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ABSTRACT

The course of COVID-19 is characterized by wide variability, with genetics playing a
contributing role. Through large-scale genetic association studies, a significant link between
genetic variants and disease severity was established. However, individual genetic variants
identified thus far have shown modest effects, indicating a polygenic nature of this trait. To
address this, a polygenic risk score (PRS) can be employed to aggregate the effects of
multiple single nucleotide polymorphisms (SNPs) into a single number, allowing practical
application to individuals within a population. In this work, we investigated the performance
of a PRS model in the context of COVID-19 severity in 1085 Russian participants using
low-coverage NGS sequencing. By developing a genome-wide PRS model based on
summary statistics from the COVID-19 Host Genetics Initiative consortium, we demonstrated
that the PRS, which incorporates information from over a million common genetic variants,
can effectively identify individuals at significantly higher risk for severe COVID-19. The
findings revealed that individuals in the top 10% of the PRS distribution had a markedly
elevated risk of severe COVID-19, with an odds ratio (OR) of 2.2 (95% confidence interval
(CI): 1.3-3.3, p-value=0.0001). Furthermore, incorporating the PRS into the prediction model
significantly improved its accuracy compared to a model that solely relied on demographic
information (p-value < 0.0001). This study highlights the potential of PRS as a valuable tool
for identifying individuals at increased risk of severe COVID-19 based on their genetic
profile.

INTRODUCTION

COVID-19, also known as coronavirus infection, is a contagious illness caused by the severe
acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). The majority of individuals who
contract the virus exhibit mild to moderate respiratory symptoms and can recover without
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requiring specific medical treatment. However, in certain cases, the disease can manifest in
a severe form, requiring medical intervention [1,2].

Apart from external factors like virus characteristics and the effectiveness of public health,
certain host-related factors such as older age, male gender, and pre-existing chronic
diseases like hypertension and diabetes have been associated with susceptibility and
severity of COVID-19 [3,4]. However, these risk factors alone cannot fully explain the wide
variation observed in the disease severity. The course of COVID-19 can range from
asymptomatic cases to acute respiratory distress and even death [5,6]. Early in the
pandemic, it was noted that clinical factors alone were insufficient to account for the
variability in disease severity across individuals, as severe cases were observed in young
people without apparent predisposing factors, often within families [7]. This suggests that
human genetics may play a role in the development of the disease.

To gain insights into the aetiology of COVID-19, large-scale genetic association studies
incorporating both rare and common genetic variants have employed various study designs.
These investigations, along with subsequent follow-up studies, have expanded our
understanding of the disease and provided potential avenues for its treatment. The
COVID-19 Host Genetics Initiative (HGI) was established to identify genetic loci that impact
the severity and susceptibility of COVID-19 [8]. This global effort aims to conduct a
meta-analysis of multiple COVID-19 genome-wide association studies (GWAS), and to
identify significant single nucleotide polymorphisms (SNPs) associated with infection,
hospitalization, and mortality. Through comparisons of genomes of millions of COVID-19
patients and healthy individuals, these studies have implicated genetic variants in 13 loci
associated with the severity of the disease [9]. The COVID-19-associated genetic variants
could be related to the regulation of processes such as innate antiviral defence signalling,
regulation of inflammatory organ damage, and upregulation of cell receptors [10]. Modulation
of these pathways can impact susceptibility to infection and subsequent disease
manifestation [11].

The effects of individual genetic variants identified so far are generally small, consistent with
the polygenic architecture of this trait. An individual who tests negative for a specific risk
variant may still have a high genetic risk due to other unmeasured genetic factors. While
each single variant only explains a small portion of the risk for severe COVID-19, combining
multiple genetic variants into a polygenic risk score (PRS) can offer a better prediction of the
risk. PRS allows for the aggregation of the effects of multiple SNPs into a single score, which
can be practically applied to individuals within a population [12]. Conventionally, a polygenic
score is defined as a weighted linear combination of allele counts for SNPs observed in an
individual's genome. The PRS model consists of the weights of a set of SNPs, with the
weights proportional to the estimated effects of the SNPs on the trait being studied [13].

Modern polygenic risk score models for human traits are typically estimated using summary
statistics obtained from a genome-wide association meta-analysis (GWAMA) and a
reference panel reflecting linkage disequilibrium (LD) in the population [13,14]. Over the past
decade, PRS predictive performance has significantly improved due to larger GWAS sample
sizes and advancements in methods for variable selection and effect estimation [15–24].
Polygenic scores can be utilized to rank individuals within a group based on their genetic
predisposition to a disease [25–27]. This approach considers an individual's genetic

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 22, 2023. ; https://doi.org/10.1101/2023.11.20.23298335doi: medRxiv preprint 

https://paperpile.com/c/Buw0du/sSzac+NhUuv
https://paperpile.com/c/Buw0du/2Jwhk+j9PA9
https://paperpile.com/c/Buw0du/eeJLg+MGL9x
https://paperpile.com/c/Buw0du/v4QZg
https://paperpile.com/c/Buw0du/xw8fL
https://paperpile.com/c/Buw0du/aEfne
https://paperpile.com/c/Buw0du/7uIZO
https://paperpile.com/c/Buw0du/JvGIU
https://paperpile.com/c/Buw0du/4mElo
https://paperpile.com/c/Buw0du/1rhRt
https://paperpile.com/c/Buw0du/1rhRt+6Cpfc
https://paperpile.com/c/Buw0du/7N4b9+s9WGr+hnQEv+mSQAo+aarxg+Kjnbu+wX39c+kPkJq+cOQ78+Nd7vu
https://paperpile.com/c/Buw0du/Bjzj9+zS8Cg+ptasf
https://doi.org/10.1101/2023.11.20.23298335
http://creativecommons.org/licenses/by/4.0/


predisposition relative to the genetic predisposition of others in the same group, often
expressed as a percentile representing where the individual's PRS falls within the overall
distribution of the group's PRS.

Several studies have explored the development and application of PRS using variants
associated with COVID-19, revealing clear associations between PRS and the risk of severe
disease. However, most PRS models have been applied to cohorts consisting predominantly
of individuals of Western European ancestry [28–31]. Using 1,582 SARS-CoV-2 positive
participants from the UK Biobank (1,018 with severe COVID-19 and 564 without severe
COVID-19) and 64 SNPs for PRS calculation, Dite et al. developed and validated a clinical
and genetic model for predicting the risk of severe COVID-19. Only 13% of participants from
this study were non-white, and PRS alone had an area under the receiver operating
characteristic curve (AUC) of 68% [31].

While one recent study included African and South Asian groups, the associations with
COVID-19 outcomes were limited by applying a PRS based on only six SNPs [32]. Another
study that considered non-Western European populations was constrained by its focus on a
specific Russian cohort (athletes) and also included only six genetic polymorphisms in the
PRS assessment [33]. The multi-ethnic approach implemented in a very recent paper using
UK biobank data, allowed the applicability of PRS, based on 17 SNPs, to diverse
populations, with the severity model performing well within Black and Asian cohorts [34,35].
Overall, results highlight the potential of PRS as a predictive marker for disease severity and
provide further support for its application in risk stratification and personalized healthcare
approaches in the context of COVID-19.

Our study aimed to investigate the performance of the PRS model in the Russian population.
The genomes of study participants (347 individuals with severe COVID-19 and 738 with
moderate or without disease) were assessed using low-coverage (with mean depth x3)
sequencing. Next, we developed a genome-wide PRS model for COVID-19 severity using
the summary statistics from the COVID-19 host genetics initiative consortium. We
demonstrated that PRS, incorporating information from more than a million common genetic
variants, for COVID-19 severity can identify individuals with markedly elevated risk of severe
COVID-19 course: OR=2.2 (95% confidence interval (CI): 1.3-3.3, p-value=0.0001) for
individuals in the top 10% of the PRS distribution, and produces a significant improvement in
the quality of prediction (p-value < 0.0001) compared to a model including only demographic
information.

RESULTS

Participant Characteristics

The participants of the study were the patients of the infectious disease department of the
St. Petersburg State Health Care Institution "City Hospital No. 40, Kurortny District" who
were admitted for treatment with coronavirus infection (confirmed by polymerase chain
reaction), and healthy individuals. Healthy individuals are defined as people who did not
require COVID-19 medical treatment at the time of the study (between April 2020 and March
2022).
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Table 1 shows the participants’ characteristics. Of the 1085 participants, 479 (44%) were
female, with a mean age of 60 years, while for 606 (56%) males the mean age was equal to
56 years. Overall, 895 (82%) of all participants had COVID-19, of which 347 (39%) had
severe COVID-19. Separation according to the severity of the disease was carried out
according to the following criteria: the case group included 347 patients (214 men and 133
women, 63±15 years) with lung damage more than 50% (computed tomography (CT)-3 and
CT-4), the control group included 738 patients (392 men and 346 women, 56±16 years), with
lung damage less than 50% or without COVID-19.

Table 1. The demographic and clinical characteristics of the participants.

Characteristics Male Female

Mean age (sd) 56 (15) 60 (16)

Healthy individuals 116 74

Patients required treatment
by severity

CT-1: 81
CT-2: 195
CT-3: 213
CT-4: 1

CT-1: 71
CT-2: 201
CT-3: 130
CT-4: 3

Outcome death: 93
recovery or no disease: 513

death: 53
recovery or no disease: 426

Abbreviations: CT computed tomography, where CT-1 – mild form of pneumonia with areas
of “frosted glass”, the severity of pathological changes less than 25%; CT-2 – moderate
pneumonia, 25-50% of lungs are affected; CT-3 – moderately severe pneumonia, 50-75% of
lungs are affected; CT-4 – severe form of pneumonia, >75% of lungs are affected.

Low coverage sequencing and imputation

For all samples low coverage sequencing, also called LP-WGS (low-pass whole genome
sequencing), was performed with a depth of x3 genome coverage. LP-WGS is the type of
WGS with genome coverage from x0.5 to x5 [36,37]. Due to low-coverage data often having
poor genotype quality and resulting in high missing genotype rates, the genotype likelihoods
(GL) need to be updated using a reference panel for more accurate genotype imputation
[38,39]. We used a recent method called GLIMPSE, which performs haplotype phasing and
genotype imputation for LP-WGS data through a Gibbs sampling procedure, leading to
improved accuracy [38]. As a reference panel, we used the 1000 Genomes data [40]. To
evaluate the efficiency of LP-WGS within PRS, we calculated PRS values for a sample (not
included in the study population) sequenced 45 times (in each of the batches to control the
quality of the sequencing process). The coefficient of variation (CV) for PRS values was
equal to 0.5% demonstrating a good method performance.

Overview of the approach

Computation of PRSs requires both genotype data of target individuals and the PRS model.
To build the PRS model we used summary statistics from the COVID-19 Host Genetics
Initiative consortium (release 7) [8]. These results were obtained by the meta-analysis, which
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combined the results of 60 individual studies from 25 countries, with a total of 18,000 severe
cases of COVID-19 and more than a million controls who either did not have a severe
disease course or were not affected by COVID-19 during the study period. From the
obtained summary statistics, we generated the PRS model using the Bayesian approach
SBayesR with default parameters, implemented in the GCTB software [19,41,42]. Finally, we
calculated individual PRS values using the PRS model (Fig. 1, Methods).

Figure 1. Study design and workflow. The PRS model for COVID-19 severity was derived
by combining summary association statistics from the COVID-19 Host Genetics Initiative
consortium and a linkage disequilibrium reference panel of 50,000 individuals of European
ancestry from the UK Biobank data set. As a computational algorithm, SBayesR was used,
which is a Bayesian approach to calculate a posterior mean effect for all variants based on a
prior (effect size in the previous GWAS) and subsequent shrinkage based on linkage
disequilibrium. PRS model was restricted by a list of variants from HapMap3 and included
about one million variants.

Testing associations between PRS and severe COVID-19

We compared the distributions of PRS values between severe cases and the control group
combining the milder forms of COVID-19 and healthy individuals (Fig. 2). Comparison of the
mean PRS values, performed using Student's t-test for two independent samples, showed
significant difference (p-value=1.2e-06).
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Figure 2. Comparison of distributions of PRS values between the groups with and
without severe COVID-19. a) Distribution of PRS in the groups with (Ncases=347) and
without (Ncontrols=738) severe COVID-19. The x-axis represents PRS, with values scaled to a
mean of 0 and a standard deviation of 1 (in the total sample) to facilitate interpretation. b)
PRS values among cases versus controls. Within each box plot, the horizontal lines reflect
the median, the top, and bottom of each box reflect the interquartile range, and the whiskers
reflect the rest of the distribution, except for points that are determined to be “outliers”.

Across the study population, PRS was normally distributed with the risk of severe COVID-19
rising in the right tail of the distribution, from 17% in the lowest decile to around 47% in the
highest decile (Fig. 3).
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Figure 3. Prevalence of the severe COVID-19 according to PRS decile. All participants
(N=1,085) were stratified by decile of the PRS distribution. The average prevalence in
percent and 95% CI within each decile are displayed.

Next, we found that 20% of the population with the highest PRS values had inherited a
genetic predisposition that conferred OR=1.8 for severe COVID-19 (95% CI: 1.3-2.4,
p-value=0.0003) in comparison with all others. The 10% of the population with the highest
PRS values had an OR=2.2 for COVID-19 (95% CI: 1.3-3.3, p-value=0.0001).

Evaluating the relationship between PRS and COVID-19 outcome

The severe form of the disease is associated with an increased risk of death. To assess how
much the risk of death is associated with an increased PRS value, next, we calculated the
odds ratio (OR) for death between the group with the highest PRS values (10%) and all
others. The resulting OR was 1.9 (95% CI: 1.1-3.1) with p-value = 0.018. Thus, in the group
with the highest PRS values, the probability of death due to severe disease was almost
doubled.

We also compared the mean PRS values for groups with different COVID-19 outcomes
(death vs no death or no disease). Results showed significant difference in mean PRS
(p-value = 0.02, Fig. 4).
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Figure 4. Comparison of distributions of PRS values between the groups with and
without death outcome. a) Distribution of PRS in the groups with (Ndeath=146) and without
(Nno death=939) death outcome of COVID-19. The x-axis represents PRS, with values scaled
to a mean of 0 and a standard deviation of 1 (in the total sample) to facilitate interpretation.
b) PRS values among cases versus controls. Within each box plot, the horizontal lines
reflect the median, the top, and bottom of each box reflect the interquartile range, and the
whiskers reflect the rest of the distribution, except for points that are determined to be
“outliers”.

Next, we hypothesized that PRS for severe COVID-19 would be associated with a higher
risk of severe COVID-19 in early age. In Kaplan–Meier analyses, which is a non-parametric
statistic used to estimate the survival function from lifetime data, we divided the sample into
three groups: 10% of all individuals with the highest PRS values, 10% of all individuals with
the lowest PRS values and the rest (Fig. 5). The analysis showed that people from the group
of high PRS values start to have increased risk in comparison with other groups already
before the age of 40 years (p-value<3.7e-10 for the log rank test). For example, the average
risk of a severe course, which is reached at the age of 60 years, in the group with the
highest PRS is reached already at 50 years of age.
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Figure 5. Association of PRS with Incident Severe COVID-19. All participants (N=1,085)
were stratified, based on their PRS, into three categories: bottom decile, deciles 2–9, and
top decile. Incident severe COVID-19 is plotted according to the PRS category.

Receiver Operating Curve (ROC) analysis

Next we analysed the association between PRS and severe COVID-19 using a multivariate
logistic regression model adjusted for sex, age, and the first 10 principal components of
genetic variation. In the adjusted model, a significant association between PRS and severe
COVID-19 was found: OR=1.48 per standard deviation (95% CI: 1.3-1.7 with p-value <
0.0001). High values of PRS (the 10% of PRS distribution) were associated with the
adjusted OR=2.7 (95% CI: 1.8-4.2, p-value < 0.0001).

Analyses showed significant (p-value < 0.0001) improvements in AUC with the addition of
PRS to the base model containing only the demographic predictors. Figure 6 shows that a
model predicting the risk of severe COVID-19 had an AUC of 65% (95% CI: 62-69% by the
formula given by Hanley and McNeil [43]) for a model excluding PRS, and it increased up to
67% (95% CI: 64-71%) when PRS was included.
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Figure 6. The comparison of receiving operating curves for three logistic regression
models. The full model included the demographic predictors (sex and age), PRS, and the
first 10 principal components of genetic variation, while the covariates-only model excluded
PRS.

DISCUSSION

In this study, we constructed a polygenic risk model for the prediction of the severity of
COVID-19 and applied it to a target cohort of 1085 Russian participants. Comparing the
distributions of PRS, incorporating information from one million common genetic variants,
between the case and control groups revealed significant differences, indicating meaningful
associations between PRS and corresponding COVID-19 outcomes. We also demonstrated
the potential of LP-WGS with coverage less than x5 to be used for predicting the severity of
COVID-19.

Our main objective was to evaluate the predictive ability of PRS for COVID-19 severity. To
achieve this, we developed a logistic regression model that included only demographic and
technical covariates and the full model that also incorporated PRS. Comparison between
these models demonstrated that incorporating PRS significantly enhanced the predictive
accuracy. These findings align with a previous analysis made by Huang et al., where PRS
values for severe COVID-19 were constructed by using 112 SNPs in 430,582 participants
from the UK Biobank study [29]. In this work, AUC was calculated for a model including only
demographic and clinical parameters, and for the full model, which also included PRS. For
the first model, the AUC was 0.789, while in the full mode, the AUC was 0.794
(p-value=0.002 for increment in AUC). Higher overall prediction accuracy of the model could
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be attributed to utilisation of information on comorbidities (cardiovascular disease,
hypertension, diabetes, chronic respiratory infections, asthma, and chronic obstructive
pulmonary disease). Our PRS, based on approximately one million SNPs, gave a
comparable improvement in AUC (0.5% vs 2%, respectively). The higher contribution of PRS
in our case can be explained by the much larger number of genetic variants used but also by
the absence of clinical factors in our model. Indeed, it is often observed that adding a
predictor to a model having a high AUC improves it by an amount smaller than that that
could be achieved by adding the same factor to a poorer model.

Furthermore, stratifying individuals by PRS quantiles revealed an association with a
distinctive risk of severe COVID-19 in resulting groups. The highest PRS categories
generally exhibited higher (up to 2.2 for the top 10% PRS) odds ratios. This genetic basis for
differences in disease severity among individuals also extended to the occurrence of
fatalities due to COVID-19 (OR=1.9 for the top 10% PRS). These results demonstrate that
polygenic risks can be employed to stratify patients and assess their risk of severe disease
and mortality related to COVID-19.

Additional survival analysis using the non-parametric Kaplan-Meier estimation revealed that
the highest risk categories as defined by PRS not only exhibited higher odds ratios for
COVID-19 severity but also experienced an earlier onset of increased risk compared to the
mean- and low-risk categories. These findings provide insights into both the overall risk for
severe COVID-19 and how the risk varies by age.

These results can have practical implications for protecting individuals with a greater genetic
vulnerability during potential future outbreaks. Targeted public health interventions, such as
shielding measures, closer monitoring, protection from high-risk frontline work, and
prioritization for vaccination, could help to mitigate the associated risk. Hospital-based
applications of PRS could facilitate the screening of COVID-19 patients and aid in the early
detection of severe disease [28]. Moreover, informing patients about their increased
polygenic risk has shown some evidence of positive behavioural impact [44], potentially
leading to a decrease in risk-taking behaviours and promoting better outcomes.

A few limitations of the study should be noted. Firstly, despite the multi-ethnic and global
nature of the HGI Release 7 meta-analysis, the participants were mostly of Western
European descent, which may have affected the accuracy of the predictions in non-Western
European populations [9]. Additionally, the lack of detailed clinical data led to the use of CT
scans as a criterion for disease severity, which could have introduced some inaccuracy in
the classification of the outcome measure for some participants.

METHODS

Study population and genetic sequencing

As part of the COVID-19 study, biomaterial (blood) and clinical data from COVID-19 patients
hospitalized in the infectious disease department of the St. Petersburg State Budgetary
Healthcare Institution "City Hospital No. 40 of Kurortny District" were collected. In this work,
low-coverage (x2-5) sequencing was performed for 1085 samples divided into 45 batch
sizes. Low-coverage sequencing, also called LP-WGS (low-pass whole genome
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sequencing), is a low-cost, high-throughput DNA sequencing technology used to accurately
detect genetic variation in the genomes of multiple species [45]. Using imputation algorithms,
this technology provides high variant detection accuracy with very low sequence coverage.
LP-WGS and subsequent imputation yield more accurate genotypes than imputation using
genotyping data, allowing for increased power in GWAS studies and more accurate results in
polygenic risk studies [46].

Prior to sequencing, preliminary analysis and quality control of the case database were
performed, and preliminary analysis of samples from each batch was performed to exclude
bias for any of the sample characteristics: age, sex, and case/control.

Genome DNA isolation was performed with QIAcube, using QIAamp DNA Blood Mini Kit.
DNA concentration is measured with Promega QuantiFluor dsDNA System. Library
preparation was done using Roche KAPA HyperPlus Kit. Quality control electrophoresis was
done on QIAxcel station using QIAxcel High Resolution Kit. Circularization was made with
MGIEasy Circularization Kit. Sequencing was done on MGISEQ-2000 sequencing machine
with DNBSEQ-G400RS High-throughput Sequencing Set (FCL PE150, 540 G).

Variant calling, imputation, and quality control

Quality analysis (FastQC) [47], alignment (BWA) [48], deduplication (samtools), and variant
collation (bcftools) were performed for the reads obtained from sequencing [49]. Imputation
of the resulting data was then performed using the GLIMPSE tool [38], which allows
imputation of low-coverage sequencing data. To improve imputation quality, only bi-allelic
sites were retained from the LP-WGS BAM data and processed with bcftools. Then iterative
refinement of GL using the reference panels with segmentation size of 2 Mb with buffer size
of 200 kb produced imputed dosages and multiple chunks within each chromosome were
ligated. A panel of 1000 Genomes with high coverage [40], including high-quality SNV- and
INDELs from over 3,000 samples, was used as a reference sample.

Then, we filtered imputed variants by an imputation INFO score, where variants with
score < 0.7 and a minor allele frequency < 0.1% were removed from the analysis [9,13]. We
focused on the variants and individuals with a call rate of more than 90%. We also removed
close relatives from the analysis. We used the KING-robust method to identify relatives [50].
Using a threshold (kinship > 0.125), we found pairs of first- and second-degree relatives. We
restricted our analyses to a list of variants from HapMap3 [51], which are included in the
PRS models. PLINK 1.90 software [52] was utilised for all genotype extraction and quality
control.

Establishing COVID-19 outcomes

The severity of the course was divided according to the following criteria: the case group
included samples with lung lesions greater than 50% (computed tomography (CT)-3 and
CT-4), while the control group included all other samples. As a result, the case group
included 347 patients (214 men and 133 women, 63±15 years) with lung damage more than
50% (computed tomography (CT)-3 and CT-4), the control group included 738 patients (392
men and 346 women, 56±16 years), with lung damage less than 50% or without COVID-19.
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Construction of PRS models

The calculation of PRSs relies on both genotype data from the target individuals and a PRS
model. To derive a PRS model, GWAS are used to estimate the effect sizes of SNPs [53].
However, the GWAS gives the marginal effect size for each SNP estimated by a regression
model that ignores linkage disequilibrium (LD) structure. As a result, to construct a PRS
model that incorporates multiple SNPs, the SNP effects must be re-estimated while
accounting for LD structure.

As the summary statistics, we used summary statistics from the COVID-19 Host Genetics
Initiative consortium (release 7). These results were obtained by the meta-analysis, which
combined the results of 60 individual studies from 25 countries.

To re-weight the effect sizes, we used SBayesR, a software tool that has demonstrated
superior performance compared to similar tools [19]. This tool re-weights the effects of each
variant based on the marginal estimate of its effect size, statistical strength of association,
the degree of correlation between the variant and other variants nearby, and tuning
parameters. It also requires a GCTB-compatible LD matrix file based on individual-level data
from a reference population, and for this analysis, we used a shrunk sparse GCTB LD matrix
from 50,000 individuals of European ancestry in the UK Biobank dataset [41].

PRS values were calculated as a weighted sum of allele counts:

𝑃𝑅𝑆
𝑖
=

𝑗

𝑁

∑ β
𝑗
𝐺
𝑖𝑗

with the re-weighted effect size of the SNP, the genotype of the SNP forβ
𝑗

𝑗𝑡ℎ 𝐺
𝑖𝑗

𝑗𝑡ℎ 𝑖𝑡ℎ

individual. PLINK 1.90 software [52] was utilised for PRS calculation.

Statistical analysis and association testing

Logistic regression of PRS categories against COVID-19 severity outcomes was then
conducted using R [54] and Python3 [55], fully adjusted for covariates, such as sex and age.
Data on comorbidities were not available for the majority of patients, as well as other clinical
data, so parameters for these were not included in the model to cover as much data as
possible. The first 10 principal genetic components (PCs) were also included as covariates
to adjust for population genetic structures and avoid bias, as per current recommendations
[13].

The discriminative power of models in identifying high-risk individuals was then assessed
using receiver operating curve (ROC) analysis. Area under the ROC (AUC) was calculated
for full models (consisting of covariates and PRS) and base models (covariates only). The
confidence interval for AUC was calculated using the formula given by Hanley and McNeil
[43]. Increment in AUC (ΔAUC) was reported based on the difference between the two
models, reported as the discriminative or predictive power conferred by PRS. The
permutation test for differences between classifiers was used to estimate the significance
(p-value) of an increment in AUC.
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Once PRS was calculated, individuals were separately stratified into quintiles for
susceptibility and severity PRS, then categorised into low genetic risk (decile 1, bottom 10%
of cohort), intermediate risk (decile 2–9, middle 80%) and high risk (decile 10, top 10%) for
each outcome. In each group, we estimated the cumulative hazard curve using the
non-parametric method called the Kaplan-Meier estimator [56]. For each pair of groups, the
log rank test was applied, which is the statistical test for comparing the survival distributions
of two or more groups.

DATA AND CODE AVAILABILITY

Personal genetic and clinical data are under restrictions and are available through
collaboration with the St. Petersburg State Health Care Institution "City Hospital No. 40,
Kurortny District" hospital.
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