The regression ANOVA analysis did not find any DEGs when PBMCs
203	were not separated into cell types but found a few DEGs for some cell types (1 for T cells and 3 for
204	plasma cells) (Figure S1). However, most of the DEGs exhibited the same expression trend, suggesting
205	model overfitting due to outliers and low replicates.
206	

207 Characterizing DEGs through time using metacells as replicates:

208

209	We reasoned that using metacells to construct computational replicates (referred as "metareplicates")		
210	may allow us to mitigate false positives and overfitting in the pseudobulk approach. To test this, we		
211	generated metacells from the scRNA-seq data for samples in each of the 10 time points independently		
212	using two different methods: SEACells and random selection (see Methods). The resultant metacells		
213	were referred as "sMetacells" and "rMetacells", respectively. Given that the SEACells algorithm retains		
214	heterogeneity within specific cell types, we expected that its metacells would introduce variation within		
215	individual time points and lead to fewer DEGs through time and be less prone to overfitting. We		
216	therefore compared the numbers of DEGs determined for these two methods (Table 1). We excluded all		
217	cell types with fewer than 500 total cells to avoid more extreme cases of overfitting for both methods		
218	since fewer cells would lead to fewer metacells (and thus few replicates). After that, the average number		
219	of replicates per time point for each cell type using the SEACells algorithm was 3.3. For rMetacells, three		
220	replicates were created. The average number of cells assigned to each metacell was 31.8 for sMetacells		
221	and predetermined to be 20 for rMetacells.		
222			
223	For each metacell type, we determined the standard deviation (SD) of each gene's expression for each		
224	time point and used these values to calculate the mean SD (mSD) for all genes. Thus, we obtained mSD		
225	values for each time point and cell type for either rMetacells or sMetacells. sMetacells showed greater		

mSD, and therefore greater variance, for 72 out of 100 individual time points across cell types.

Additionally, if these mSDs were further averaged among all time points and cell types, sMetacells still

showed greater mSD (0.065) than rMetacells (0.041), a difference that was statistically significant (p =

229 2.27e-7, t-test). These results are summarized in **Table S1**. Overall, this indicates that sMetacells provide

230 bigger variances among metareplicates than rMetacells.

231

232	A more important question is how the variances provided by metacells match the true biological
233	variances. Since at individual data points there were insufficient biological replicates to provide good
234	estimate of sample variances, we decided to combine cells from all time points and computed gene SDs
235	for each of the cell types, with pseudobulking, rMetaCell, or sMetacell methods. The result indicated
236	that the gene variances from sMetaCells were very close to those from pseudobulking and significant
237	larger than those from rMetaCells (Figure S2), further supporting that sMetacells could be used as
238	replicates. Interestingly, the average number of genes per metacell was also higher for sMetacells (8,440

than rMetacells (5,930) (p = 2.2e-16, t-test) (**Table 1**).

240 Table 1: Comparison of metareplicates from sMetacells and rMetacells. A, Replicates per time point, # cells per metacell, 241 average variance, and average # of genes detected. B, The number of DEGs through time using guadratic regression at FDR <</p>

242 0.05 and $R^2 > 0.5$.

	Metacell Method	sMetacells	rMetacells
	Metareplicates Per Time Point	3.3	3
A (Summary	Avg # of Cells Assigned to Metacell	31.8	20
of	Avg Variance Across Gene	0.041	0.0097
wetacells)	Avg # Genes in Metacells	8440	5930
	All PBMCs without separating to cell types	1	10
	Cytotoxic CD8 T cells	38	31
	Naïve T cells	19	22
	NKs	25	43
	Activated CD4 T cells	74	64
	Naïve B	33	91
B (DEGS)	Plasma	7	120
	Memory B	9	57
	XCL+ NKs	15	79
	MAIT	53	49
	Cycling T cells	68	633
	Total DEGs	342	1199

243

244 Performing quadratic regression yielded more DEGs using rMetacells than sMetacells, likely due to a

higher degree of overfitting due to less variation across metareplicates (Table 1B). However, the

246 difference between the total number of DEGs found using sMetacells vs rMetacells was not statistically

significant. Regardless, for cycling T cells, over 600 DEGs were detected for the rMetacell method
compared to 68 using sMetacells. Of all the DEGs from the two methods, 49 were the same, leaving 116
and 984 unique to the sMetacell and rMetacell methods, respectively. To better understand the
difference, we performed gene ontology (GO) enrichment analysis using all the DEGs identified from at
least one of the cell types (FDR < 0.05) (Figure 2). The results showed that the DEGs from the sMetacell

Figure 2: SEACells-derived DEGs show stronger enrichment of biologically relevant pathways than those derived from random metacells. PANTHER GO-slim biological processes annotation data set was used to find enriched terms amongst DEGs through time from rMetacells and sMetacells.

252	method, despite fewer in number, were actually enriched with more significant GO terms, particularly
253	those related to immune response. Additionally, for "defense response to virus" and "response to virus"
254	terms, which were significant using DEGs from both methods, the fold enrichment scores were greater
255	and FDR values were lower from results produced by sMetacells. This indicates that DEGs from
256	sMetacells are more biologically relevant and less likely from statistical noise (i.e., false positives), e.g.
257	overfitting due to underestimated variance by rMetacells. We therefore consider the metacells from the
258	SEACells algorithm to be more appropriate metareplicates and discuss results from this method further
259	in more details.
260	
261	Table S2 summarizes the number of samples, cells, and metacells for each time point using the SEACells
262	algorithm. The cell identity of each metacell was assigned to the most abundant cell type among the
263	individual single cells contributing to the metacell, using the metadata provided by Zhu et al. Figure 3A
264	shows a UMAP representing the 25,775 cells from the COVID-19 patients and their assignment to one of
265	the fifteen cell types. The SEACells algorithm performed exceptionally well in creating metacells that
266	encompass the entirety of the cell type and state space for each time point (Figure 3B). As expected,

- sMetacells had significantly higher numbers of genes detected (8,840 on average) compared to single
- cells (814 on average) (Figure 3C). The proportion of cells in each sMetacell that were from the same cell
- type were very high, indicating high sMetacell purity, with the average purity scores reaching 90% or

higher (Figure 3D).

Figure 3 (next page): Summary of sMetacell output. A) UMAP of 25,775 cells colored by cell type. **B)** Metacell distribution across cell type space for each time point. Metacells are red while single cells are grey. **C)** Violin plot of the number of genes detected for SEACell-generated metacells (top) compared to all single cells (bottom). **D)** Box plots showing metacell purity for each day. The average purity for each metacell was over 90% for all time points.

272 metareplicates in maSigPro analysis, we identified 165 unique DEGs through time with an $R^2 > 0.5$ and 273 274 FDR < 0.05, with some DEGs found in more than one cell type (**Table S3**). We grouped the DEGs based on 275 their functions and the cell type in which they were identified. Within each cell type, genes were further 276 grouped according to the expression trends along the times (Figures 1,4). The trends for all significant 277 DEGs through time by cell type can be found in **Figure S3**. The results showed that activated CD4 T cells 278 contained the greatest number of DEGs, followed by cytotoxic CD8 T cells, naïve B cells, natural killer 279 cells (NKs), XCL+ NKs, Naïve T cells, Memory B cells, and Plasma cells, respectively (Figure 4B). As 280 mentioned previously, low overall numbers of monocytes, DCs, cycling plasma, stem cells, and 281 megakaryocytes led to low metacell numbers for these cell types, so they were eliminated from further

282	analysis. Additionally, upon visual inspection of clustered DEG trends for MAITs and cycling T cells (Figure
283	S4), we found that a large group of genes had zero expression but were influenced by an early time point
284	outlier, which led to overfitting. We therefore also eliminated these cell types from further analysis.
285	
286	At the level of general functional categories, the largest proportion of the DEGs were related to ribosome
287	(16), followed by interferon (14), immunoglobulin (11), protease (10), transcription factor (9) and
288	transferase (8). The functions for 20 of the DEGs was unknown. These results are summarized as a dot
289	plot in Figure 4A . 15 of the 16 ribosome-related genes showed at least one of the three increasing
290	gexpression patterns through time depending on cell type while 1/16 (MRPL20) showed decreasing
291	expression with decreasing velocity in NKs. 13/14 interferon-related genes showed either a linear
292	decreasing expression pattern or decreasing expression with decreasing expression velocity in a variety
293	of cell types while 1/14 (MNDA) showed a "minima" trend in XCL+ NKs. 10/11 immunoglobulin-related
294	genes showed decreasing expression with decreasing velocity through time while 1/11 (IGHA1) showed a
295	linear decreasing trend in NKs. Protease and transcription factor-related genes fit into a variety of
296	increasing, decreasing, and minima trends depending on cell type. 7/8 transferase genes showed either
297	linear decreasing expression or decreasing expression with decreasing velocity while 1/8 (FNTB) showed

Figure 4 (next page): Summary of significant DEGs and expression trends by cell type A) Dot plot of all significant DEGs through time by trend type, protein class, and sMetacell type. A lighter blue dot corresponds to a lower p-value while a larger dot represents a larger R². **B)** Summary of expression trends by metacell type. The y-axis corresponds to the frequency of significant DEGs through time for each cell type that correspond to a given trend pattern. Red shades represent overall decreasing expression through time, blue shades are increasing, green is maxima (increasing then decreasing) and orange is minima (decreasing then increasing).

298 a "minima" trend in XCL+ NKs.

300 Connecting many DEGs to genes previously implicated to SARS-CoV-2 response:

301

302 Next, we asked how the 165 DEGs are related to genes previously found to be involved in the COVID-19 303 pathway, based on KEGG. We input the protein names corresponding to these 165 genes into the 304 StringDB to determine protein associations and colored the nodes by whether they are in the COVID-19 305 KEGG pathway (Figure 5A). 89 of the 165 genes were determined to have a protein product that 306 interacted with at least another protein from the input. Among these 89, 23 were previously annotated 307 as being part of the KEGG COVID-19 pathway. We also colored nodes by the protein's affiliation with 308 significant biological processes that capture the three main clusters of connected proteins (Figure 5B). Actual cluster identification prior to overlay with biological process identifiers can be found in Figure S5. 309 310 The analysis showed that the DEGs were significantly enriched for functions related to Translation (FDR = 311 1.75e-09), Cell Surface Receptor Signaling (FDR = 0.00023), and Type | Interferon Signaling (FDR = 8.45e-312 14). The proteins comprising the Translation cluster are ICT1, MRPL20, NACA, RPL7, RPL27A, RPL34, 313 RPS17, RPLP2, RPL39, EEF2, RPS8, RPL3, RPS27, RPS12, RPS28, RPL4, RPS21, RPS6, RPS3A, RPS27, and 314 EIF2AK2, Among these, NACA, ICT1, MRPL20, and EEF2 were not previously annotated in the COVID-19 315 KEGG pathway. All proteins belonging to the Type | Interferon Signaling group overlapped with the Cell 316 Surface Receptor Signaling group. These proteins include ADAR, IFI27, ISG20, ISG15, XAF1, MX2, RSAD2, 317 IFIT3, IFITM1, IFI6, OAS1, OAS2, IFIT1, MX1, and RF7. Among these, IFI27, ISG20, XAF1, RSAD2, IFIT3, IFI6, 318 IFITM1, IFIT1, and IRF7 were not previously annotated in the COVID-19 KEGG pathway. Proteins 319 annotated in only the Cell Surface Receptor Signaling group were HSPB1, CCNE1, CDK6, MOV10, LY6E, 320 NR4A2, PTPRC, ICAM2, MNDA, BCR, BLNK, IGHV3-11, S1PR3, HBEGF, CX3CR1, HLA-DRB5, LTB, and 321 TNFRSF13C. Among these genes, none except HBEGF were previously annotated in the COVID-19 KEGG

322 pathway. The results indicate that DEGs from our analysis likely have important roles in modulating

Figure 5: STRING protein interaction results A) STRING network colored by annotated vs unannotated KEGG COVID-19 pathway-related protein products. Red represents protein products from genes that are not annotated in the KEGG COVID-19 pathway. Dark blue represents those that are already annotated in this pathway. **B)** STRING network colored by Biological Process GO Terms. GO terms were selected based on their ability to encompass 3 main clusters. Turquois represents Translation, purple represents Cell Surface Receptor Signaling, and yellow/orange represents Type I Interferon Signaling.

323 immune responses.

324 Detailed description of DEGs newly implicated to SARS-CoV-2 response:

- 325
- 326 As these DEGs changed expression post-infection, we wondered if their day 3 expression would be
- 327 significantly different between infected PBMCs and controls. We also wondered whether at day 28 their
- 328 expression would return to the baseline (Figure 6). To illustrate this, we plotted the expression of DEGs
- associated with one of three significant GO biological process terms but not in the KEGG COVID-19
- pathways, i.e. genes that are not yet well described in COVID-19 literature (Figure 5). We compared the
- expression at day 3 between COVID-19 infected cells and healthy controls and found that 31 of the DEGs

332	exhibited a significant difference (t-test) except those showing a "minima" or "maxima" trend, as
333	expected. Given the low number of metacells for day 28 data, we did not perform this test but the
334	expression of almost all DEGs were back to the baseline levels (Figure 6).
335	
336	For genes whose protein products are related to translation (Figure 6A), NACA showed increasing
337	expression with decreasing expression velocity in cytotoxic CD8 T cells, as did ICT1 and EEF2. EEF2 also
338	demonstrated this trend in activated CD4 T cells. <i>MRPL20</i> exhibited decreasing expression with
339	decreasing expression velocity in NKs. Expression at 28 days closely resembled that of baseline
340	expression for these four genes.
341	
342	Among genes whose protein products are related to cell surface receptor signaling (Figure 6B), IFI27
343	expression decreased through time with decreasing expression velocity in plasma cells. ISG20 expression
344	decreased through time with decreasing velocity in activated CD4 T cells and cytotoxic CD8 T cells.
345	Expression of ISG20 showed a linear decrease through time in NKs. Naïve T cells, naïve B cells, cytotoxic
346	CD8 T cells, and NKs exhibited a linear decrease in XAF1 expression. RSAD2 showed decreasing
347	expression with decreasing velocity in activated CD4 T cells and cytotoxic CD8 T cells while <i>IFIT3</i>
348	exhibited the same trend in naïve T, naïve B, activated CD4 T cells, cytotoxic CD8 T cells, and NKs. IFI6
349	showed a linear decrease in expression through time for cytotoxic CD8 T cells and NKs. <i>IFITM1</i>
350	expression decreased through time with decreasing expression velocity in memory B cells. <i>IFIT1</i> showed
351	the same trend in naïve B cells, activated CD4 T cells, cytotoxic CD8 T cells, and NKs. <i>IRF7</i> expression
352	decreased through time with decreasing velocity in activated CD4 T cells. For these genes, baseline
353	expression closely resembled day 28 expression from COVID-19 patients except for <i>IFITM1</i> , where the

- 354 regression curve estimated expression to be lower than baseline beyond 15 days following symptom
- 355 onset.

Figure 6 (previous page): Expression vs time plots and trendlines for selected significant genes A) Expression through time for "Translation" genes that do not overlap with the KEGG COVID-19 pathway. **B)** Expression through time for "Type I Interferon Signaling" genes that do not overlap with the KEGG COVID-19 pathway. **C)** Expression through time for "Cell Surface Receptor Signaling" genes that do not overlap with the KEGG COVID-19 pathway. **A-C)** Only cell types whose expression of a gene was deemed significant through time were plotted. **D)** ISG15 expression through time for all cell types together. **A-D)** All baseline values were compared to day 3 (or day 3 and day 7 for plasma cells) via two-sided, unpaired t tests with equal variance. For each cell type, lines matching their associated color were drawn to represent the baseline average. Significant differences between baseline and day 3 expression were denoted by an asterisk. "B" at the x-axis represents expression in healthy controls (baseline).

- 357 Among genes whose protein products are related to type I interferon signaling (Figure 6C), HSPB1 (in 358 plasma cells), CDK6 (in plasma cells), MNDA (in XCL+ NKs), and HLA-DRB5 (in memory B cells) exhibited 359 the minima trend, where expression decreases then increases. PTPRC demonstrated the maxima trend, 360 where expression increases then decreases, in cytotoxic CD8 T cells. *CCNE1* (in activated CD4 T cells), 361 *MOV10* (in cytotoxic CD8 T cells), *BCR* (in cytotoxic CD8 T cells), *IGHV3-11* (in activated CD4 T cells), 362 S1PR3 (in activated CD4 T cells), and CX3CR1 (in cytotoxic CD8 T cells) showed decreasing expression 363 with decreasing expression velocity through time. LY6E (in cytotoxic CD8 T cells, NKs, and naïve T cells), 364 ICAM2 (in activated CD4 T cells), and LTB (in activated CD4 T cells) demonstrated a linear decrease in 365 expression. NR4A2 (in cytotoxic CD8 T cells), BLNK (in NKs), and TNFRSF13C (in activated CD4 T cells) 366 showed increasing expression with increasing expression velocity through time. For this set of genes, 367 CDK6. NR4A1. ICAM2. MNDA. BLNK. CX3CR1. and TNFRSF13C expression did not appear to return to 368 baseline after 28 days.
- 369

Prior to metacell analysis by cell type, we also performed the same regression-based time series analysis on all sMetacells (irrespective of cell type) together. With the same R^2 cutoff of 0.5 or higher and FDR corrected p-value < 0.05, we yielded one significant gene, *ISG15* (**Figure 6D**). The ANOVA p-value for this gene was 8.7e-62 while the R^2 was 0.55.

374

375 Discussion:

- 376
- 377 SEACells algorithm generates metacells providing statistical robustness for low replicate time series
 378 analysis:
- 379

380 In this study, we demonstrate that metacells from the SEACells algorithm (sMetacells) can be used as replicates for time series analysis. Applying it to a COVID-19 scRNA-seq data, we were able to obtain 381 382 metacells that retained cell-type heterogeneity through time that appear to capture biological variances 383 among individual patients. Despite a similar number of replicates and total cells assigned to metacells, 384 metareplicates from the SEACells algorithm seem less prone to overfitting than those from the rMetacell method, suggesting that the retention of cell type heterogeneity could be important for decreasing 385 386 overfitting when performing regression on scRNA-seq time series data. sMetacells also maintained a high 387 degree of cell-type purity, enabling us to study expression trends for individual PBMC cell types. As such, 388 our result suggests that this method provides a way to increase statistical power when performing 389 quadratic regression that would otherwise be impossible due to too few replicates. In the absence of this 390 method, pseudobulking led to overfitting, a problem thoroughly defined by Xue Ying [33], which yielded 391 a low number of DEGs with little biological insight. We did not systematically compare the metacells 392 from other algorithms because the SEACells paper has already demonstrated its outperformance to 393 other software [9]. With sMetacells, we were able to obtain a list of significant DEGs for PBMC cell types 394 through time with biological relevance to SARS-CoV-2 infection. Activated CD4 T cells contained the 395 greatest number of significant genes, further validating the reliability of using the SEACells algorithm for 396 time series analysis given CD4 T cells' critical involvement in response to SARS-CoV-2 infection [34-37]. 397

398 ISG15 expression changes significantly through time in the PBMCs:

399

400	When all PBMC sMetacells were analyzed without using cell type information, we found that <i>ISG15</i> was
401	the only gene showing a significant decrease in expression through time. It also exhibited decreasing
402	expression velocity through the 28 th day after symptom onset. ISG15 is one of many ISGs that respond to
403	IFN-I to establish an antiviral response [38] and exacerbates inflammation following release from
404	macrophages infected with SARS-CoV-2 [39, 40]. The combination of these findings and this gene's
405	significance in our analysis further establishes ISG15 as an important part of the immune system's
406	response to SARS-CoV-2. We show that, following infection, ISG15 expression is initially high 3 days after
407	symptom onset then decreases through day 28 of symptoms. Gene expression velocity also decreases, as
408	is evidenced by the decreasing slope of the line tangent to the fitted expression curve (its derivative)
409	through time. This makes sense since a higher degree of inflammation occurs early in infection when
410	viral load is high then decreases as SARS-CoV-2 is cleared [41].

411

In the SEACells paper, the authors found that *ISG15* expression was upregulated in CD4 T cells through 412 413 approximately 10 days after symptom onset and increased again at approximately day 13. Conversely, we 414 found that ISG15 expression in CD4 T cells decreased continuously with decreasing velocity through 415 approximately 25 days before returning to baseline. This difference could be due to patient cohorts or 416 technical reasons. The SEACells authors constructed metacells from cells of all time points and then 417 determined pseudotime of a metacell based on relative abundance of cells comprising certain time 418 points, and their day 13 metacell was enriched in severe COVID-19 patient cells [9]. We constructed metacells using cells in each of the 10 time points separately. The difference between our results and 419 420 theirs in relation to ISG15 may be attributable to continued ISG15 expression in severe COVID-19 421 patients. Nevertheless, because of its association with inflammation and disease severity, it will be

422	interesting to study in the future whether changes in expression velocity of <i>ISG15</i> would lead to
423	differences in disease severity. This could also be taken a step further to determine whether <i>ISG15</i>
424	expression differs between those with and without long COVID-19 symptoms.
425	
426	Metacell time series analysis implies that PBMCs and type II pneumocytes share similar SARS-CoV-2
427	response pathways
428	
429	Among 165 genes with significant changes in expression through time, the protein products of 89 formed
430	three main clusters within an interaction network generated with STRING. Within these three clusters, 15
431	genes related to translation, seven related to type I interferon signaling, and one related to cell surface
432	receptor signaling were already annotated in the KEGG COVID-19 pathway. Although this pathway
433	outlines type II pneumocyte response to SARS-CoV-2 and downstream effector cell activation, its
434	significant overlap with our DEGs suggests that despite being non-susceptible to SARS-CoV2 infection
435	[10, 29], PBMCs may undergo a similar response to the virus as type pneumocytes. PBMCs have been
436	found to induce transcription of interferon-stimulated genes, such as ISG15 mentioned above, via
437	JAK/STAT signaling upon exposure to SARS-CoV-2 [29]. The KEGG COVID-19 pathway has multiple
438	JAK/STAT signaling cascades that are induced by various cytokines [28]. It may be the case that these
439	same pathways are activated in PBMC response to global cytokine release upon initial infection with
440	SARS-CoV-2.
441	
442	Metacell time series analysis implicates new genes not well described in COVID-19 literature

443

444	Among the genes not annotated in the KEGG COVID-19 pathway, all have been discussed, albeit most of
445	them only briefly, in previously published COVID-19-related literature. For genes whose protein products
446	are related to translation, EEF2 was previously found to be downregulated in a variety of organ tissue
447	samples from COVID-19 patients compared to controls [42]. We found that EEF2 expression increased
448	through time with decreasing expression velocity in activated CD4 T cells and cytotoxic CD8 T cells.
449	Earlier time points showed lower expression compared to baseline, suggesting a degree of similarity to
450	the findings from Ghosh et al. Our data suggests that CD4 and CD8 T cells may play an important role in
451	SARS-CoV-2 translation inhibition.

452

453 For genes whose protein products are related to type | interferon signaling, IFI27 expression in blood was 454 found to be more highly expressed in patients infected with SARS-CoV-2 as determined via gPCR [43]. 455 Our results show that IFI27 expression decreases significantly through time with decreasing expression 456 velocity before returning to baseline in plasma cells. This suggests that plasma cells may be a large 457 contributor to high IFI27 expression in COVID-19 patient blood. IFIT3 was found to increase in expression through time in SARS-CoV-2 infected mice through 8 days of infection [44]. Interestingly, this conflicts 458 459 with our results, which show that IFIT3 expression decreases through time with decreasing expression 460 velocity in naïve T cells, naïve B cells, activated CD4 T cells, NKs, and cytotoxic CD8 T cells. IFITM1 was 461 found to inhibit viral RNA production [45] and our data shows a decrease in its expression with 462 decreasing expression velocity in memory B cells. Given IFITM1's role in inhibiting viral RNA production, a rapid increase in expression of IFITM1 upon exposure to SARS-CoV-2 followed by a gradual decrease 463 464 through time is expected. We question whether this trend, along with expression velocity, differs 465 depending on previous exposure to SARS-CoV-2 or other coronaviruses. We also notice that IFITM1 466 expression falls below baseline after 28 days, suggesting potential downregulation of this gene upon

467 clearance of the virus. *IFITM1* has been found to be downregulated following severe influenza infection
468 in mice [46], so we wonder whether our findings could point toward the need to study the differential
469 effects of this gene's expression in severe and minor COVID-19.

470

Among genes whose protein products are related to cell surface receptor signaling, LY6E is known to 471 prevent coronavirus fusion [47, 48]. We found that its expression was linear and decreasing in cytotoxic 472 CD8 T cells and NKs but decreasing with decreasing velocity in Naïve T cells. This may point toward high 473 474 conservation of LY6E's antiviral activity across different immune cell types. PTPRC (also known as CD45) 475 was found to be more highly expressed in nasopharyngeal cells from SARS-CoV-2 infected patients 476 compared to controls [49]. We found that cytotoxic CD8 T cells exhibit a significant maxima expression 477 trend for this gene, where expression increases then decreases back to baseline by day 28. Since CD45 478 plays a key role in T cell activation [50], this may suggest that CD8 T cells upregulate this surface protein 479 to mount a strong cytotoxic response over roughly two weeks following COVID-19 symptom onset. ICAM2, a gene whose protein products functions in leukocyte migration [51], was among the 6 most 480 highly up-regulated genes in samples from COVID-19 patient serum [52]. We show that this gene is 481 expressed above baseline and decreases linearly through time; however, its expression continues to 482 decrease below baseline between day 10 and 15 post-symptom onset. This may imply that ICAM2 is 483 484 down-regulated following viral clearance, perhaps to reestablish a baseline of circulating leukocytes. 485 CX3CR1 expression in NKs has been associated with severe COVID-19 [53]. Our data shows a significant 486 change in expression through time for this gene in cytotoxic CD8 T cells. CX3CR1 expression decreased 487 with decreasing velocity; however, there was also a slight increase in expression after day 20. 488 Additionally, expression did not return to baseline. Given CX3CR1's association with severe disease and 489 the role of chemokines in inflammation [54], we suggest that this gene may contribute to long COVID-19

490	symptoms if it continues to be expressed above baseline following virus clearance. Future studies should
491	therefore determine expression trends through time for CX3CR1 in patients with long COVID-19
492	compared to patients who fully recover.
493	
494	Although several other significant genes from our analysis have been discussed in literature related to
495	COVID-19, we do not further contribute to their potential role in SARS-CoV-2 infection. We comment
496	only on those where our results are most contributory to previously published materials.
497	
498	Limitations:
499	
500	Our study is a proof of concept and generally needs to be applied to more datasets. Furthermore, it
501	needs to be tested more systematically with datasets containing more biological replicates to carefully
502	study the performance difference between true biological replicates and metareplicates. In terms of the
503	relationship of our results to COVID-19, our comparison of day 28 expression to baseline is suboptimal
504	given the low number of metacells per cell type at day 28. We wished to retain expression data through
505	the 28 th day after symptom onset, thus we did not perform statistical analysis between day 28 and
506	baseline. Our analysis of expression trends by cell type was also limited by the overall low cell count for
507	certain cell types. This led to low numbers of metacells and subsequent overfitting for these cell types.
508	
509	Conclusion:
510	
511	Using the SEACells algorithm to create metacells for time series analysis of COVID-19 data enabled

512 greater statistical power and overcame the limitation of low number of replicates per time point in the

- 513 original study. We found that *ISG15* expression changed significantly through time when all PBMC cell
- 514 types were grouped together. This gene demonstrated decreasing expression and decreasing expression
- 515 velocity through time. For individual cell types, we found many other DEGs through time, which shed
- 516 new light on our limited knowledge of these genes and their associations with SARS-CoV-2 infection.
- 517
- 518 **Declarations:**
- 519 i. Ethics and approval and consent to participate
- 520 Not applicable.
- 521 ii. Consent for publication
- 522 Not applicable.
- 523 iii. Availability of data and materials
- 524 The data analyzed in the current study were described in a previous study (ref 10) and publicly available
- at the CNGB Nucleotide Sequence Archive (accession number: CNP0001102).
- 526 iv. Competing interests
- 527 None to declare.
- 528 v. Funding
- 529 None.
- 530 vi. Authors' Contributions
- 531 K.O. and D.Z. conceived of the experiment. K.O. performed the bioinformatics analysis. K.O. and D.Z.
- 532 wrote the manuscript.
- 533
- 534 **References:**
- 535 536

537

1. Heumos, L., et al., *Best practices for single-cell analysis across modalities.* Nature Reviews Genetics, 2023. **24**(8): p. 550-572.

538	2.	Stuart, T. and R. Satija, Integrative single-cell analysis. Nature Reviews Genetics, 2019. 20(5): p.
539		257-272.
540 541	3.	Squair, J.W., et al., <i>Confronting false discoveries in single-cell differential expression</i> . Nature Communications, 2021. 12 (1).
542 543	4.	Zhang, X., et al., Comparative Analysis of Droplet-Based Ultra-High-Throughput Single-Cell RNA- Sea Systems, Molecular Cell, 2019, 73(1): p. 130-142 e5
545	5	Ziegenhain C et al. Comparative Anglysis of Single-Cell RNA Sequencing Methods Molecular
545	5.	Cell, 2017. 65 (4): p. 631-643.e4.
546 547	6.	Baran, Y., et al., <i>MetaCell: analysis of single-cell RNA-seq data using K-nn graph partitions</i> . (1474-760X (Electronic)).
548	7.	Ben-Kiki, O., et al., Metacell-2: a divide-and-conquer metacell algorithm for scalable scRNA-seg
549		analysis. (1474-760X (Electronic)).
550	8.	Bilous, M., et al., Metacells untanale large and complex single-cell transcriptome networks. (1471-
551		2105 (Electronic)).
552	9.	Persad, S., et al., SEACells infers transcriptional and epigenomic cellular states from single-cell
553		genomics data. Nature Biotechnology. 2023.
554	10.	Zhu, L., et al., Single-Cell Sequencing of Peripheral Mononuclear Cells Reveals Distinct Immune
555		Response Landscapes of COVID-19 and Influenza Patients. Immunity 2020, 53(3): p. 685-696.e3.
556	11.	Gorbalenva, A.E., et al., The species Severe gcute respiratory syndrome-related corongyirus:
557		classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiology 2020, 5(4): p. 536-544.
558	12.	Wang, C., et al., A novel coronavirus outbreak of global health concern. The lancet 2020.
559		395 (10223): p. 470-473.
560	13	WHO COVID-19 Dashboard 2020 Geneva: World Health Organization
561	14	Lotfi M M R Hamblin and N Rezaei COVID-19 ⁻ Transmission prevention and potential
562		therapeutic opportunities. (1873-3492 (Electronic)).
563	15.	Yuan, J., et al., Monitoring transmissibility and mortality of COVID-19 in Europe. International
564		Journal of Infectious Diseases, 2020, 95 : p. 311-315.
565	16.	Gallo Marin. B., et al., Predictors of <scp>COVID</scp> -19 severity: A literature review. Reviews in
566		Medical Virology. 2021. 31 (1): p. 1-10.
567	17.	Teixeira da Silva, J.A., P. Tsigaris, and M. Erfanmanesh. <i>Publishing volumes in major databases</i>
568		<i>related to Covid-19.</i> Scientometrics, 2021. 126 (1): p. 831-842.
569	18.	Yang, Y., et al., 'Paperdemic' during the COVID-19 pandemic. European Journal of Internal
570		Medicine, 2023. 108 : p. 111-113.
571	19.	Kleiveland, C.R., Peripheral Blood Mononuclear Cells. 2015, Springer International Publishing. p.
572		161-167.
573	20.	Bergamaschi, L., et al., Longitudinal analysis reveals that delayed bystander CD8+ T cell activation
574		and early immune pathology distinguish severe COVID-19 from mild disease. (1097-4180
575		(Electronic)).
576	21.	Stephenson, E., et al., Single-cell multi-omics analysis of the immune response in COVID-19.
577		Nature Medicine, 2021. 27 (5): p. 904-916.
578	22.	Huo, L., et al., Single-cell multi-omics sequencing: application trends, COVID-19, data analysis
579		issues and prospects. Briefings in Bioinformatics, 2021. 22(6): p. bbab229.
580	23.	Wang, X., et al., Temporal transcriptomic analysis using TrendCatcher identifies early and
581		persistent neutrophil activation in severe COVID-19. JCI Insight, 2022. 7(7).
582	24.	Liu, C., et al., Time-resolved systems immunology reveals a late juncture linked to fatal COVID-19.
583		Cell, 2021. 184 (7): p. 1836-1857.e22.

584 585	25.	Nueda, M.J., S. Tarazona, and A. Conesa, <i>Next maSigPro: updating maSigPro bioconductor</i> package for RNA-seg time series, (1367-4811 (Electronic)).
586	26.	Sherman, B.T., et al., DAVID: a web server for functional enrichment analysis and functional
587	20.	annotation of gene lists (2021 update). (1362-4962 (Electronic)).
588 589	27.	Huang da, W., R.A. Sherman Bt Fau - Lempicki, and R.A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. (1750-2799 (Electronic)).
590 591	28.	Kanehisa, M., et al., <i>The KEGG databases at GenomeNet.</i> Nucleic Acids Research, 2002. 30 (1): p. 42-46.
592	29.	Kazmierski, L. et al., Nonproductive exposure of PBMCs to SARS-CoV-2 induces cell-intrinsic innote
593		<i>immune responses</i> . Mol Syst Biol. 2022. 18 (8): p. e10961.
594	30	Szklarczyk D et al. The STRING database in 2023: protein-protein association networks and
595	50.	functional enrichment analyses for any sequenced genome of interest. (1362-4962 (Electronic)).
596	31	Ashburner M et al. Gene Ontology: tool for the unification of biology. Nature Genetics, 2000
597	51.	25 (1) n 25-29
598	32.	The Gene Ontology, C., et al., The Gene Ontology knowledgebase in 2023. Genetics, 2023. 224(1):
599		p. iyad031.
600	33.	Ying, X. An overview of overfitting and its solutions. In Journal of physics: Conference series. 2019.
601		IOP Publishing.
602	34.	Cox, R.J. and K.A. Brokstad, Not just antibodies: B cells and I cells mediate immunity to COVID-19.
603	25	Nature Reviews Immunology, 2020. 20 (10): p. 581-582.
604	35.	Chen, Z. and E. John Wherry, <i>I cell responses in patients with COVID-19.</i> Nature Reviews
605	26	Immunology, 2020. 20 (9): p. 529-536.
606 607	36.	19 Disease and Unexposed Individuals. Cell, 2020. 181 (7): p. 1489-1501.e15.
608	37.	Koblischke, M., et al., Dynamics of CD4 T cell and antibody responses in COVID-19 patients with
609		<i>different disease severity</i> . Frontiers in medicine, 2020. 7 : p. 592629.
610	38.	Perng, YC. and D.J. Lenschow, ISG15 in antiviral immunity and beyond. Nature Reviews
611		Microbiology, 2018. 16 (7): p. 423-439.
612	39.	Cao, X., ISG15 secretion exacerbates inflammation in SARS-CoV-2 infection. Nature Immunology,
613		2021. 22 (11): p. 1360-1362.
614	40.	Munnur, D., et al., Altered ISGylation drives aberrant macrophage-dependent immune responses
615		during SARS-CoV-2 infection. Nature Immunology, 2021. 22(11): p. 1416-1427.
616	41.	Lariccia, V., et al., Challenges and Opportunities from Targeting Inflammatory Responses to SARS-
617		CoV-2 Infection: A Narrative Review. Journal of Clinical Medicine, 2020. 9(12): p. 4021.
618	42.	Ghosh, N., I. Saha, and D. Plewczynski, Unveiling the Biomarkers of Cancer and COVID-19 and
619		Their Regulations in Different Organs by Integrating RNA-Seq Expression and Protein–Protein
620		Interactions. ACS Omega, 2022. 7 (48): p. 43589-43602.
621	43.	Shojaei, M., et al., IFI27 transcription is an early predictor for COVID-19 outcomes, a multi-cohort
622		observational study. Frontiers in Immunology, 2023. 13 : p. 1060438.
623	44.	Gao, X., et al., Genome-wide screening of SARS-CoV-2 infection-related genes based on the blood
624		leukocytes sequencing data set of patients with COVID-19. Journal of Medical Virology, 2021.
625		93 (9): p. 5544-5554.
626	45.	Prelli Bozzo, C., et al., IFITM proteins promote SARS-CoV-2 infection and are targets for virus
627		inhibition in vitro. Nature Communications, 2021. 12 (1): p. 4584.

- 46. Regino-Zamarripa, N.E., et al., *Differential Leukocyte Expression of IFITM1 and IFITM3 in Patients*with Severe Pandemic Influenza A(H1N1) and COVID-19. J Interferon Cytokine Res, 2022. 42(8): p.
 430-443.
 A7 Pfaender S, et al. IV6E impairs coronavirus fusion and confers immune control of viral disease
- 47. Pfaender, S., et al., *LY6E impairs coronavirus fusion and confers immune control of viral disease.*Nature Microbiology, 2020. 5(11): p. 1330-1339.
- 48. Zhao, X., et al., *LY6E Restricts Entry of Human Coronaviruses, Including Currently Pandemic SARS-*634 *CoV-2.* Journal of Virology, 2020. **94**(18): p. 10.1128/jvi.00562-20.
- 63549.Yoo, J.-S., et al., SARS-CoV-2 inhibits induction of the MHC class I pathway by targeting the STAT1-636IRF1-NLRC5 axis. Nature Communications, 2021. 12(1).
- 63750.Rheinländer, A., B. Schraven, and U. Bommhardt, CD45 in human physiology and clinical638medicine. Immunology Letters, 2018. 196: p. 22-32.
- 639 51. Gomperts, B.D., I.M. Kramer, and P.E.R. Tatham, *Chapter 13 Signal Transduction to and from*640 *Adhesion Molecules*, in *Signal Transduction (Second Edition)*, B.D. Gomperts, I.M. Kramer, and
 641 P.E.R. Tatham, Editors. 2009, Academic Press: San Diego. p. 375-416.
- 52. Liu, X., et al., *Proteomics Analysis of Serum from COVID-19 Patients*. ACS Omega, 2021. 6(11): p.
 7951-7958.
- 64453.Liechti, T., et al., Immune phenotypes that are associated with subsequent COVID-19 severity645inferred from post-recovery samples. Nature Communications, 2022. 13(1).
- 64654.Moser, B., Chemokines: role in inflammation and immune surveillance. Annals of the Rheumatic647Diseases, 2004. **63**(suppl_2): p. ii84-ii89.
- 648