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Abstract

Our main aim is to estimate the end of the first wave epidemic of COVID-19 outbreak in mainland
China. We developed mathematical models to predict reasonable bounds on the date of end of the
COVID-19 epidemics in mainland China with strong quarantine and testing measures for a sufficiently
long time. We used reported data in China from January 20, 2020 to April 9, 2020. We firstly
used a deterministic approach to obtain a formula to compute the probability distribution of the
extinction date by combining the models and continuous-time Markov processes. Then we present
the individual based model (IMB) simulations to compare the result by deterministic approach and
show the absolute difference between the estimated cumulative probability distribution computed
by simulations and formula. We provide the predictions of the end of the first wave epidemic for
different fractions f of asymptomatic infectious that become reported symptomatic infectious.

Keywords: COVID-19 epidemic in mainland China; end of epidemic; reported and unreported cases;
control measures.

1 Introduction
During the outbreak of COVID-19 in China, the government imposed strong intervention mea-

sures such as enhanced epidemiological surveys and surveillance, contact tracing, isolation, quarantine.
COVID-19 was brought under control in mainland China with these strong measures. Since March 12,
the number of daily reported cases imported from mainland China has been kept within 5 for several
weeks in mainland China. One of the most concerned issues now is the duration of the epidemic of
COVID-19 in mainland China. However, there are several challenges to such analysis. COVID-19 can be
contagious during the incubation period. The fraction of asymptomatic infectious cases and unreported
cases (with mild symptom) and their contagiousness are of major importance in understanding the evo-
lution of COVID-19 epidemic, and involves great difficulty in their estimation. We refer to Thompson
et al. [19] an early article on this topic.

As coronavirus outbreaks surge worldwide, more and more facts [15] show that many new patients
which are asymptomatic or have only mild symptoms can transmit the virus. Researches both in [16]
and [5] have confirmed that asymptomatic transmission occurs. It has been shown in [21] that some new
crown pneumonia patients had higher viral levels in the throat swabs during the early stage of the disease.
[14] reported that 13 evacuees from Wuhan, China on chartered flights were infected, of whom 4, never
developed symptoms and the estimated asymptomatic proportion in [12] is at 17.9%. A team in China
[20] suggests that by February 18, there were 37,400 people with the virus in Wuhan whom authorities
didn’t know about. Research in [7] estimates 86% of all infections were undocumented (95% CI: [82%-
90%]) prior to January 23, 2020 travel restrictions. The transmission rate of undocumented infections
was 55% of documented infections ([46%-62%]). Due to their greater numbers, undocumented infections
were the infection source for 79% of documented cases. The asymptomatic and mild symptomatic cases
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were missed because authorities aren’t doing enough testing, or ’preclinical cases’ in which people are
incubating the virus but would not be ill enough to seek medical help, would probably slip past screening
methods such as temperature checks. The asymptomatic and unreported cases are just going to be really
critical for explaining the rapid geographic spread of COVID-19 and indicate containment of this virus
will be particularly challenging.

In our previous works on COVID-19 [8], we propose a method applied to the Chinese data to fit the
model at the early stage of the epidemic when the number of cases is exponentially growing. In [9, 11] we
consider the second phase of the epidemic. Namely, the slowing down of the transmissions. In [10], we
estimate the average length of exposure which turns to be very short (6− 12 hours). So here we neglect
the exposed period. In [4], we consider the model with a discrete age structure by using the data from
Japan.

This epidemic model for COVID-19 permits to predict forward in time the future number of cases
from early reported case data in regions throughout the world. Here we consider the last phase of first
epidemic wave and we evaluated the time of the end of this first wave. Our model incorporates the key
features of this epidemic: (1) the importance of the timing and magnitude of the implementation of major
government public restrictions designed to mitigate the severity of the epidemic; (2) the importance of
asymptomatic infectious, reported (with sever symptom) and unreported (with mild symptom) cases in
interpreting the number of reported cases.

This article is devoted to the duration of the epidemic of COVID-19 in mainland China. The du-
ration of the stochastic epidemic has been considered in the 70th by Barbour [2]. We refer to Nishura,
Miyamatsu and Mizumoto [13], Lee and Nishiura [6], Thompson, Morgan and Jalava [18] and Britton
and Pardoux [3] for more results about stochastic epidemic models. Our goal in the present paper is to
investigate the duration of the epidemic of COVID-19 in mainland China in function of the fraction of
unreported cases. In reality the epidemic is still present at a low level in China. So, in this article we
investigate the extinction time of the disease as long as the model is valid.

2 Method

2.1 Data
We use the cumulative data of the reported cases confirmed by testing in mainland China from

January 20, 2020 to March 18, 2020, taken from the National Health Commission of the People’s Republic
of China and Chinese center for disease control and prevention [22, 23]. We should note the following
fact: Before February 11, the cumulative data of the reported cases was confirmed by testing. From
February 11, the cumulative data included cases that were not tested for the virus, but were clinically
diagnosed based on medical imaging. The cumulative data from February 10 to February 15 specified
both types of reported cases. But from February 16, the data did not separate the two types of reporting,
but reported the sum of both types which makes it impossible for us to know the number of cases tested.
There were total 17,409 clinically diagnosed cases from February 10 to February 15. We subtracted
17,409 cases from the cumulative reported cases after February 15 to obtain the approximate data by
testing only after February 15 as shown in Table 1 with this adjustment. Note that on January 23rd

2020 mainland China started the lock-down of Wuhan city, and implemented other interventions soon
on other Chinese cities.
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January
19 20 21 22 23 24 25
198 291 440 571 830 1287 1975
26 27 28 29 30 31
2744 4515 5974 7711 9692 11791

February
1 2 3 4 5 6 7
14380 17205 20438 24324 28018 31161 34546
8 9 10 11 12 13 14
37198 40171 42638 44653 46472 48467 49970
15 16 17 18 19 20 21
51091 70548− 17409 72436− 17409 74185− 17409 75002− 17409 75891− 17409 76288− 17409
22 23 24 25 26 27 28
76936− 17409 77150− 17409 77658− 17409 78064− 17409 78497− 17409 78824− 17409 79251− 17409
29
79824− 17409

March
1 2 3 4 5 6 7
79824− 17409 79824− 17409 79824− 17409 80409− 17409 80552− 17409 80651− 17409 80695− 17409
8 9 10 11 12 13 14
80735− 17409 80754− 17409 80778− 17409 80793− 17409 80813− 17409 80824− 17409 80844− 17409
15 16 17 18
80860− 17409 80881− 17409 80894− 17409 80928− 17409

Table 1: Cumulative data of reported cases confirmed by testing from January 20, 2020 to March 18,
2020, reported for mainland China.

2.2 The model
The model consists of the following system of ordinary differential equations:

S′(t) = −τ(t)S(t)[I(t) + U(t)],

I ′(t) = τ(t)S(t)[I(t) + U(t)]− νI(t),

R′(t) = ν1I(t)− ηR(t),

U ′(t) = ν2I(t)− ηU(t),

(2.1)

with initial data

S(t0) = S0 > 0, I(t0) = I0 > 0, R(t0) = R0 ≥ 0 and U(t0) = U0 ≥ 0. (2.2)

Here t ≥ t0 is time in days, t0 is the beginning date of the model of the epidemic, S(t) is the number of
individuals susceptible to infection at time t, I(t) is the number of asymptomatic infectious individuals
at time t, R(t) is the number of reported symptomatic infectious individuals at time t, and U(t) is
the number of unreported symptomatic infectious individuals at time t. The parameters and initial
conditions of the model are given in Table 2 and a flow diagram of the model is given in Figure 1.

Symbol Interpretation Method
t0 Time at which the epidemic started fitted
S0 Number of susceptible at time t0 fixed
I0 Number of asymptomatic infectious at time t0 fitted
U0 Number of unreported symptomatic infectious at time t0 fitted
τ(t) Transmission rate at time t fitted
1/ν Average time during which asymptomatic infectious are asymptomatic fixed
f Fraction of asymptomatic infectious that become reported symptomatic infectious fixedt

ν1 = f ν Rate at which asymptomatic infectious become reported symptomatic fitted
ν2 = (1− f) ν Rate at which asymptomatic infectious become unreported symptomatic fitted

1/η Average time symptomatic infectious have symptoms fixed

Table 2: Parameters and initial conditions of the model.
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Figure 1: Compartments and flow chart of the model (2.1).

The transmission rate at time t is τ(t). Asymptomatic infectious individuals I(t) are infectious for an
average period of 1/ν days. Reported symptomatic individuals R(t) are infectious for an average period
of 1/η days, as are unreported symptomatic individuals U(t). We assume that reported symptomatic
infectious individuals R(t) are reported and isolated immediately, and cause no further infections. The
asymptomatic individuals I(t) can also be viewed as having a low-level symptomatic state. All infections
are acquired from either I(t) or U(t) individuals. The fraction f of asymptomatic infectious become
reported symptomatic infectious, and the fraction 1 − f become unreported symptomatic infectious.
The rate asymptomatic infectious become reported symptomatic is ν1 = f ν, the rate asymptomatic
infectious become unreported symptomatic is ν2 = (1− f) ν, where ν1 + ν2 = ν.

During the exponential growth phase τ(t) ≡ τ0 is constant. We then use a time-dependent decreasing
transmission rate τ(t) to incorporate the effects of the strong measures taken by the authorities to control
the epidemics (confinement, contact tracing, etc...). The formula for τ(t) is{

τ(t) = τ0, 0 ≤ t ≤ N,

τ(t) = τ0 exp (−µ (t−N)) , N < t.
(2.3)

The date N and the value of µ are chosen so that the cumulative reported cases in the numerical
simulation of the epidemic aligns with the cumulative reported case data after day N , when the public
measures take effect. In this way we are able to project forward the time-path of the epidemic after the
government-imposed public restrictions take effect.

The cumulative number of reported cases at time t is given by the formula

CR(t) = ν1

∫ t

t0

I(σ)dσ, for t ≥ t0, (2.4)

and the cumulative number of unreported at time t is given by the formula

CU(t) = ν2

∫ t

t0

I(σ)dσ, for t ≥ t0. (2.5)

The daily number of reported cases from the model can be obtained by computing the solution of the
following equation:

DR′(t) = ν f I(t)−DR(t), for t ≥ t0 and DR(t0) = DR0. (2.6)

2.3 Method to estimate the parameters and initial values of the model
The actual value of f is unknown. Because of the strong isolation and testing measures in China, it

seems reasonable to take f = 0.8 which means that 80% of symptomatic infectious cases go reported.
We will however test different values 0.2, 0.4, 0.6, 0.8 of f . We assume η = 1/7, which means that
the average period of infectiousness of both unreported symptomatic infectious individuals and reported
symptomatic infectious individuals is 7 days. We assume ν = 1/7, which means that the average period
of infectiousness of asymptomatic infectious individuals is 7 days. These values can be modified as further
epidemiological information becomes known.
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For the exponential growth of reported cumulative cases CR(t) of the COVID-19 epidemic, we propose
a formula:

CR(t) = χ1 exp(χ2 t)− χ3, t ≥ t0. (2.7)

We fix the value of χ3. The values of χ1 and χ2 are fitted to the cumulative reported case data in the
exponential growth phase of the epidemic (i.e. we use an exponential fit χ1 exp(χ2 t) to fit the data
CR(t) + 1). We assume that the initial value S0 corresponds to the population of the region of the
reported case data. The value of the susceptible population S(t) is assumed to be only slightly changed
by the removal of the number of people infected in the beginning of the exponential growth phase. The
following formulas for I0, U0, t0, τ0, and R0 were derived in [8]. Their numerical values are identified by
using (2.8) from the exponential growth phase of the epidemic. The other initial conditions are

I0 =
χ2

f(ν1 + ν2)
, U0 =

(
(1− f)(ν1 + ν2)

η + χ2

)
I0, R0 = 0. (2.8)

Remark 2.1 It follows that
R(t)

U(t)
=

f

1− f ,∀t ≥ t0.

The value of the transmission rate τ(t), during the exponential growth of the epidemic is the constant
value

τ0 =

(
χ2 + ν1 + ν2

S0

)(
η + χ2

ν2 + η + χ2

)
. (2.9)

The model starting time of the epidemic is

t0 =
1

χ2

(
log(χ3) − log(χ1)

)
. (2.10)

The value of the basic reproductive number is

R0 =

(
τ0S0

ν1 + ν2

)(
1 +

ν2
η

)
. (2.11)

3 Result

3.1 Derivation of a formula to compute the last day the outbreak
In order to estimate the parameters and initial values of the model, we firstly fix the value χ3 = 30.

The values of χ1 and χ2 in χ1 exp(χ2 t)−χ3 are fitted to the cumulative reported case data from January
19 to January 26 in Table 1 for mainland China when it is recognized that CR(t) is growing exponentially.
The values of the parameter τ0 and initial conditions I0, U0, R0,and t0 are obtained by using formula
(2.8)-(2.10). We summarize all the results when f takes different values 0.2, 0.4, 0.6, 0.8 in Table 3.

χ1 χ2 χ3 t0 f µ N I0 U0 S0 τ0

0.2601 0.3553 30 13.3617 0.8 0.1480 Jan. 26 93.2785 5.3494 1.40005× 109 3.3655× 10−10

0.2601 0.3553 30 13.3617 0.6 0.1531 Jan. 26 124.3550 14.2646 1.40005× 109 3.1920× 10−10

0.2601 0.3553 30 13.3617 0.4 0.1574 Jan. 26 186.5325 32.0953 1.40005× 109 3.0358× 10−10

0.2601 0.3553 30 13.3617 0.2 0.1612 Jan. 26 373.0650 85.5875 1.40005× 109 2.8942× 10−10

Table 3: The parameters χ1, χ2, χ3 are estimated by using the data in Table 1 to fit χ1 exp(χ2 t)− χ3 to
the data CR(t) between the following periods January 19 to January 26 for mainland China. The values
of I0 U0, τ0, and t0 are obtained by using formula (2.8)-(2.10). Here we take χ3 = 30 in order to obtain
non-zero integer approximation for I0, U0.

Using the mathematical model (2.1) with parameters and initial values in Table 3, we project the
future daily data of reported cases and cumulative data of cases, both reported and unreported for
mainland China. In Figures 2 and 3, we present the comparison of the model with the cumulative and
daily data for mainland China, respectively.
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Figure 2: Comparison of the model with the data for mainland China. The parameter values are listed
in Table 3 and f = 0.8.
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Figure 3: Comparison of the model with the daily data for mainland China. The parameter values are
listed in Table 3 and f = 0.8.

The transmission τ(t) is decreasing exponentially fast for t > N . Therefore, if we choose a day t1
(sufficiently long after the turning point the quantity τ(t)S(t) ≤ τ(t)S0 is small enough) so we can use
the approximation

I ′(t) ' −νI(t).

for I-equation in system (2.1). This means that the flux of newly infectious can be neglected after the
day t1. We illustrate S0τ(t) in Figure 4 for a typical case.

Jan 19 Feb 02 Feb 16 Mar 01 Mar 15 Mar 29 Apr 12

2020   

0

0.1

0.2

0.3

0.4

0.5

Figure 4: Graph of τ(t)S0 = τ0S0 exp (−µmax (t−N, 0)) with S0 = 1.40005× 109, τ0 = 3.3655× 10−10,
N = Jan 26, and µ = 0.148. The transmission rate is effectively 0 after March 29. The parameters
values correspond the line f = 0.8 in Table 3.
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If we assume that this approximation does not influence significantly the number of infectious after
the day t1, we can take τ(t) = 0 in the original model (2.1) and for t ≥ t1 the resulting system is the
following 

I ′(t) = −νI(t),

R′(t) = ν1 I(t)− ηR(t),

U ′(t) = ν2 I(t)− ηU(t).

(3.1)

This system is supplemented by the initial data

I(t1) = I1, U(t1) = U1 and R(t1) = R1. (3.2)

where I1, U1 and R1 are the values of the solutions of the original system (2.1)-(2.2) on day t1. The flux
diagram of model (3.1) is described in Figure 5.

I

R

U

SymptomaticAsymptomatic

νf
I

ν(1
− f)I

Removed

ηR

ηM

Figure 5: Compartments and flow chart of the model (3.1).

In Figure 6 we represent the error between the solution of (2.1) and the solution of (3.1) for t > t1
by computing the error as follows.

err(t1) = sup
t≥t1

max
(
|I(t)− I1(t)|, |U(t)− U1(t)|

)
, (3.3)

where I(t) and U(t) are solution of system (2.1) and I1(t) and U1(t) are solution of system (2.4). This
error formula does not involve the component R(t) for reported cases, because this component is supposed
to be known.

Jan 27 Feb 26 Mar 27 Apr 26 May 26
0

50

100

150

200

f = 0.8
f = 0.6
f = 0.4
f = 0.2

Figure 6: In this figure the x-axis corresponds to t1 and the y-axis correponds to the error err(t1) defined
in (3.3). We observe that the smaller f , the larger the error. Parameter values are listed in Table 3.

In Section 5, we use model (3.1) to compute the probability that no I-individual (no asymptomatic
infectious) and no U -individual (symptomatic unreported) are left after the day t. We obtain that there
are no more unreported case after the day t with the probability

P(I(s) + U(s) = 0 for s ≥ t | I(t1) = I1, U(t1) = U1)

=
(

1− e−η(t−t1)
)U1

×
(

1− e−ν(t−t1) − (1− f)ν(t− t1)e−η(t−t1)
)I1

. (3.4)
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Formula (3.4) allows us to compute the probability of the date of extinction according to the values of
I(t1) and U(t1) for different t1 when η = ν. (I(t1), U(t1)) is the value of the solution of (2.1) at t1 with
the parameters and initial values taken from Table 3. We show the results in Figure 7. Observe that, as
t1 increases, the probability distribution of the date of extinction seems to converge to a limit profile.

Feb 15 Mar 16 Apr 15 May 15 Jun 14 Jul 14
0

0.2

0.4

0.6

0.8

1

t1 = Jan 27
t1 = Feb 3
t1 = Feb 10
t1 = Feb 17
t1 = Feb 24
t1 = Mar 2
t1 = Mar 9
t1 = Mar 16

Figure 7: Extinction probability according to formula (3.4). The numerical values for I1 and U1 were
computed from the ODE model at different times, at 7 days intervals since the start of the confinement
measures. In this figure we use f = 0.8 and other parameter values are listed in Table 3.

Furthermore, we could also compute 90%, 95% and 99% probability of the date of extinction for
different values of f by formula (3.4) when η = ν. In fact, the parameters and initial values in model
(2.1) were taken from Table 3 for each value of f . Then we compute the values of I(t1) and U(t1) for
different values of t1 which is the value of the solution of (2.1) at t1. Thus we could compute 90%, 95%
and 99% probability of the date of extinction according to the values of I(t1) and U(t1) for different
values of t1 which was summarized in Figure 8.

(a) (b)

Jan 27 Feb 16 Mar 07
Apr 20

Apr 27

May 04

May 11
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May 25

Jun 01

Jun 08

90% probability

95% probability

99% probability

Jan 27 Feb 16 Mar 07
Apr 27

May 04

May 11

May 18

May 25

Jun 01

Jun 08

Jun 15

90% probability

95% probability

99% probability

(c) (d)

Jan 27 Feb 16 Mar 07

May 04

May 11

May 18

May 25

Jun 01

Jun 08

Jun 15
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95% probability

99% probability

Jan 27 Feb 16 Mar 07
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Jun 01
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Jun 15

Jun 22

90% probability
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Figure 8: For each figure the x-axis corresponds to the day t1 and the y-axis corresponds to the dates of
extinction of the disease at different probability level 90%, 95% and 99% computed by using (3.4). We
fix f = 0.8 in (a), f = 0.6 in (b), f = 0.4 in (c) and f = 0.2 (d). The values of I1 and U1 are computed
by solving (2.1) up to the time t = t1. Parameter values are listed in Table 3.
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3.2 Stochastic simulations of (2.1) and comparison with (3.4)
To get insight on the variability caused by the randomness of the epidemiological transitions (trans-

mission of the disease due to a contact between an infected and a susceptible, development of symptoms,
recovery or death) we developed an individual based model (IMB) in which those epidemiological transi-
tions are modeled by random variables following exponential laws, as described in the flowchart (Figure
5). The interest of these simulations is mostly twofold:

• To estimate the evolution of the epidemic when the accurate number of each class of infected is
known. In practice we estimate those numbers by using the deterministic model (2.1) using the
available data.

• To give numerical estimates of the cumulative probability distribution of the date of end of the
epidemic, without the assumption that τ = 0 used in equation (2.1).

In Figure 9, we plot the cumulative distribution for the probability extinction of the epidemic of COVID-
19 obtained by the individual-based simulations. The parameter t1 in Figure 9 is the date at which the
stochastic simulations are started; the precise initial condition is the solution to (2.1) at time t1. In other
words we follow the deterministic model (2.1) up to the date t1, then start the stochastic simulations.

Feb 15 Mar 16 Apr 15 May 15 Jun 14 Jul 14
0

0.2

0.4

0.6

0.8

1

t1 = Jan 27
t1 = Feb 3
t1 = Feb 10
t1 = Feb 17
t1 = Feb 24
t1 = Mar 2
t1 = Mar 9
t1 = Mar 16
t1 = Mar 23

Figure 9: Estimated cumulative probability distributions of the extinction date of the epidemic for different
values of the starting point of the stochastic simulations. The red curve is the cumulative distribution
corresponding to initial conditions started at t1 = 82 (March 23). The initial conditions were computed
by rounding the solution to (2.1) at t = t1 to the nearest integer. The red curve is estimated with an
error of at most 10−3 at risk 10−3 and other curves are estimated with an error of at most 10−2 at a
risk of 10−3. We took f = 0.8 and other parameter values are shown in Table 3.

The fact that all curves seem to be superimposed with one another indicates that the cumulative
probability distribution of the extinction date does not depend on the starting point of the simulations.
We also observe that the unique distribution given by the individual-based simulations coincides with
the limiting profile for the cumulative distribution in Figure 7. This validates our assumption that τ(t)
can be identified to 0 to compute the cumulative distribution of the extinction date when t1 is chosen
sufficiently large. We infer from Figure 7 that this approximation is acceptable when t1 is larger than
Feb. 17.

To be more precise on the relevance of the approximation formula (3.4), we computed the absolute
value of the difference between the cumulative distribution of the extinction date given by (3.4) and the
one given by stochastic simulations in Table 4. More precisely, we computed the quantity

diff(t1) = sup
t≥t1
|fIBM (t)− fformula(t)| (3.5)

for each t1 presented in Figures 7 and 9, where fIBM is the cumulative distribution computed by
stochastic simulations (Figure 9) and fformula is the cumulative distribution given by (3.4) (Figure 7).

9

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 6, 2020. ; https://doi.org/10.1101/2020.04.14.20064824doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.14.20064824
http://creativecommons.org/licenses/by-nc-nd/4.0/


t1 26 33 40 47 54 61
date Jan. 27 Feb. 3 Feb. 10 Feb. 17 Feb. 24 Mar. 2

diff(t1) 8.6× 10−1 4.4× 10−1 1.7× 10−1 6.4× 10−2 2.5× 10−2 8.1× 10−3

t1 68 75 82
date Mar. 9 Mar. 16 Mar. 23

diff(t1) 3.5× 10−3 8.5× 10−4 5.7× 10−4

Table 4: Absolute difference between the cumulative distribution given by the stochastic simulations and
the approximation (3.1). For each t1 we computed the cumulative distributions with a risk 10−3 of an
error greater than 10−2, starting from an initial condition given at t = t1. This corresponds to a total of
n = 152019 independent simulations for each set of initial conditions. For each t1, the initial condition
was computed by rounding the solution to (2.1) at t = t1 to the nearest integer.

Finally, we compared the results of the individual based model simulations starting from the to the
result of the model (2.1). The plots of the average value over our individual-based simulations compared
to the corresponding component of the model (2.1) are presented in Figure 10. In Figure 11 we present
a representation of the average and standard deviation of the populations computed by the individual-
based simulations. Note however that the high variability observed is largely due to the small size of the
initial population at t0. In Table 5 we show that this variability diminishes when the starting time of
the stochastic simulations increases.

t1 t0 18 22 26 33 40
date Jan. 14 Jan. 19 Jan. 23 Jan. 27 Feb. 3 Feb.10

maxt≥t1 σ(t) 3717 1685 787 401 186 106

Table 5: Maximal standard deviation for the components I, R and U computed by stochastic simulations
started at date t1 with initial condition given by the solution to (2.1) with the parameters from Table
3. The ODE model (2.1) is solved up to t = t1, and we take the solution to (2.1) at t = t1 as initial
condition for the stochastic simulations. σ(t) is the maximum, at time t, of the standard deviations of
the quantities I(t), R(t) and U(t) in a sample of n = 1000 independent simulations started at t = t1,
and is expressed in number of individuals. We took f = 0.8 and other parameters are taken from Table
3.
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Figure 10: In figure (a) we plot a comparison between the average S (susceptible) computed from the IBM
and the S component of the solution of (2.1). In figure (b) we plot a comparison between the average I
(asymptomatic), R (reported) and U (unreported) computed from the IBM and the components I, R and
U of the solution of (2.1). In figure (c) we plot a comparison between the average RR (removed) computed
from the IBM and the components RR of the solution of (2.1). In figure (d) we plot a comparison between
the average CR (cumulative reported cases) computed from the IBM and the curve CR computed by
(2.1)-(2.4). In this figure 500 independent runs of the IBM simulations are used and the corresponding
components of the ODE model start from the same initial condition (at t = t0). The parameters we
used for both computations are the following: I0 = 93, U0 = 5, S0 = 1.40005 × 109 − (I0 + U0),
R0 = RR0 = CR0 = 0 and f = 0.8, τ0 = 3.3655 × 10−10, N = 26, µ = 0.148, ν = 1

7 , η = 1
7 ,

t0 = 13.3617.
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Figure 11: In figure (a) we plot the mean value and variance of S (susceptible) computed from the IBM.
The dark blue area contains 68% of the trajectories, and the light blue area 95%. In figure (b) we plot
the mean value and variance of I (infected), R (reported) and U (unreported) computed from the IBM.
The dark areas contains 68% of the trajectories, and the light areas 95%. In figure (c) we plot the
mean value and variance of RR (removed) computed from the IBM. The dark green area contains 68%
of the trajectories, and the light green area 95%. In figure (d) we plot the mean value and variance of
CR (cumulated reported) computed from the IBM. The dark gray area contains 68% of the trajectories,
and the light gray area 95%. We use 500 independent runs of the IBM simulations. The parameters
we used for both computations are the following: I0 = 93, U0 = 5, S0 = 1.40005 × 109 − (I0 + U0),
R0 = RR0 = CR0 = 0 and f = 0.8, τ0 = 3.3655 × 10−10, N = 26, µ = 0.148, ν = 1

7 , η = 1
7 ,

t0 = 13.3617.

4 Discussion
In this study we mixed the deterministic approach, which correctly describes the initial and interme-

diate phases of the epidemics, with individual-based models which give estimates on the real extinction
date of the epidemics. In Table 6 we summarize our findings for f = 0.8, 0.6, 0.4 and 0.2. From this
table we deduce that the larger f is the earlier the epidemic will stop. Therefore it is very important to
increase as much as possible the value of f in order to reduce the duration of the epidemic of COVID-19
in mainland China.

Level of risk 10% 5% 1%
Extinction date (f = 0.8) May 19 May 24 June 5
Extinction date (f = 0.6) May 25 May 31 June 12
Extinction date (f = 0.4) May 31 June 5 June 17
Extinction date (f = 0.2) June 7 June 12 June 24

Table 6: In this table we record the last day of epidemic obtained from Figure 8 by fixing t1 to March 16.

We developed a mathematical framework to predict reasonable bounds on the date of end of the
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COVID-19 epidemics in mainland China, provided quarantine and confinement measures are maintained
with sufficient strength. In particular, the day at which confinement was eased is nowhere near any
reasonable bound for the extinction date. Therefore, a secondary outbreak in mainland China is not to
be discarded: there is a high probability that there still exists a significant number of unreported infected
individuals in the population.

Many parameters are still unknown concerning the future behavior of the pandemics. For what
concerns mainland China, even if the remaining hidden number of infected individuals can be estimated
by our models, the transmission rate after the end of the confinement measures remains unknown. Indeed,
it is reasonable to expect that sociological phenomena like the awareness of the danger have a strong
impact on this quantity, because people will tend to avoid risky behavior. There is a strong incentive to
identify quantitatively this transmission rate after the end of confinement measures, as we believe that
this parameter is crucial to determine whether the epidemic will potentially start again or not. This
issue will be addressed in a forthcoming paper.

In this article we computed the end day of the epidemic by neglecting the fact that complete con-
finement has been progressively lifted very early in the history of the epidemics, with Chinese people
going back to work as early as February 10th. Indeed the data from Table 7 and 8 show a number of
daily new contaminations occurring inside the territory which is very low since mid-March (less than 10
people a day, Table 8) and the majority of daily new contaminations actually come from abroad (Table
7). This seems to indicate that the propagation inside the country has stopped and the bulk of new con-
taminations are due to imported cases from abroad. These numbers are relatively surprising compared
to our model. In our model, we are quite optimistic since we have placed ourselves in the hypothesis of
a very strong confinement, as if the initial shutdown had been respected throughout the epidemics until
the very last day. However, we still predict more than 100 new reported cases a day until April 3rd. In
Italy and South Korea, by comparison, our predictions stay consistent with the observed data [11].

Although schools and universities are still closed, the increase in the number of contacts due to
workers going back to factories surely increases the transmission rate compared to a total shutdown.
Because of this, our estimate of the date of end is very optimistic and the actual date of end should be
event later in the future. In the worse case scenario the epidemic may start again. Hopefully some other
phenomenon somehow leads to an early end, like the evolution of temperature and humidity with the
approach of summer (some influence of those factors in COVID-19 transmission has been remarked in
recent works, see e.g. [17]). In particular dry and hot weather may be favourable to the extinction of
the disease.

To conclude the discussion, we should mention a possible alternative approach by using the Kol-
mogorov equation (see Allen [1] and Britton and Pardoux [3]). This is left for future work.

March
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
2 16 24 3 4 2 10 6 3 7 16 12 20 12 34 39

20 21 22 23 24 25 26 27 28 29 30 31
41 45 39 74 47 67 54 54 44 30 48 35

April
1 2 3 4 5 6 7 8 9
35 29 18 25 38 32 59 61 38

Table 7: Daily data of reported confirmed cases imported from abroad from March 4, 2020 to April 9,
2020.
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March
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

137 127 75 41 36 17 14 9 5 4 4 4 1 1 0 0

20 21 22 23 24 25 26 27 28 29 30 31
0 1 0 4 0 0 1 0 1 1 0 1

April
1 2 3 4 5 6 7 8 9
0 2 1 5 1 0 3 2 4

Table 8: Daily data of reported confirmed cases reported in mainland China from March 4, 2020 to April
9, 2020.

5 Supplementary

5.1 Formula to compute the probability distribution of the extinction date
We use continuous-time Markov processes to compute the exact distribution of the date of end of the

epidemic after the transmission rate is effectively taken as zero. We start on t1 with initial values I1, U1,
and R1 for I-individuals, U -individuals and R-individuals, respectively. The evolution of each individual
is guided by independent exponential processes, and we have the following:

(i) Each individual I will change state following an exponential clock of rate ν. When I changes its
state, it will be transferred to the class of R-individuals with probability f and to the class of
U -individuals with probability (1− f);

(ii) Each individual in the state U will change state following an exponential clock with rate η and
become removed individual;

(iii) Each individual in the state R will change state following an exponential clock with rate η and
become removed individual

Since the class I has only outgoing fluxes, the law of extinction for the I-individuals is

P(I(t) = 0 | I(t1) = I1) =

(∫ t

t1

νe−ν(s−t1)ds

)I1
=
(

1− e−ν(t−t1)
)I1

,

and the probability to have some I-individual left at time t is

P(I(t) = I | I(t1) = I1) = (1− e−ν(t−t1))I1−Ie−νI(t−t1).

For the U -individuals and the R-individuals, the situation is more intricate. Indeed, the U -individuals
and the R-individuals vanish at a constant rate η but new individuals appear from the I class at rate
(1− f)ν and fν, respectively, depending on the remaining stock of I. Therefore the probability that U
gets extinct before t also depends on the number of remaining I. It is actually easier to compute directly
the extinction property for the sum I + U , which is our aim anyways.

When ν 6= η, we obtain

P(I(s) + U(s) = 0∀s ≥ t | I(t1) = I1, U(t1) = U1)

=
(

1− e−η(t−t1)
)U1

×
(∫ t

t1

P(U → RR before t | I → U at s)P(I → U at s) + P(I → R at s)ds
)I1

=
(

1− e−η(t−t1)
)U1

×
(∫ t

t1

(
1− e−η(t−s)

)
× (1− f)νe−ν(s−t1) + fνe−ν(s−t1)ds

)I1
=
(

1− e−η(t−t1)
)U1

×
(

(1− f)

(
1− e−ν(t−t1) − ν e

−ν(t−t1) − e−η(t−t1)
η − ν

)
+ f(1− e−ν(t−t1))

)I1
=
(

1− e−η(t−t1)
)U1

×
(

1− e−ν(t−t1) − (1− f)ν
e−ν(t−t1) − e−η(t−t1)

η − ν

)I1
,
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where the RR-individuals are the removed individuals.
Similarly when η = ν, we obtain

P(I(s) + U(s) = 0 ∀s ≥ t | I(t1) = I1, U(t1) = U1)

=
(

1− e−η(t−t1)
)U1

×
(

1− e−ν(t−t1) − (1− f)ν(t− t1)e−η(t−t1)
)I1

. (5.1)

5.2 Cumulative distribution of the date of end of the epidemic
The stochastic simulations introduced in section 3.2 can be used, in particular, to precisely estimate

the cumulative probability distribution of the date of end of the epidemic, defined as the last time at
which the quantity I + U is positive.

In order to get a measure of the precision we remark that the values taken by the cumulative proba-
bility distribution f(t) can be estimated by the average of independent measures of the random variable

X = 1text≤t,

which follows an Bernouilli distribution of parameter f(t). Consecutive runs of the individual-based
simulations yield independent observations Xn of this distribution. By Hoeffding’s inequality we have
for all ε > 0 and n ∈ N

P

(∣∣∣∣∣ 1n
n∑
i=1

Xn − f(t)

∣∣∣∣∣ ≥ ε
)
≤ 2 exp

(
−2ε2n

)
=: α,

and we achieved an error of at most ε = 10−3 at risk α ≤ 10−3 by running n = − 2
ε2 ln

(
α
2

)
≈ 15201805

independent individual-based simulations to estimate the probability distribution of the extinction time
(Figure 9, t1 = 82 i.e. March 23). Other curves are esimated on the basis of 152019 independent
simulations, which amouts to an error of at most 10−2 at risk 10−3.

Since the curves presented in Figure 7 are so similar that it is difficult to see any difference between
them, we computed the absolute error between each curve and the “reference” of t1 = 82. We present
the numerical values in Table 9. Notice that the error is actually below the estimated precision of the
approximation.

t1 26 33 40 47 54 61
date Jan. 27 Feb. 3 Feb. 10 Feb. 17 Feb. 24 Mar. 2

diff(t1) 2.9× 10−3 2.1× 10−3 2.9× 10−3 1.8× 10−3 2.5× 10−3 1.4× 10−3

t1 68 75 82
date Mar. 9 Mar. 16 Mar. 23

diff(t1) 1.6× 10−3 1.2× 10−3 0.00

Table 9: Absolute difference between the cumulative distribution given by the stochastic simulations and
the reference simulation t1 = 82. For each t1 we computed the error as diff(t1) = supt≥t1 |ft1(t)−f81(t)|,
where ft1 is the estimated distribution computed simulations, for which the initial condition correspond
to the components of (2.1) at t = t1 rounded to the closest integer.
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