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Abstract

During an epidemic, metrics such as R0, doubling time, and case fatality rates are important in
understanding and predicting the course of an epidemic. However, if collected over country or
regional scales, these metrics hide important smaller-scale, local dynamics. We examine how
commonly used epidemiological metrics differ for each individual state within the United States
during the initial COVID-19 outbreak. We found that the case number, and trajectory of cases,
differs considerably between states. We show that early non-pharmaceutical, government
actions, were the most important determinant of epidemic dynamics. In particular, restricting
restaurant operations was correlated with increased doubling times. Although individual
states are clearly not independent, they can serve as small, natural experiments in how different
demographic patterns and government responses can impact the course of an epidemic.
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Introduction

The global COVID-19 (caused by the SARS-CoV-2 virus) outbreak began in Wuhan, China
in late 2019 (WHO 2020). As of April 12th, 1,846,679 cases have been reported across 185
countries and regions. There have been several sets of efforts to track the progression of
the outbreak across the world and within countries. For example, John Hopkins University
Center for Systems Science and Engineering (CSSE) has compiled data from various sources,
including the US Center for Disease Control and the World Health Organization, to present a
global picture of COVID-19 cases and deaths (Dong et al. 2020). These efforts have allowed
for international scientific research and political decision-making. Although data are collected
at local scales (e.g. within hospitals), in an emerging pandemic, data are typically reported at
the country level. This allows for interesting comparisons between countries (Anderson et al.
2020, Jombart et al. 2020) and for information from an earlier affected country to be used
to slow the outbreak in other places. For instance, South Korea was able to “flatten their
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outbreak curve” through early and widespread testing as well as strict quarantine policies
(Utsunomiya et al. 2020). However, country-level analyses still hide more local dynamics
that are important to the overall epidemic progression (Chin et al. 2020, Lin et al. 2020).

Spatial heterogeneity is important for population dynamics generally (Levin 1992, Hanski
2001, Schreiber 2010) and in particular for understanding the progression of infectious disease
dynamics (Grenfell et al. 1995, Park 2012). Spatial heterogeneity can include differences
in local population density, movement patterns, suitability of environmental conditions for
transmission, among other factors (Grenfell et al. 1995, Park 2012, St-Onge et al. 2020). For
instance, Keeling et al. (2001) showed how spatial distribution and size of farms affected the
2001 UK Foot and Mouth Epidemic.

Here we provide a descriptive analysis of the reported progression of COVID-19 at the
state level within the United States. We examine how commonly-used metrics, focusing
on doubling time, can vary by state. Clearly, controlled and randomized experiments of
COVID-19 spread are not possible (White et al. 2019). Therefore, although states are
not independent units, we can use state-level data to understand the progression of the
outbreak across different replicates within a country (Adolph et al. 2020). We show that
across measures of demography, education, health, and wealth, only population density
was correlated with doubling time. Further, we show that doubling time was more tightly
correlated with state-level governmental actions, including restricting businesses.

Results and Discussion

We used data compiled by John Hopkins University Center for Systems Science and Engineer-
ing (Dong et al. 2020). The United States has seen exponential growth in the number of cases,
especially since February 29th (Fig. S1). Country-level results, however, hide underlying
dynamics within each state (Chin et al. 2020, Lin et al. 2020).

Therefore, we examined how the number of cases changed over time within each state. To
properly compare the progression of the epidemic across states, we looked at the log number
of cases since the first day a state reported 25 (after which exponential curves were more
reliable) cases (Fig. 1). On a log scale, a straight line of the cases over time indicates
exponential growth where the slope of the line is the exponential growth parameter.

State-level variation in COVID-19 trajectories

We found considerable differences between states in how the outbreak has progressed (Fig.
1). These doubling times are, of course, changing over time. We found that doubling times
for all states did increase with time and that the heterogeneity between states was reduced
(Fig. 1). We mapped doubling time across the US and found regional differences where the
West and Northeast have seen large doubling times, i.e. slower outbreak dynamics (Fig. S3).
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Figure 1: (a) The log number of cases over time for each individual state for the 10 days since
their first day of 25 total cases. (b) The log number of cases over time for each individual state
for the most recent 10 days. The light grey diagonal lines represent the growth trajectory for
doubling times of 2, 4, and 10 days. The log number of the starting value (intial number of
cases on first day when at least 25 cases were recorded) had to be subtracted on the y-axis to
standarize the graph across states. (c) Rolling doubling times calculated over 10-day windows
for each individual states. (d) Distributions of state-level doubling times early and more
recent in the course of the outbreak. The figure was produced on 14-Apr-2020.
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Predictors of overall state-level trajectories

Each US state varies considerably across a number of important axes: wealth, access to
healthcare, number of international travelers, age distribution, population density, among
other factors (Chin et al. 2020). In addition, much of the response to COVID-19 has been
done at the state, as opposed to federal, government level in the US (Adolph et al. 2020,
Gostin et al. 2020). We examined three hypotheses to explain the state-level variation
in COVID-19 trajectories: human demographics, wealth and education indicators, and
governmental interventions.

Given the large heterogeneity between states early on (Fig. 1), we examined correlates of
doubling time for only the first seven days after a state reached 25 total cases. We found
that population density, flu vaccination rates, and wealth were all correlated with doubling
times (Table 1). This suggests that demography might have been more important early in
the outbreak, though testing differences between states may also have been important (Fig.
S4, Kaashoek & Santillana (2020)).

We then examined the overall (all days since 25 total cases) doubling times at the state level.
Except for population density and percent of population living in rural areas, we found that
demography, education, and wealth were poor predictors of the state-level overall doubling
times (Fig. 2, Table 1). Therefore, we also examined the correlation between doubling time
and state government interventions. We used information collected by Adolph et al. (2020)
on whether or not a state had implemented a specific action by the first day they had 25 or
more cases. We adjusted this number to 150 cases for more severe restrictions like closing all
non-essential business or stay at home mandates). We looked at closing of public schools,
limiting large gatherings (usually of more than 10 people), restricting business, and stay at
home orders (Adolph et al. 2020). Of these factors, only restricting businesses, specifically
restaurants, was a significant predictor of doubling time (Fig. 3, Table 1). These restrictions
were also additive, as states that implemented more actions early had higher doubling times
(Fig. 3). The ordering of these restrictions was also fairly consistent between states (Fig. 4).
While declaring a state of emergency is an obvious first intervention, closing public schools
tend to be implemented at different times across states. More importantly, by the time
government restrict businesses and declare a stay-at-home order, all other interventions tend
to have already been implemented (Fig. 4, Adolph et al. (2020)).

Lastly, after accounting for population density, a state’s “tightness” score was also correlated
with doubling time. A state with a high tightness score has “many strongly enforced rules
and little tolerance for deviance” (Harrington & Gelfand 2014). We expected that states with
highly enforced rules should have higher doubling times compared to “loose” states. Instead,
we found that opposite where tight states had low doubling times and faster disease spread.
We hypothesis this may be the result of people in tight cultures finding it more difficult to
adjust their behavior when new rules are imposed. More work has to be done to understand
this relationship.
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Figure 2: Doubling time (in number of days) versus (a) log (population density), (b) population
density in urban areas, (c) population density in rural areas, (d) population percent in urban
areas, (e) population percent in urban centers, (f) life expectancy (years), (g) percent of
population above age 65, (h) gross income per capita (in 1000s USD), (i) expected years of
schooling, (j) yearly flu vaccination rate, (k) volunteer rate, and (l) tightness score.
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Figure 3: Doubling time (in number of days) across the US states for five different statewide
government restrictions: (a) limit gatherings (usually to less than 10 people) by first day of
25 cases, (b) close public schools by first day of 25 cases, (c) restrict restaurants by first day
of 25 cases, (d) restrict non-essential businesses by first day of 150 cases, (e) stay at home
order by first day of 150 cases, and (f) total number of restrictions before number of cases
threshold.
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Table 1: Best fitting linear models (according to AIC) and corresponding parameter estimates
for the doubling time both early (first 7 days since 25 cases) and for the entire time period.

Dependent variable:
Early doubling time Overall doubling time

Restrict Restaurants 0.576∗∗

(0.119, 1.034)
log (Population density) −0.342∗∗∗ −0.396∗∗∗

(−0.467, −0.218) (−0.538, −0.253)
Vaccination rate 11.308∗∗∗

(6.914, 15.702)
GNI per capita 0.037∗∗∗

(0.021, 0.054)
Population percent in rural areas 0.016∗

(0.0003, 0.032)
Tightness score −0.024∗∗∗

(−0.040, −0.008)
Constant −12.041∗∗∗ 1.042

(−16.384, −7.697) (−0.545, 2.630)
Observations 50 50
R2 0.554 0.644
Adjusted R2 0.525 0.612

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 4: Rank distribution of different interventions. Per state, every intervention is given a
rank from 1 to 6 depending on when it was implemented (1 being the first put into place)
and ties are given an average rank (e.g. 2.5 for tied 2nd and 3rd rank).

Conclusions and Future Work

We found a large degree of heterogeneity in the reported number of COVID-19 cases over
time across US states. After state-level government actions were implemented, doubling time
was most strongly correlated to restrictions on businesses, in particular restaurants. More
detailed work will be needed to understand how these dynamics differ within each state,
especially as many government actions started on more local scales.

Code availability and acknowledglements

All code and corresponding data is freely available at https://github.com/eastonwhite/COV
ID19_US_States. The original raw data has been compiled by the Johns Hopkins University
Center for Systems Science and Engineering at (https://github.com/CSSEGISandData/
COVID-19). L.H.-D. acknowledges support from the National Institutes of Health 1P20
GM125498-01 Centers of Biomedical Research Excellence Award.
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Data sources

• population density and distribution (2010 US Census Bureau https://www.census.gov/p
rograms-surveys/geography/guidance/geo-areas/urban-rural/2010-urban-rural.html)

• percent of population over age 65 (U.S. Census Bureau, Vintage 2018 Population
Estimates https://www.prb.org/which-us-states-are-the-oldest/)

• life expectancy, income per capita, and expected years of schooling (Global Data Lab
https://globaldatalab.org/shdi/download/2018/indicators/USA/?interpolation=0&e
xtrapolation=0&nearest_real=0&format=csv)

• yearly flu vaccination rate (ChildVaxView CDC https://worldpopulationreview.com/st
ates/vaccination-rates-by-state/)

• volunteer rate (2015 Corporation for National and Community Service data
https://www.nationalservice.gov/vcla/state-rankings-volunteer-rate)

• tightness scores Harrington & Gelfand (2014)

• testing rates by state (COVID Tracking Project https://covidtracking.com/)
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Figure S1: (Left panel) Cases versus time for the whole United States. (Right panel) Log
number of cases versus time for the whole United States. The red, dashed line is the line of
best fit for all the data and the blue, solid line is the line of best fit since Feburary 29th.
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Figure S2: The log number of cases over time for each individual state that recorded more
than 25 cases over at least three days. The light grey diagonal lines represent the growth
trajectory for doubling times of 2, 4, and 10 days. The log number of the starting value (intial
number of cases on first day when at least 25 cases were recorded) had to be subtracted on
the y-axis to standarize the graph across states.
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Figure S3: Doubling time (in number of days) across the US states that recorded more than
25 cases over at least three days.
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Figure S4: Doubling time (in number of days) for each US state according to their per-capita
testing rates (a) early in the outbreak state (within the first week since 25 cases) and (b) for
the entire time series.
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