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Abstract 13 

Background: By resolving cellular heterogeneity in a biological sample, single cell RNA sequencing 14 

(scRNA-seq) can detect gene expression and its dynamics in different cell types. Its application to time-15 

series samples can thus identify temporal genetic programs active in different cell types, for example, 16 

immune cells’ responses to viral infection. However, current scRNA-seq analysis need improvement. Two 17 

issues are related to data generation. One is that the number of genes detected in each cell is relatively 18 

low especially when currently popular dropseq-based technology is used for analyzing thousands of cells 19 

or more. The other is the lack of sufficient replicates (often 1-2) due to high cost of library preparation 20 

and sequencing. The third issue lies in the data analysis --usage of individual cells as independent 21 

sampling data points leads to inflated statistics.  22 

Methods: To address these issues, we explore a new data analysis framework, specifically whether 23 

“metacells” that are carefully constructed to maintain cellular heterogeneity within individual cell types 24 

(or clusters) can be used as “replicates” for statistical methods requiring multiple replicates. Toward this, 25 

we applied SEACells to a time-series scRNA-seq dataset from peripheral blood mononuclear cells 26 

(PBMCs) after SARS-Cov-2 infection to construct metacells, which were then used in maSigPro for 27 

quadratic regression to find significantly differentially expressed genes (DEGs) over time, followed by 28 

clustering analysis of the expression velocity trends.  29 

Results: We found that metacells generated using the SEACells algorithm retained greater between-cell 30 

variance and produced more biologically meaningful results compared to metacells generated from 31 

random cells. Quadratic regression revealed significant DEGs through time that have been previously 32 

annotated in the SARS-CoV2 infection response pathway. It also identified significant genes that have not 33 

been annotated in this pathway, which were compared to baseline expression and showed unique 34 

expression patterns through time. 35 
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Conclusions: The results demonstrated that this strategy could overcome the limitation of 1-2 replicates, 36 

as it correctly identified the known ISG15 interferon response program in almost all PBMC cell types. Its 37 

application further led to the uncovering of additional and more cell type-specific gene expression 38 

programs that potentially modulate different levels of host response after infection. 39 

 40 

Keywords: scRNA-seq, metacells, SEACells, COVID-19, SARS-CoV2  41 
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Background: 42 

Single cell RNA sequencing (scRNA-seq) is a powerful tool that can detect distinct gene expression 43 

dynamics in different cell types within a sample [1, 2]. One can apply the analysis to time-series samples 44 

for the identification of temporal changes in gene expression within each cell type. To do this, a current 45 

common practice is to use each cell as a statistical “sample” for determining gene expression change 46 

between different time points. Statistically, this is not rigorous because cells in the same biological 47 

sample do not really represent independent samples, but have intrinsic correlations [3]. Pseudobulking 48 

has been proposed to overcome this, where gene read counts for all cells of a cell type (or cluster) in a 49 

biological sample are aggregated. This approach also has an advantage in increasing gene coverage, as 50 

relatively low numbers of genes are detected per cell by current scRNA-seq analysis approaches [4]. The 51 

strategy, however, highlights the problem of low numbers of replicates in scRNA-seq studies due to the 52 

high cost of library preparation and sequencing [5]. In addition, simply aggregating reads in all cells of a 53 

type may erase the heterogeneity (or variation) in a cell type (or cluster). In this study, we propose the 54 

use of “metacells” to circumnavigate these problems. A metacell represent the transcriptomes of a group 55 

of highly similar cells [6]. Multiple methods and algorithms exist to create them [6-8]; however, the 56 

single-cell aggregation of cell states (SEACells) algorithm has an advantage in retaining heterogeneity 57 

within each cell cluster [9], resulting in metacells representing different states. We thus decided to 58 

investigate if the metacells from SEACells can be used as pseudo-replicates (referred as “metareplicates”) 59 

in statistical methods that were developed for time-series data from bulk tissues (vs single cells).  60 

Considering the continued importance of understanding the diverse ways in which the immune system 61 

responds to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we further decided to test 62 

the approach with a time series dataset derived from coronavirus disease 2019 (COVID-19) patients 63 

following symptom onset [10]. 64 
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 65 

SARS�CoV�2, the strain of coronavirus responsible for the coronavirus disease 2019 (COVID-19) 66 

pandemic [11, 12], continues to infect hundreds of thousands of people around the globe. To date, 67 

almost 7 million confirmed deaths have been recorded as a consequence of SARS-CoV-2 infection [13]. 68 

The desire to understand the mechanisms behind SARS-CoV-2 infection and host defense, especially as it 69 

relates to its transmissibility [14, 15] and severity [16], has prompted a vast amount of research in the 70 

field of immunology and beyond [17, 18]. One of many topics of interest concerns gene programs within 71 

cell types that respond to SARS-CoV-2, specifically peripheral blood mononuclear cells (PBMCs), which 72 

are any round nucleus containing blood cells such as dendritic cells, lymphocytes, natural killer cells 73 

(NKs), or monocytes [19]. Because PBMCs are responsible for responding to and eliminating viral 74 

infections such as SARS-CoV-2, it is important to understand the transcriptomic basis of this process. 75 

Researchers have compared gene expression in PBMC cell types between COVID-19 patients and controls 76 

using bulk RNA sequencing [20]. Others have implemented scRNA-seq [21, 22], which provides greater 77 

resolution at the cellular level, especially as it relates to deducing cell type-specific responses to SARS-78 

CoV-2 infection. Some have even performed time series scRNA-seq analysis of COVID-19 progression. 79 

While these studies have provided valuable information relating to cell type-specific changes in 80 

expression through time, they were limited by the issues of small replicates as discussed above. For 81 

example, some time points in the PBMC scRNA-seq data that we planned to analyze have only 1 82 

replicate. Consequently, the authors had to bin samples of different time points to increase statistical 83 

power [10]; so did in other studies [20, 23, 24]. In addition to this computational difference, the scope 84 

and focus of our current study is also different from the original report [10], e.g., the original authors 85 

focused on the response difference between COVID-19 infection and flu and did not study the velocity of 86 

the expression changes. The authors of SEACells also studied SARS-CoV-2 gene responses in PBMCs with 87 
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a different dataset [21], but focused on CD4 T cells and only analyzed a few metacells that differed based 88 

on dominance of certain time points [9]. This differs from our study in that we analyzed metacells 89 

representing 10 discrete points in time and in many PBMC cell types. 90 

 91 

In short, using the SEACells alogorithm, we created metacells that retained hetergeneity within each cell 92 

type and used them as metareplicates. This resulted in up to 12 replicates for some time points and thus 93 

provided the statistical power necessary to resolve signficiant changes in expression through time. With 94 

that, we performed strict statistical analysis through a greater number of time points than any other 95 

COVID-19 time-series scRNA-seq study to date. To accomplish this, we subset all cells based on time 96 

since symptom onset and then used the SEACells algorithm to create metacells. maSigPro [25] was used 97 

for quadratic regression to find significantly differentially exprssed genes (DEGs) through time, due to its 98 

robust statistical base, its flexibility with defining degrees of regression, and widespread use for time 99 

series analysis. Additionally, quadratic regression was used because we did not want to capture cyclical 100 

variation, rather we hoped to find broader changes in expression through four weeks of COVID-19 101 

symptoms. We further classified all DEGs by expression velocity trend based on fitted expression curves 102 

and their dynamic derivates. With this approach, we identified ISG15 as a DEG through time when PBMC 103 

cell types were analyzed together. When cell types were analyzed independently, however, we found 104 

many immune system-related DEGs, which enabled us to expand upon previous reports of certain gene 105 

programs and their relevence to SARS-CoV-2 immune response. 106 

 107 

Methods: 108 

Metacell Creation 109 
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The COVID-19 scRNA-seq dataset was obtained from a previous study that performed time series 110 

analysis on PBMCs from five SARS-CoV-2 infected patients [10]. The date of symptom onset and sample 111 

collection was recorded for each patient. Since we did not intend to group patients by disease stage, we 112 

simply classified each collected sample by the number of days after symptom onset. Samples from 113 

influenza patients were excluded from time series analysis, as were controls, since they were not 114 

collected continuously through time. However, we included the normalized expression of three healthy 115 

controls as baseline values for comparative purposes. 116 

 117 

For SEACells, the number of metacells was determined based on the software authors’ suggestion of 1 118 

metacell per 75 single cells [9]. We rounded to the nearest 10 to enable the creation of more metacells 119 

for time points with fewer total cells. The assignment of individual cells to metacells was determined 120 

using the SEACells algorithm in Python. We applied SEACells to samples of each time point 121 

independently. For each of the 10 time points, the input consisted of an Anndata object containing 122 

normalized counts from the n most highly variable genes (2000 for our dataset), cell cluster/type 123 

assignments (as previously determined by the original author [10]), and a low dimensional 124 

representation of the data. Subsequent steps for metacell creation were outlined in the SEACells 125 

manuscript [9] and in Figure 1. The expression of each gene for a given metacell was determined by 126 

averaging the normalized counts of the cells that were assigned to it (Figure 1A-B). Each metacell was 127 

ascribed a cell type based on whichever cell type was most prominent amongst the assigned individual 128 

cells. For example, if most cells assigned to a metacell were plasma cells, the metacell would be called a 129 

plasma metacell. The percentage of cells comprising the metacell that were of the assigned cell type was 130 

referred to as its “purity.” We call metacells created using the SEACells algorithm “sMetacells.” 131 

 132 
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To obtain metacells composed of random individual cells by cell type, which we call “rMetacells”, we 133 

subset the same filtered PBMC dataset by time. We then subset by cell type and took the average 134 

normalized expression of 20 randomly selected cells to create an rMetacell. While we intended to us135 

more cells to create metacells that were as comparable to sMetacells as possible, several cell types h136 

less than 75 cells for a particular time point, so we decreased our threshold to maximize metacell 137 

assignments. The SEACells algorithm was not confined to this issue due to its ability to assign varying138 

numbers of cells to each metacell based on nearest neighbor determinations. 139 

 140 

maSigPro and Trend Determination 141 

 142 

8

e 

had 

g 
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 143 

After the creation of metacells (by SEACells or randomly) for each time point, maSigPro was used to find 144 

DEGs through time. maSigPro utilizes regression ANOVA followed by a variable selection procedure [25]. 145 

Quadratic regression was used since we expected the change in gene expression to follow one of eight 146 

general trends, as described in Figure 1C-D. For each cell type and gene, a quadratic equation was 147 

generated to represent expression through time. Only genes with false discovery rate (FDR) less than 148 

0.05 and R
2
 value greater than 0.5 were considered statistically significant and retained. An F statistic-149 

associated p-value was produced for each coefficient A, B, and C in equation 1. 150 

 151 

�������� 
: � 
 ��� � �� � �  152 

 153 

The trends with p < 0.05 for coefficient A were determined based on the shape of their fitted curve. If 154 

the absolute value of the slope of the line tangent to the expression vs time curve (the expression 155 

velocity) decreased through time, we called this decreasing velocity, denoted “↓ velocity” in figures. If 156 

the absolute value of the slope of the tangent line increased, this was referred to as increasing velocity, 157 

or “↑ velocity.” We combined these terms with the overall trend of increasing or decreasing expression. 158 

For example, if the expression of a gene was decreasing through time, was not linear, and showed 159 

decreasing velocity, we would call this decreasing expression with decreasing expression velocity or 160 

“Decreasing, ↓ velocity” for short. If p > 0.05 for coefficient A, we considered this to be linear and the 161 

Figure 1 (previous page): Summary of metacell generation and usage. A) An example of metacells generated using the 

SEACells algorithm (sMetacells) and random single cells (rMetacells) for a time point. An example of the distribution of 

sMetacells (orange dots) and rMetacells (blue) are shown overlaying all cells of a particular type (either grey or blue). 

sMetacells, given their propensity to distribute over the full cell type space, are more spread out while rMetacells depend 

on random assignment of cells and therefore have a higher probability of occupying the space with greatest cell density. 

B) The gene expression of each metacell was computed from the average of the normalized expression amongst all single 

cells assigned to it. C) After the generation of metacells for each time point, quadratic regression was performed for each 

gene. An example of a significantly changing gene is shown here. D) One of eight expression trends was assigned to each 

DEG. For the example in C, the trend would be “Decreasing, ↓ velocity” for decreasing expression with decreasing 
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direction of the curve dictated whether it was considered increasing or decreasing. Increasing linear 162 

expression is synonymous with “Increasing, constant” while decreasing linear expression is synonymous 163 

with “Decreasing, constant” where constant refers to the expression velocity. If the average expression 164 

for the first time point and the last time point were both less than each of the time points between 165 

them, this was considered “Maxima”. If greater, this was “Minima”. 166 

 167 

It is important to note that DEGs from dendritic cells (DCs), megakaryocytes, monocytes, cycling plasma, 168 

and stem cells were eliminated from further analysis due to low cell numbers (less than 500 in total 169 

across all time points), which led to numbers of metacells too low for robust statistical analysis, because 170 

performing quadratic regression would lead to overfitting for these cell types. Additionally, due to low 171 

metacell counts for the first three time points in memory B cells, we eliminated days 3, 7, and 9 172 

metacells for trend determination of this cell type due to skewing toward early time point outliers. For all 173 

other cell types, all ten time points (days 3, 7, 9, 10, 13, 15, 16, 22, 25, and 28) were included for trend 174 

determination. 175 

 176 

Other Bioinformatics Databases and Tools 177 

 178 

For classification of the functions of the gene products (i.e., proteins), we used the DAVID Gene Function 179 

Annotation Tool [26, 27] and further grouped selected terms into broader function categories, such as 180 

transferases, proteases, immunoglobulin-related, and interferon-related. The KEGG [28] COVID-19 181 

pathway was used to define known SARS-CoV-2-related genes. Although the KEGG pathway is based on 182 

SARS-CoV-2 entry into type 2 pneumocytes, we generalized this response to the cascade of events that 183 

follow uptake of the virus by PBMCs to further narrow our search for novel expression responses. We 184 
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base this generalization on the finding that cell-intrinsic innate immune responses are triggered in 185 

PBMCs following exposure to SARS-CoV-2 [29]. The STRING Database [30] was used for network analysis 186 

to connect our DEGs to known COVID-19-related genes. To find significantly enriched gene ontology (GO) 187 

terms from inputted DEGs, we used geneontology.org [31, 32], set the annotation dataset to “PANTHER 188 

GO-slim biological processes”, and used the entire human genome as background. Figures were edited 189 

using biorender.com.  190 

 191 

Results: 192 

 193 

Finding DEGs through time with pseudobulking method: 194 

 195 

To characterize the dynamics of cell type gene programs in the PBMCs in response to SARS-CoV-2 196 

infection, we first applied a pseudobulking approach by aggregating scRNA-seq reads for individual 197 

genes, for either all PBMC cells or each of the cell types, for each sample. The samples and scRNA-seq 198 

data were collected at 10 time points representing post symptom onset days, from day 3 to day 28 by 199 

Zhu et al, as described previously [10]. This generated timeseries pseudobulk RNA-seq data with 1 to 3 200 

replicates, which were then used to identify genes exhibiting significant expression changes along the 201 

post infection period by maSigPro. The regression ANOVA analysis did not find any DEGs when PBMCs 202 

were not separated into cell types but found a few DEGs for some cell types (1 for T cells and 3 for 203 

plasma cells) (Figure S1). However, most of the DEGs exhibited the same expression trend, suggesting 204 

model overfitting due to outliers and low replicates.  205 

 206 

Characterizing DEGs through time using metacells as replicates: 207 
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 208 

We reasoned that using metacells to construct computational replicates (referred as “metareplicates") 209 

may allow us to mitigate false positives and overfitting in the pseudobulk approach. To test this, we 210 

generated metacells from the scRNA-seq data for samples in each of the 10 time points independently 211 

using two different methods: SEACells and random selection (see Methods). The resultant metacells 212 

were referred as “sMetacells” and “rMetacells”, respectively. Given that the SEACells algorithm retains 213 

heterogeneity within specific cell types, we expected that its metacells would introduce variation within 214 

individual time points and lead to fewer DEGs through time and be less prone to overfitting. We 215 

therefore compared the numbers of DEGs determined for these two methods (Table 1). We excluded all 216 

cell types with fewer than 500 total cells to avoid more extreme cases of overfitting for both methods 217 

since fewer cells would lead to fewer metacells (and thus few replicates). After that, the average number 218 

of replicates per time point for each cell type using the SEACells algorithm was 3.3. For rMetacells, three 219 

replicates were created. The average number of cells assigned to each metacell was 31.8 for sMetacells 220 

and predetermined to be 20 for rMetacells.  221 

 222 

For each metacell type, we determined the standard deviation (SD) of each gene’s expression for each 223 

time point and used these values to calculate the mean SD (mSD) for all genes. Thus, we obtained mSD 224 

values for each time point and cell type for either rMetacells or sMetacells. sMetacells showed greater 225 

mSD, and therefore greater variance, for 72 out of 100 individual time points across cell types. 226 

Additionally, if these mSDs were further averaged among all time points and cell types, sMetacells still 227 

showed greater mSD (0.065) than rMetacells (0.041), a difference that was statistically significant (p = 228 

2.27e-7, t-test). These results are summarized in Table S1. Overall, this indicates that sMetacells provide 229 

bigger variances among metareplicates than rMetacells.  230 
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 231 

A more important question is how the variances provided by metacells match the true biological 232 

variances. Since at individual data points there were insufficient biological replicates to provide good 233 

estimate of sample variances, we decided to combine cells from all time points and computed gene SDs 234 

for each of the cell types, with pseudobulking, rMetaCell, or sMetacell methods. The result indicated 235 

that the gene variances from sMetaCells were very close to those from pseudobulking and significant 236 

larger than those from rMetaCells (Figure S2), further supporting that sMetacells could be used as 237 

replicates. Interestingly, the average number of genes per metacell was also higher for sMetacells (8,440) 238 

than rMetacells (5,930) (p  = 2.2e-16, t-test) (Table 1). 239 

Table 1: Comparison of metareplicates from sMetacells and rMetacells. A, Replicates per time point, # cells per metacell, 240 
average variance, and average # of genes detected. B, The number of DEGs through time using quadratic regression at FDR < 241 
0.05 and R

2
 > 0.5.  242 

Metacell Method sMetacells rMetacells 

A 

(Summary 

of 

Metacells) 

Metareplicates Per Time Point 3.3 3 

Avg # of Cells Assigned to  Metacell 31.8 20 

Avg Variance Across  Gene 0.041 0.0097 

Avg # Genes in Metacells 8440 5930 

 

B (DEGs) 

All PBMCs without separating to cell types 1 10 

Cytotoxic CD8 T cells 38 31 

Naïve T cells 19 22 

NKs 25 43 

Activated CD4 T cells 74 64 

Naïve B 33 91 

Plasma 7 120 

Memory B 9 57 

XCL+ NKs 15 79 

MAIT 53 49 

Cycling T cells 68 633 

Total DEGs 342 1199 

 243 

Performing quadratic regression yielded more DEGs using rMetacells than sMetacells, likely due to a 244 

higher degree of overfitting due to less variation across metareplicates (Table 1B). However, the 245 

difference between the total number of DEGs found using sMetacells vs rMetacells was not statistically 246 
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significant. Regardless, for cycling T cells, over 600 DEGs were detected for the rMetacell method 247 

compared to 68 using sMetacells. Of all the DEGs from the two methods, 49 were the same, leaving 248 

and 984 unique to the sMetacell and rMetacell methods, respectively. To better understand the 249 

difference, we performed gene ontology (GO) enrichment analysis using all the DEGs identified from 250 

least one of the cell types (FDR < 0.05) (Figure 2). The results showed that the DEGs from the sMetac251 

Figure 2: SEACells-derived DEGs show stronger enrichment of biologically relevant pathways than those derived 

from random metacells. PANTHER GO-slim biological processes annotation data set was used to find enriched terms 

amongst DEGs through time from rMetacells and sMetacells.  
 

14

116 

at 

cell 
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method, despite fewer in number, were actually enriched with more significant GO terms, particularly 252 

those related to immune response. Additionally, for “defense response to virus” and “response to virus” 253 

terms, which were significant using DEGs from both methods, the fold enrichment scores were greater 254 

and FDR values were lower from results produced by sMetacells. This indicates that DEGs from 255 

sMetacells are more biologically relevant and less likely from statistical noise (i.e., false positives), e.g. 256 

overfitting due to underestimated variance by rMetacells. We therefore consider the metacells from the 257 

SEACells algorithm to be more appropriate metareplicates and discuss results from this method further 258 

in more details. 259 

 260 

Table S2 summarizes the number of samples, cells, and metacells for each time point using the SEACells 261 

algorithm. The cell identity of each metacell was assigned to the most abundant cell type among the 262 

individual single cells contributing to the metacell, using the metadata provided by Zhu et al.  Figure 3A 263 

shows a UMAP representing the 25,775 cells from the COVID-19 patients and their assignment to one of 264 

the fifteen cell types. The SEACells algorithm performed exceptionally well in creating metacells that 265 

encompass the entirety of the cell type and state space for each time point (Figure 3B). As expected, 266 

sMetacells had significantly higher numbers of genes detected (8,840 on average) compared to single 267 

cells (814 on average) (Figure 3C).  The proportion of cells in each sMetacell that were from the same cell 268 

type were very high, indicating high sMetacell purity, with the average purity scores reaching 90% or 269 

higher (Figure 3D).  270 

 271 
Figure 3 (next page): Summary of sMetacell output. A) UMAP of 25,775 cells colored by cell type. B) Metacell 

distribution across cell type space for each time point. Metacells are red while single cells are grey. C) Violin plot 

of the number of genes detected for SEACell-generated metacells (top) compared to all single cells (bottom). D) 

Box plots showing metacell purity for each day. The average purity for each metacell was over 90% for all time 

points. 
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After eliminating cell types with low cell number and with too few sMetacells to be used as 272 

metareplicates in maSigPro analysis, we identified 165 unique DEGs through time with an R
2 

> 0.5 an273 

FDR < 0.05, with some DEGs found in more than one cell type (Table S3). We grouped the DEGs base274 

their functions and the cell type in which they were identified. Within each cell type, genes were furt275 

grouped according to the expression trends along the times (Figures 1,4). The trends for all significan276 

DEGs through time by cell type can be found in Figure S3. The results showed that activated CD4 T ce277 

contained the greatest number of DEGs, followed by cytotoxic CD8 T cells, naïve B cells, natural killer278 

cells (NKs), XCL+ NKs, Naïve T cells, Memory B cells, and Plasma cells, respectively (Figure 4B). As 279 

mentioned previously, low overall numbers of monocytes, DCs, cycling plasma, stem cells, and 280 

megakaryocytes led to low metacell numbers for these cell types, so they were eliminated from furth281 
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Figure 4 (next page): Summary of significant DEGs and expression trends by cell type A) Dot plot of all significant 

DEGs through time by trend type, protein class, and sMetacell type. A lighter blue dot corresponds to a lower p-value 

while a larger dot represents a larger R
2
. B) Summary of expression trends by metacell type. The y-axis corresponds to 

the frequency of significant DEGs through time for each cell type that correspond to a given trend pattern. Red 

shades represent overall decreasing expression through time, blue shades are increasing, green is maxima (increasing 

then decreasing) and orange is minima (decreasing then increasing).  

analysis. Additionally, upon visual inspection of clustered DEG trends for MAITs and cycling T cells (Figure 282 

S4), we found that a large group of genes had zero expression but were influenced by an early time point 283 

outlier, which led to overfitting. We therefore also eliminated these cell types from further analysis. 284 

 285 

At the level of general functional categories, the largest proportion of the DEGs were related to ribosome 286 

(16), followed by interferon (14), immunoglobulin (11), protease (10), transcription factor (9) and 287 

transferase (8). The functions for 20 of the DEGs was unknown.  These results are summarized as a dot 288 

plot in Figure 4A. 15 of the 16 ribosome-related genes showed at least one of the three increasing 289 

gexpression patterns through time depending on cell type while 1/16 (MRPL20) showed decreasing 290 

expression with decreasing velocity in NKs. 13/14 interferon-related genes showed either a linear  291 

decreasing expression pattern or decreasing expression with decreasing expression velocity in a variety 292 

of cell types while 1/14 (MNDA) showed a “minima” trend in XCL+ NKs. 10/11 immunoglobulin-related 293 

genes showed decreasing expression with decreasing velocity through time while 1/11 (IGHA1) showed a 294 

linear decreasing trend in NKs. Protease and transcription factor-related genes fit into a variety of 295 

increasing, decreasing, and minima trends depending on cell type. 7/8 transferase genes showed either 296 

linear decreasing expression or decreasing expression with decreasing velocity while 1/8 (FNTB) showed 297 

a “minima” trend in XCL+ NKs. 298 
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Connecting many DEGs to genes previously implicated to SARS-CoV-2 response: 300 

 301 

Next, we asked how the 165 DEGs are related to genes previously found to be involved in the COVID-19 302 

pathway, based on KEGG.  We input the protein names corresponding to these 165 genes into the 303 

StringDB to determine protein associations and colored the nodes by whether they are in the COVID-19 304 

KEGG pathway (Figure 5A). 89 of the 165 genes were determined to have a protein product that 305 

interacted with at least another protein from the input. Among these 89, 23 were previously annotated 306 

as being part of the KEGG COVID-19 pathway. We also colored nodes by the protein’s affiliation with 307 

significant biological processes that capture the three main clusters of connected proteins (Figure 5B). 308 

Actual cluster identification prior to overlay with biological process identifiers can be found in Figure S5. 309 

The analysis showed that the DEGs were significantly enriched for functions related to Translation (FDR = 310 

1.75e-09), Cell Surface Receptor Signaling (FDR = 0.00023), and Type I Interferon Signaling (FDR = 8.45e-311 

14). The proteins comprising the Translation cluster are ICT1, MRPL20, NACA, RPL7, RPL27A, RPL34, 312 

RPS17, RPLP2, RPL39, EEF2, RPS8, RPL3, RPS27, RPS12, RPS28, RPL4, RPS21, RPS6, RPS3A, RPS27, and 313 

EIF2AK2. Among these, NACA, ICT1, MRPL20, and EEF2 were not previously annotated in the COVID-19 314 

KEGG pathway. All proteins belonging to the Type I Interferon Signaling group overlapped with the Cell 315 

Surface Receptor Signaling group. These proteins include ADAR, IFI27, ISG20, ISG15, XAF1, MX2, RSAD2, 316 

IFIT3, IFITM1, IFI6, OAS1, OAS2, IFIT1, MX1, and RF7. Among these, IFI27, ISG20, XAF1, RSAD2, IFIT3, IFI6, 317 

IFITM1, IFIT1, and IRF7 were not previously annotated in the COVID-19 KEGG pathway. Proteins 318 

annotated in only the Cell Surface Receptor Signaling group were HSPB1, CCNE1, CDK6, MOV10, LY6E, 319 

NR4A2, PTPRC, ICAM2, MNDA, BCR, BLNK, IGHV3-11, S1PR3, HBEGF, CX3CR1, HLA-DRB5, LTB, and 320 

TNFRSF13C. Among these genes, none except HBEGF were previously annotated in the COVID-19 KEGG 321 
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pathway. The results indicate that DEGs from our analysis likely have important roles in modulating 322 

immune responses.  323 

Detailed description of DEGs newly implicated to SARS-CoV-2 response: 324 

 325 

As these DEGs changed expression post-infection, we wondered if their day 3 expression would be 326 

significantly different between infected PBMCs and controls. We also wondered whether at day 28 their 327 

expression would return to the baseline (Figure 6). To illustrate this, we plotted the expression of DEGs 328 

associated with one of three significant GO biological process terms but not in the KEGG COVID-19 329 

pathways, i.e. genes that are not yet well described in COVID-19 literature (Figure 5). We compared the 330 

expression at day 3 between COVID-19 infected cells and healthy controls and found that 31 of the DEGs 331 

Figure 5: STRING protein interaction results A) STRING network colored by annotated vs unannotated KEGG COVID-

19 pathway-related protein products. Red represents protein products from genes that are not annotated in the 

KEGG COVID-19 pathway. Dark blue represents those that are already annotated in this pathway. B) STRING network 

colored by Biological Process GO Terms. GO terms were selected based on their ability to encompass 3 main clusters. 

Turquois represents Translation, purple represents Cell Surface Receptor Signaling, and yellow/orange represents 

Type I Interferon Signaling. 
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exhibited a significant difference (t-test) except those showing a “minima” or “maxima” trend, as 332 

expected. Given the low number of metacells for day 28 data, we did not perform this test but the 333 

expression of almost all DEGs were back to the baseline levels (Figure 6).  334 

 335 

For genes whose protein products are related to translation (Figure 6A), NACA showed increasing 336 

expression with decreasing expression velocity in cytotoxic CD8 T cells, as did ICT1 and EEF2. EEF2 also 337 

demonstrated this trend in activated CD4 T cells. MRPL20 exhibited decreasing expression with 338 

decreasing expression velocity in NKs. Expression at 28 days closely resembled that of baseline 339 

expression for these four genes. 340 

 341 

Among genes whose protein products are related to cell surface receptor signaling (Figure 6B), IFI27 342 

expression decreased through time with decreasing expression velocity in plasma cells. ISG20 expression 343 

decreased through time with decreasing velocity in activated CD4 T cells and cytotoxic CD8 T cells. 344 

Expression of ISG20 showed a linear decrease through time in NKs. Naïve T cells, naïve B cells, cytotoxic 345 

CD8 T cells, and NKs exhibited a linear decrease in XAF1 expression. RSAD2 showed decreasing 346 

expression with decreasing velocity in activated CD4 T cells and cytotoxic CD8 T cells while IFIT3 347 

exhibited the same trend in naïve T, naïve B, activated CD4 T cells, cytotoxic CD8 T cells, and NKs. IFI6 348 

showed a linear decrease in expression through time for cytotoxic CD8 T cells and NKs. IFITM1 349 

expression decreased through time with decreasing expression velocity in memory B cells. IFIT1 showed 350 

the same trend in naïve B cells, activated CD4 T cells, cytotoxic CD8 T cells, and NKs. IRF7 expression 351 

decreased through time with decreasing velocity in activated CD4 T cells. For these genes, baseline 352 

expression closely resembled day 28 expression from COVID-19 patients except for IFITM1, where the 353 
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regression curve estimated expression to be lower than baseline beyond 15 days following symptom 354 

onset.  355 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 15, 2023. ; https://doi.org/10.1101/2023.12.14.571774doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.14.571774
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 356 

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 15, 2023. ; https://doi.org/10.1101/2023.12.14.571774doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.14.571774
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24

Among genes whose protein products are related to type I interferon signaling (Figure 6C), HSPB1 (in 357 

plasma cells), CDK6 (in plasma cells), MNDA (in XCL+ NKs), and HLA-DRB5 (in memory B cells) exhibited 358 

the minima trend, where expression decreases then increases. PTPRC demonstrated the maxima trend, 359 

where expression increases then decreases, in cytotoxic CD8 T cells. CCNE1 (in activated CD4 T cells), 360 

MOV10 (in cytotoxic CD8 T cells), BCR (in cytotoxic CD8 T cells), IGHV3-11 (in activated CD4 T cells), 361 

S1PR3 (in activated CD4 T cells), and CX3CR1 (in cytotoxic CD8 T cells) showed decreasing expression 362 

with decreasing expression velocity through time. LY6E (in cytotoxic CD8 T cells, NKs, and naïve T cells), 363 

ICAM2 (in activated CD4 T cells), and LTB (in activated CD4 T cells) demonstrated a linear decrease in 364 

expression. NR4A2 (in cytotoxic CD8 T cells), BLNK (in NKs), and TNFRSF13C (in activated CD4 T cells) 365 

showed increasing expression with increasing expression velocity through time. For this set of genes, 366 

CDK6, NR4A1, ICAM2, MNDA, BLNK, CX3CR1, and TNFRSF13C expression did not appear to return to 367 

baseline after 28 days. 368 

 369 

Prior to metacell analysis by cell type, we also performed the same regression-based time series analysis 370 

on all sMetacells (irrespective of cell type) together. With the same R
2
 cutoff of 0.5 or higher and FDR 371 

corrected p-value < 0.05, we yielded one significant gene, ISG15 (Figure 6D). The ANOVA p-value for this 372 

gene was 8.7e-62 while the R
2 

was 0.55. 373 

 374 

Discussion: 375 

Figure 6 (previous page): Expression vs time plots and trendlines for selected significant genes A) Expression through time 

for “Translation” genes that do not overlap with the KEGG COVID-19 pathway. B) Expression through time for “Type I 

Interferon Signaling” genes that do not overlap with the KEGG COVID-19 pathway. C) Expression through time for “Cell 

Surface Receptor Signaling” genes that do not overlap with the KEGG COVID-19 pathway. A-C) Only cell types whose 

expression of a gene was deemed significant through time were plotted. D) ISG15 expression through time for all cell types 

together. A-D) All baseline values were compared to day 3 (or day 3 and day 7 for plasma cells) via two-sided, unpaired t 

tests with equal variance. For each cell type, lines matching their associated color were drawn to represent the baseline 

average. Significant differences between baseline and day 3 expression were denoted by an asterisk. “B” at the x-axis 

represents expression in healthy controls (baseline).  
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 376 

SEACells algorithm generates metacells providing statistical robustness for low replicate time series 377 

analysis: 378 

 379 

In this study, we demonstrate that metacells from the SEACells algorithm (sMetacells) can be used as 380 

replicates for time series analysis. Applying it to a COVID-19 scRNA-seq data, we were able to obtain 381 

metacells that retained cell-type heterogeneity through time that appear to capture biological variances 382 

among individual patients. Despite a similar number of replicates and total cells assigned to metacells, 383 

metareplicates from the SEACells algorithm seem less prone to overfitting than those from the rMetacell 384 

method, suggesting that the retention of cell type heterogeneity could be important for decreasing 385 

overfitting when performing regression on scRNA-seq time series data. sMetacells also maintained a high 386 

degree of cell-type purity, enabling us to study expression trends for individual PBMC cell types. As such, 387 

our result suggests that this method provides a way to increase statistical power when performing 388 

quadratic regression that would otherwise be impossible due to too few replicates. In the absence of this 389 

method, pseudobulking led to overfitting, a problem thoroughly defined by Xue Ying [33], which yielded 390 

a low number of DEGs with little biological insight. We did not systematically compare the metacells 391 

from other algorithms because the SEACells paper has already demonstrated its outperformance to 392 

other software [9]. With sMetacells, we were able to obtain a list of significant DEGs for PBMC cell types 393 

through time with biological relevance to SARS-CoV-2 infection. Activated CD4 T cells contained the 394 

greatest number of significant genes, further validating the reliability of using the SEACells algorithm for 395 

time series analysis given CD4 T cells’ critical involvement in response to SARS-CoV-2 infection [34-37].  396 

 397 

ISG15 expression changes significantly through time in the PBMCs: 398 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 15, 2023. ; https://doi.org/10.1101/2023.12.14.571774doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.14.571774
http://creativecommons.org/licenses/by-nc-nd/4.0/


 26

 399 

When all PBMC sMetacells were analyzed without using cell type information, we found that ISG15 was 400 

the only gene showing a significant decrease in expression through time. It also exhibited decreasing 401 

expression velocity through the 28
th

 day after symptom onset. ISG15 is one of many ISGs that respond to 402 

IFN-I to establish an antiviral response [38] and exacerbates inflammation following release from 403 

macrophages infected with SARS-CoV-2 [39, 40]. The combination of these findings and this gene’s 404 

significance in our analysis further establishes ISG15 as an important part of the immune system’s 405 

response to SARS-CoV-2. We show that, following infection, ISG15 expression is initially high 3 days after 406 

symptom onset then decreases through day 28 of symptoms. Gene expression velocity also decreases, as 407 

is evidenced by the decreasing slope of the line tangent to the fitted expression curve (its derivative) 408 

through time. This makes sense since a higher degree of inflammation occurs early in infection when 409 

viral load is high then decreases as SARS-CoV-2 is cleared [41]. 410 

 411 

In the SEACells paper, the authors found that ISG15 expression was upregulated in CD4 T cells through 412 

approximately 10 days after symptom onset and increased again at approximately day 13. Conversely, we 413 

found that ISG15 expression in CD4 T cells decreased continuously with decreasing velocity through 414 

approximately 25 days before returning to baseline. This difference could be due to patient cohorts or 415 

technical reasons. The SEACells authors constructed metacells from cells of all time points and then 416 

determined pseudotime of a metacell based on relative abundance of cells comprising certain time 417 

points, and their day 13 metacell was enriched in severe COVID-19 patient cells [9]. We constructed 418 

metacells using cells in each of the 10 time points separately. The difference between our results and 419 

theirs in relation to ISG15 may be attributable to continued ISG15 expression in severe COVID-19 420 

patients. Nevertheless, because of its association with inflammation and disease severity, it will be 421 
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interesting to study in the future whether changes in expression velocity of ISG15 would lead to 422 

differences in disease severity. This could also be taken a step further to determine whether ISG15 423 

expression differs between those with and without long COVID-19 symptoms.  424 

 425 

Metacell time series analysis implies that PBMCs and type II pneumocytes share similar SARS-CoV-2 426 

response pathways 427 

 428 

Among 165 genes with significant changes in expression through time, the protein products of 89 formed 429 

three main clusters within an interaction network generated with STRING. Within these three clusters, 15 430 

genes related to translation, seven related to type I interferon signaling, and one related to cell surface 431 

receptor signaling were already annotated in the KEGG COVID-19 pathway. Although this pathway 432 

outlines type II pneumocyte response to SARS-CoV-2 and downstream effector cell activation, its 433 

significant overlap with our DEGs suggests that despite being non-susceptible to SARS-CoV2 infection 434 

[10, 29], PBMCs may undergo a similar response to the virus as type II pneumocytes. PBMCs have been 435 

found to induce transcription of interferon-stimulated genes, such as ISG15 mentioned above, via 436 

JAK/STAT signaling upon exposure to SARS-CoV-2 [29]. The KEGG COVID-19 pathway has multiple 437 

JAK/STAT signaling cascades that are induced by various cytokines [28]. It may be the case that these 438 

same pathways are activated in PBMC response to global cytokine release upon initial infection with 439 

SARS-CoV-2. 440 

 441 

Metacell time series analysis implicates new genes not well described in COVID-19 literature 442 

 443 
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Among the genes not annotated in the KEGG COVID-19 pathway, all have been discussed, albeit most of 444 

them only briefly, in previously published COVID-19-related literature. For genes whose protein products 445 

are related to translation, EEF2 was previously found to be downregulated in a variety of organ tissue 446 

samples from COVID-19 patients compared to controls [42]. We found that EEF2 expression increased 447 

through time with decreasing expression velocity in activated CD4 T cells and cytotoxic CD8 T cells. 448 

Earlier time points showed lower expression compared to baseline, suggesting a degree of similarity to 449 

the findings from Ghosh et al. Our data suggests that CD4 and CD8 T cells may play an important role in 450 

SARS-CoV-2 translation inhibition.  451 

 452 

For genes whose protein products are related to type I interferon signaling, IFI27 expression in blood was 453 

found to be more highly expressed in patients infected with SARS-CoV-2 as determined via qPCR [43]. 454 

Our results show that IFI27 expression decreases significantly through time with decreasing expression 455 

velocity before returning to baseline in plasma cells. This suggests that plasma cells may be a large 456 

contributor to high IFI27 expression in COVID-19 patient blood. IFIT3 was found to increase in expression 457 

through time in SARS-CoV-2 infected mice through 8 days of infection [44]. Interestingly, this conflicts 458 

with our results, which show that IFIT3 expression decreases through time with decreasing expression 459 

velocity in naïve T cells, naïve B cells, activated CD4 T cells, NKs, and cytotoxic CD8 T cells. IFITM1 was 460 

found to inhibit viral RNA production [45] and our data shows a decrease in its expression with 461 

decreasing expression velocity in memory B cells. Given IFITM1’s role in inhibiting viral RNA production, a 462 

rapid increase in expression of IFITM1 upon exposure to SARS-CoV-2 followed by a gradual decrease 463 

through time is expected. We question whether this trend, along with expression velocity, differs 464 

depending on previous exposure to SARS-CoV-2 or other coronaviruses. We also notice that IFITM1 465 

expression falls below baseline after 28 days, suggesting potential downregulation of this gene upon 466 
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clearance of the virus. IFITM1 has been found to be downregulated following severe influenza infection 467 

in mice [46], so we wonder whether our findings could point toward the need to study the differential 468 

effects of this gene’s expression in severe and minor COVID-19. 469 

 470 

Among genes whose protein products are related to cell surface receptor signaling, LY6E is known to 471 

prevent coronavirus fusion [47, 48] . We found that its expression was linear and decreasing in cytotoxic 472 

CD8 T cells and NKs but decreasing with decreasing velocity in Naïve T cells. This may point toward high 473 

conservation of LY6E’s antiviral activity across different immune cell types.  PTPRC (also known as CD45) 474 

was found to be more highly expressed in nasopharyngeal cells from SARS-CoV-2 infected patients 475 

compared to controls [49]. We found that cytotoxic CD8 T cells exhibit a significant maxima expression 476 

trend for this gene, where expression increases then decreases back to baseline by day 28. Since CD45 477 

plays a key role in T cell activation [50], this may suggest that CD8 T cells upregulate this surface protein 478 

to mount a strong cytotoxic response over roughly two weeks following COVID-19 symptom onset. 479 

ICAM2, a gene whose protein products functions in leukocyte migration [51], was among the 6 most 480 

highly up-regulated genes in samples from COVID-19 patient serum [52]. We show that this gene is 481 

expressed above baseline and decreases linearly through time; however, its expression continues to 482 

decrease below baseline between day 10 and 15 post-symptom onset. This may imply that ICAM2 is 483 

down-regulated following viral clearance, perhaps to reestablish a baseline of circulating leukocytes. 484 

CX3CR1 expression in NKs has been associated with severe COVID-19 [53]. Our data shows a significant 485 

change in expression through time for this gene in cytotoxic CD8 T cells. CX3CR1 expression decreased 486 

with decreasing velocity; however, there was also a slight increase in expression after day 20. 487 

Additionally, expression did not return to baseline. Given CX3CR1’s association with severe disease and 488 

the role of chemokines in inflammation [54], we suggest that this gene may contribute to long COVID-19 489 
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symptoms if it continues to be expressed above baseline following virus clearance. Future studies should 490 

therefore determine expression trends through time for CX3CR1 in patients with long COVID-19 491 

compared to patients who fully recover. 492 

 493 

Although several other significant genes from our analysis have been discussed in literature related to 494 

COVID-19, we do not further contribute to their potential role in SARS-CoV-2 infection. We comment 495 

only on those where our results are most contributory to previously published materials.  496 

 497 

Limitations: 498 

 499 

Our study is a proof of concept and generally needs to be applied to more datasets. Furthermore, it 500 

needs to be tested more systematically with datasets containing more biological replicates to carefully 501 

study the performance difference between true biological replicates and metareplicates. In terms of the 502 

relationship of our results to COVID-19, our comparison of day 28 expression to baseline is suboptimal 503 

given the low number of metacells per cell type at day 28. We wished to retain expression data through 504 

the 28
th

 day after symptom onset, thus we did not perform statistical analysis between day 28 and 505 

baseline. Our analysis of expression trends by cell type was also limited by the overall low cell count for 506 

certain cell types. This led to low numbers of metacells and subsequent overfitting for these cell types. 507 

 508 

Conclusion: 509 

 510 

Using the SEACells algorithm to create metacells for time series analysis of COVID-19 data enabled 511 

greater statistical power and overcame the limitation of low number of replicates per time point in the 512 
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original study. We found that ISG15 expression changed significantly through time when all PBMC cell 513 

types were grouped together. This gene demonstrated decreasing expression and decreasing expression 514 

velocity through time. For individual cell types, we found many other DEGs through time, which shed 515 

new light on our limited knowledge of these genes and their associations with SARS-CoV-2 infection. 516 
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