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The emergence of the Omicron sublineage of SARS-CoV-2 virus
BA.2.86 (nicknamed “Pirola”) has raised concerns about its po-
tential impact on public health and personal health as it has
many mutations with respect to previous variants. We con-
ducted an in silico analysis of neutralizing antibody binding to
BA.2.86. Selected antibodies came from patients who were vac-
cinated and/or infected. We predicted binding affinity between
BA.2.86 and antibodies. We also predicted the binding affinity
between the same antibodies and several previous SARS-CoV-
2 variants (Wuhan and Omicron descendants BA.1, BA.2, and
XBB.1.5). Additionally, we examined binding affinity between
BA.2.86 and human angiotensin converting enzyme 2 (ACE2)
receptor, a cell surface protein crucial for viral entry. We found
no statistically significant difference in binding affinity between
BA.2.86 and other variants, indicating a similar immune re-
sponse. These findings contradict media reports of BA.2.86’s
high immune evasion potential based on its mutations. We dis-
cuss the implications of our findings and highlight the need for
modeling and docking studies to go above and beyond mutation
and basic serological neutralization analysis. Future research
in this area will benefit from increased structural analyses of
memory B-cell derived antibodies and should emphasize the im-
portance of choosing appropriate samples for in silico studies to
assess protection provided by vaccination and infection. This
research contributes to understanding the BA.2.86 variant’s po-
tential impact on public health. Moreover, we introduce new
methodologies for predictive medicine in ongoing efforts to com-
bat the evolving SARS-CoV-2 pandemic and prepare for other
hazards.
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Introduction
The emergence of SARS-CoV-2 variants continues to pose a
significant challenge to global public health efforts. Here, we
present an analysis of the recently discovered SARS-CoV-2
variant, BA.2.86, colloquially known as “Pirola” (1). This
sub-lineage of the Omicron variant (BA.2) was first detected
in late July 2023 in Israel and Denmark (2, 3) and has now
spread worldwide (1, 4, 5). The international dissemination
of BA.2.86 has raised concerns about its potential impact on
personal and public health, and the World Health Organiza-
tion (WHO) officially classified it as a variant under monitor-
ing on August 17th, 2023 (5).

The genetic sequence of BA.2.86 distinguishes it from the
original Omicron variant (B.1.1.529) and the XBB.1.5 vari-
ant (5). The most interesting difference between BA.2.86
and its ancestors is in BA.2.86’s Spike gene (S), which dis-
plays an array of 33 mutations in relation to the original Omi-
cron variant. Of those, 14 are in the receptor binding domain
(RBD) (6). Furthermore, BA.2.86 is separated by 35 muta-
tions from XBB.1.5 (6). These notable divergences prompt
concern regarding BA.2.86’s transmissibility and potential
to escape current treatments and the protection provided by
prior infection or vaccination.

Since antibodies primarily target the viral S protein’s RBD,
these mutations have raised concerns about the efficacy of
current antibodies against BA.2.86 (7). This concern was de-
rived from the rapid ascent of previous variants that were also
rich in mutations, such as the increase in percent case counts
of Omicron (in late 2021 and early 2022) and XBB.1.5 (in
early 2023) (8, 9). However, in contrast to this previous expe-
rience, BA.2.86 has become a very poorly represented strain
in the USA as of the end of October 2023 (10). Thus, count-
ing mutations is not a way to assess the severity of a variant.
Herein, we present computational protein modeling and an-
tibody docking methods to assess the potential for immune
evasion and transmissibility of new variants.

In this study, we employ methodologies, established in our
previous work, to assess the binding potential of antibodies
derived from infected patients, vaccinated patients, and pa-
tients with breakthrough infections (9, 11). We used in silico
docking and modeling to quantify the binding potential of
existing antibodies to BA.2.86’s Spike protein and compare
these results with earlier variants (9, 11). We also investigate
BA.2.86’s binding affinity to the human angiotensin convert-
ing enzyme 2 (ACE2) receptor.

The ACE2 receptor serves as the primary point of interac-
tion between human cells and SARS-CoV-2. A mutation in
the vital RBD region can affect the efficiency of this crucial
viral-cell binding event (12). With the emergence of novel
SARS-CoV-2 variants featuring mutations within the RBD
domain, we have observed an increased affinity for binding
to the ACE2 receptor in XBB.1.5 (12). This enhanced affin-
ity of RBD and ACE2 has contributed to the rapid person-to-
person transmissibility of viruses such as Omicron B.1.1.529
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and XBB.1.5, which became predominant within the popu-
lation (13). Alternatively, RBD mutations can also lead to
cross-species infections (14). Understanding the effects of
these mutations on a variant’s ability to bind with the ACE2
receptor can be instrumental in predicting its transmissibility
and zoonotic potential (14).
Thus, by comparing the binding affinity of BA.2.86 and pre-
decessor variants to neutralizing antibodies and the human
ACE2 receptor, we provide valuable insights into the trans-
missibility of BA.2.86 and its interaction with human cells.
This information has implications for public health and in-
forms ongoing efforts to combat the evolving SARS-CoV-2
pandemic.

Methods
In short, our in silico approach includes curating or generat-
ing the RBD structures for five SARS-CoV-2 variants, seven
neutralizing antibody structures, and five ACE2 structures.
Each antibody or ACE2 structure was docked against the vi-
ral RBD structures, and binding affinity metrics were col-
lected for comparison. We performed a total of 60 docking
experiments. These materials and methods are detailed be-
low.

A. Viral Proteins. Given the high infectiousness of the
Omicron subvariants and their predominance in the past two
years, we selected BA.1, BA.2, and XBB.1.5 variants’ RBDs
as well as the original Wuhan strain (referred to here as “wild
type” or WT) for docking.
Complete genome sequences of BA.2.86 and BA.2 were re-
trieved from the GISAID’s EpiCoV database (accession num-
bers 8002210 and 18097315, respectively) (15). We anno-
tated and translated each S gene following Jacob Machado
et al. 2021. Finally, we extracted the corresponding RBD re-
gions (residues 338 through 525 for BA.2.86 and 338 through
528 for BA.2.) (17). These sequences were used for struc-
tural protein prediction using AlphaFold2 (18) via ColabFold
(19). We relaxed the side chains in the ColabFold generated
structure with the Amber relaxation procedure for docking
(20).
The XBB.1.5 structure is from our previous paper, in which
we generated the structure with ColabFold (9). Other avail-
able SARS-CoV-2 Spike RBD crystal structures were down-
loaded from the Protein Data Bank (PDB) (21). We derived
the WT and BA.1 RBD structures from the Protein Data
Bank as they represent empirically derived structures from
an RBD-Antibody or RBD-ACE2 complex (22–31). Table 1
summarizes the sources of different RBD structures.

Variant Type Citation PDB GISAID
WT Empirical (22–27, 31) 7X2H, 7XD2, 6XCN,

7K8M, 8DW9, 6M0J,
7A98, and 7DF4

BA.1 Empirical (24) 7YKJ, 7WLC
BA.2 Mixed (28, 31) 7YJ3 8002210
XBB.1.5 Mixed (9, 29) 8SPI
BA.2.86 Predicted N/A N/A 18097315

Table 1. Selected RBD structures. WT indicates “wild type,” or Wuhan.

B. Antibody Selection. We diverge from our previous
studies focusing on therapeutic antibodies (9, 11). In this
study, we selected seven antibodies from the Protein Data
Bank that were derived from vaccinated patients, vaccinated
with breakthrough infection and had infection without vac-
cination. Five of the seven selected antibodies were derived
from memory B-cells from human patients. (23, 24, 30). An-
tibodies are listed in Table 2.

Condition Vaccine Antibody PDB Citation
Vaccinated BBIBP-CorV 6-2C 7X2H (23)
Vaccinated BBIBP-CorV 10-5B 7XD2 (23)
Vaccinated with BA.1 BNT162b2 P3E6 7YKJ (24)
breakthrough infection
Vaccinated with BA.1 BNT162b2 P2D9 8DW9 (24)
breakthrough infection
Vaccinated CoronaVac XGv282 7WLC (30)
Infected (strain N/A C105 6XCN (25)
not specified)
Infected (strain N/A C102 7K8M (25)
not specified)

Table 2. Selected antibodies from different conditions and their PDB structures.
Note that the BNT162b2-CorV vaccine is commonly known as the “Pfizer-BioNtech”
vaccine. BBIBP-CorV was developed by Sinopharm and was the first whole inac-
tivated virus SARS-CoV-2 vaccination to obtain an emergency use authorization
by the World Health Organization (23). The entries without a vaccine are anti-
bodies obtained from unvaccinated patients before mass SARS-CoV-2 vaccination
was available in the USA. The first five entries within the table are derived from
memory B-cells collected from patients whereas the last 2 entries were antibody
structures generated from antibody sequences obtained from convalescent donors
before mass vaccination.

C. ACE2 Structures. We used ACE2 structures found on
the Protein Data Bank derived from studies analyzing the
structure of the ACE2-RBD complex. The ACE2 structures
were isolated for docking. The initial complexed RBD was
docked to each ACE2 structure alongside the RBDs we de-
rived from PDB and ColabFold. The selected ACE2 instruc-
tions are listed in Table 3.

PDB RBD in Complex Citation
6M0J WT (22)
7A98 WT (27)
7DF4 WT (31)
7YJ3 BA.2 (28)
8SPI XBB.1.5 (29)

Table 3. Selected ACE2 crystal structures. WT indicates “wild type,” or Wuhan.

D. Protein-to-Protein Docking. To prepare the Fab struc-
tures for docking, we renumbered the residues accord-
ing to HADDOCK’s (v2.4) requirements such that there
were no overlapping residue IDs between the heavy and
light chains (32, 33). Residues in the Fab structures’
complementarity-determining regions (CDRs) were selected
as “active residues” for docking analysis to assess antibody
neutralization. Residues in the ACE2 binding pocket form-
ing polar contacts with the RBD in the crystallized struc-
ture were selected as “active residues” for docking predic-
tion and analysis of ACE2-RBD binding. The same active
residues for each ACE2 and antibody structure are used for
each dock to the five RBD structures. Residues in the S1
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portion of the RBD were selected as RBD residues. Each
RBD has similar active residues when docking against an an-
tibody. However, there are variations in active residue se-
lection to account for differences in amino acid composition
between variants. Each of the seven antibody structures and
five ACE2 structures were docked against five RBD struc-
tures using HADDOCK, a biomolecular modeling software
that provides docking predictions for provided protein struc-
tures (32, 33).
The HADDOCK software produces multiple output PDB
files of docking results and their subsequent docking met-
rics. A PDB output file for each docking experiment with
HADDOCK was placed into PRODIGY (v2.1.3) for further
analysis. PRODIGY is a web service collection focused on
binding affinity predictions for biological complexes (34, 35).
This process resulted in 60 sets of docked structures. For
quantitative analysis, we selected the top-performing struc-
ture for each antibody-RBD or ACE2-RBD pair. Statistical
tests were conducted in R (36), implementing the Kruskall-
Wallis and the paired Wilcoxon test to compare different pre-
dictions (37, 38). We also used this top structure to visually
analyze the structural conformation of interfacing residues
and docked proteins using PyMol (v2.5.5) (39).

Results
We compared docking predictions of viral proteins to ACE2
receptors or antibodies with Kruskall-Wallis and paired
Wilcoxon tests. These tests return values that are not sta-
tistically significant at a 95% confidence level for different
tested variables: HADDOCK score, van der Waals energy,
electrostatic energy, desolvation energy, buried surface area,
and PRODIGY’s ∆G predictions. Thus, we conclude that all
the Omicron subvariants’ (including BA.2.86) performance
for the ACE2 and antibody docking simulations were simi-
lar.
Figure 1 illustrates various metrics produced by HADDOCK
and PRODIGY estimations of the protein-to-protein binding
affinities between antibodies and RBD structures. It includes
seven antibody structures and five variant RBD structures (35
experiments in total). The results of ACE2 to RBD docking
experiments are shown in Figure 2, including five ACE2 and
five RBD structures (25 docking experiments in total). Fig-
ures 1 and 2 also show the non-significative p values of the
Kruskal-Wallis statistical test in the bottom left of each plot
and the Wilcoxon signed-rank test between each RBD. These
figures are derived from metrics obtained from the best PDB
complex structure, determined by HADDOCK, for each ex-
periment.
Figure 3 shows the analysis of the interfacing residues be-
tween an antibody and the RBD of XBB.1.5 and BA.2.86.
Differences in tertiary structure between the RBD of BA.2.86
and XBB.1.5 lead to different binding poses for the two vari-
ant RBDs on both antibodies. These differences, in part, de-
rive from the three deletions contained in the sequence of
BA.2.86. Another reason for differences in tertiary struc-
ture may be due to the proline at position 445 in the RBD of
XBB.1.5. In the RBD of BA.2.86 the corresponding residue

is histidine at position 444, due to the deletions in BA.2.86.
The proline may increase the rigidity of the nearby loop
residues within the RBD in BA.2.86 adding to a disparity in
binding between BA.2.86 and XBB.1.5 to neutralizing anti-
bodies targeting the RBD. The histidine in place of that pro-
line in BA.2.86 reduces rigidity and additionally increases
steric hindrance from the more bulky side chain of histidine,
thus adding to the disparity in binding pose and docking met-
rics between the two variant RBDs.
Figure 4 shows the analyses of the interfacing residues be-
tween ACE2 and the RBD of XBB.1.5 and BA.2.86. Dif-
ferences in binding pose may derive from similar reasons to
the antibody analysis above. The deletions within BA.2.86
create alterations in the overall tertiary structure of the bind-
ing motif within the RBD. The proline at position 445 in
XBB.1.5 stabilizes nearby residues to allow for increased
binding around residue 445, thus creating a slightly different
binding pose and different stability than that of BA.2.86 to
ACE2. In addition to the proline at position 445 in XBB.1.5,
the F486P mutation within XBB.1.5 adds additional stabil-
ity to XBB.1.5 that BA.2.86 lacks near the binding motif
within the RBD. The stability is displayed by the polar con-
tact formed by the asparagine at position 487 and the serine
at position 446 shown in 4.B. These polar contacts are lack-
ing in the corresponding BA.2.86 dock shown in 4.A. In the
docking to ACE2 in 4.C and 4.D, there are noticeable yet
slight differences in binding residues. However, there is a
significant difference in binding angle between the RBD of
BA.2.86 and XBB.1.5 to the ACE2 Structure retrieved from
PDB file 7A98. This disparity in binding angle may be due to
the lack of stability provided by the histidine at position 444
in BA.2.86, whereas in XBB.1.5 the corresponding residue
is a proline at position 445, this inherently creates a more
stable complex for XBB.1.5, creating a greater disparity in
sampling and binding prediction from HADDOCK.
However, as stated above, these variations do not appear to
cause significant changes in binding affinity. Again, these
figures represent the best HADDOCK output for each exper-
iment.

Discussion
Although there are variations in the ACE2 docking metrics
when comparing previous variants and BA.2.86, no overall
pattern is observed. The lack of such a pattern indicates that
BA.2.86 does not significantly differ from previous variants
in its capability to evade antibodies or bind to the ACE2 re-
ceptors.
Early studies have been published regarding BA.2.86. In one
study titled, “Sensitivity of BA.2.86 to prevailing neutralizing
antibody responses,” patients had blood sera collected before
XBB.1.5 predominance (40). In the referenced study sam-
ples were then analyzed in a pseudovirus neutralization assay
which found the highest blood serum neutralization titers for
BA.2, XBB.1.5, and BA.286 in descending order (40).
The results found in Sheward et al. 2023 are consistent with
our Gibbs Free Energy calculation provided by PRODIGY
results regarding the three variants. The median Gibbs Free
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Fig. 1. In this figure, we use boxplots to illustrate the comparative docking scores of antibody and RBD structures generated by HADDOCK and PRODIGY. Each boxplot
highlights the distribution of docking scores for different variants. Pairwise comparisons were performed using the Wilcoxon signed-rank test, indicated by the horizontal lines.
The Kruskal-Wallis test was used to compare the medians of all the independent samples, indicated in the bottom left.
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Fig. 2. Boxplots illustrating the comparative docking scores of ACE2 and RBD structures generated by HADDOCK and PRODIGY. Each boxplot highlights the distribution of
docking scores for different variants. Pairwise comparisons were performed using the Wilcoxon signed-rank test, indicated by the horizontal lines. The Kruskal-Wallis test
was used to compare the medians of all the independent samples, indicated in the bottom left.
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Antibody Analysis 2x2 table

(A)
(B)

(C) (D)

Fig. 3. A) and B) display the output PDB files from HADDOCK of the docking jobs of antibody 6-2C to XBB.1.5 and BA.2.86 respectively. C) and D) display the output PDB
files from HADDOCK of the docking jobs of antibody P2D9 to XBB.1.5 and BA.2.86 respectively. The antibody structure in each is shown on the left in blue and the RBD is
shown on the right in yellow for XBB.1.5 or magenta for BA.2.86. Interacting RBD residues are highlighted in green labels.

(B)
(C) (D)

ACE2 Analysis 2x2 table

(A)

Fig. 4. In A) and B) we display the output PDB files from HADDOCK of the docking jobs of the ACE2 structure from PDB 6M0J and BA.2.86 and XBB.1.5 respectively. In C)
and D) we display the output PDB files from HADDOCK of the docking jobs between the ACE2 structure from PDB 7A98 and BA.2.86 and XBB.1.5 respectively. We show the
ACE2 structure, in each, on the left in green and the RBD on the right in yellow for XBB.1.5 or magenta for BA.2.86. Interacting RBD residues are highlighted in blue labels.

Energy calculation for each of the three variants ascends from
BA.2, XBB.1.5, and BA.2.86, indicating weaker binding and
thus weaker neutralization efficacy of the antibody. The re-
sults demonstrated that blood sera against BA.2.86 have mod-

erately lower geometric mean lower neutralizing titers than
against XBB.1.5 (40). The array of antibodies we selected
derived from natural infection, breakthrough infection, and
vaccination without known infection. The array of antibod-
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ies is likely to simulate the samples in this study as the blood
sera that were collected before XBB.1.5 prevalence (40).
In Uriu et al., published in September 2023, researchers
obtained blood samples from individuals vaccinated with
third-dose monovalent, fourth-dose monovalent, BA.1 biva-
lent, and BA.5 bivalent mRNA vaccines (41). They found
that the sera exhibited very little or no antiviral effects
against BA.2.86 in a neutralization assay assessing neutral-
ization titers. This study also found that monoclonal anti-
bodies bebtelovimab, sotromivab, and cilgavimab did not ex-
hibit antiviral effects against BA.2.86, however, these mon-
oclonal antibodies exhibited antiviral effects against BA.2
(41, 42).Uriu et al. suggested that BA.2.86 is one of the most
evasive SARS-CoV-2 variants ever, from results within the
study.
There was no statistically significant difference in any metric,
including Gibbs Free Energy calculation, Electrostatic En-
ergy, van der Waals Interaction, and HADDOCK score for
ACE2 or antibody binding between any two of the selected
variants. Our results do not correspond with previous reports
in which computational and empirical methods were used to
determine ACE2 binding for XBB.1.5 (43, 44). However, our
method is significantly different.
Sugano et al. 2023 performed an in silico study, in which
they used molecular docking software to determine SARS-
CoV-2 and ACE2 binding affinity. Sugano et al. showed that
ACE2 binding affinity has increased in BA.1 to 1.55 times the
binding affinity compared to the WT strain and in XBB.1.5
the binding affinity increased three times the binding affinity
compared to the WT strain.
Our results do not agree with this (43). We did not use
ZDock, which was the docking software utilized in their
study (43). Our use of HADDOCK and PRODIGY provides
dissimilar results. Our assessment shows that ACE2 bind-
ing affinity is not statistically significant in its difference be-
tween the WT, BA.1, BA.2, and XBB.1.5 strain. Sugano et al.
utilize a ratio method of comparing ACE2 binding affinity,
whereas we utilize a statistical test to compare binding affin-
ity. This disparity in results caused by different docking soft-
ware and methods is a area for future research.
Yue et al. 2023 analyzed XBB.1.5 antibody evasion and
ACE2 binding. Yue et al. used blood serum samples from
patients who had received three doses of CoronaVac before
a BA.1 or BF.7 breakthrough infection. Yue et al. also used
serum from patients who had a BA.5 breakthrough infection
after at least two doses of BNT162b2 or mRNA-1273 vac-
cine. The serum samples in the study demonstrated a substan-
tial decrease in neutralization against XBB.1.5 in comparison
with the B.1 variant, which shares a recent common ancestry
with BA.1 and BA.2 (44). Yue et al. 2023 also demonstrated
that XBB.1.5 has a similar ACE2 binding affinity to BA.2.75,
which is a variant that has been demonstrated to have higher
ACE2 binding than BA.2 (44, 45).
Tamura et al. 2023 performed a study which they analyzed
ACE2 binding for the BA.2.86 variant. Tamura et al. demon-
strate that the binding affinity of the BA.2.86 spike protein
to ACE2 was similar to that of the XBB.1.5 spike protein,

corresponding to our results analyzing RBD-ACE2 affinity.
However, Tamura et al. found that XBB.1.5 and BA.2.86 has
significantly higher ACE2 binding affinity than BA.2, dis-
agreeing with our results.
Wang et al. 2023 performed a study in which they analyzed
ACE2 binding affinity. Wang et al. found that the XBB.1.5
spike protein exbibited a modest increase in ACE2 afffin-
ity compared to BA.2, which corresponds to a greater ex-
tent with our results regarding XBB.1.5 than previously men-
tioned studies. In addition, (47) found that that BA.2.86 had
a greater than two fold increase in binding affinity in com-
parison to BA.2, which contrasts with our results regarding
ACE2.
At the time of writing this in November 2023, BA.2.86 does
not appear to display the increased evasion indicated by Uriu
et al. 2023. The Center for Disease Control and Prevention
(CDC) COVID Data tracker has not shown BA.2.86 to be a
prevalent strain within the past month, with XBB.1.5 being in
higher prevalence (10). The CDC data corresponds with our
results that vaccine and infection induced antibodies maintain
neutralizing capabilities against BA.2.86 (10). The CDC data
also corresponds with our results of BA.2.86 not having a
signficant difference in ACE2 binding to previous omicron
variants (10).
Our results contradict media reports about the potential sever-
ity of BA.2.86 (48) and are consistent with the United States
Center for Disease Control and Prevention’s more muted
warnings (49). Throughout the pandemic it has become clear
that the media narrative can go one direction and the science
narrative can be dynamic and take on a separate narrative.
Our results have mixed correspondence with previous studies
and data on XBB.1.5 and BA.2.86 (10, 40, 41, 44, 46, 47).
There are many potential explanations for our lack of statisti-
cally significant differences. First, molecular docking analy-
sis focuses on one antibody structure or ACE2 structure dock-
ing to an RBD structure. Molecular docking does not account
for multiple interactions that can be assessed empirically with
a neutralization titer study using blood samples. Molecular
docking analysis does not consider the quantity of different
types of neutralizing antibodies in the bloodstream. Molecu-
lar docking only considers individual antibodies. These dif-
ferences create a smaller analytical space that focuses on
the neutralization capabilities of individual antibodies, not
the aggregate capabilities of a group of varied antibodies as
demonstrated in serum neutralization titer assays. It is to be
noted that the antibodies used in our molecular docking work
were derived from breakthrough Omicron patients, unvacci-
nated infected patients, and vaccinated patients but analyzed
in single antibody/strain pairs. The chosen antibody array
consists of antibodies that protect against Omicron strains to
a greater extent alongside the WT strain.
Our study size was limited by the number of eligible in-
fection and vaccine-derived antibody-RBD complexes, and
ACE2-RBD complexed PDB files available in the Protein
Data Bank.
One biological explanation as to why we lack statistically
significant differences in antibody binding between the vari-
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ants is the composition of our antibody array. Our antibody
selection is significantly different than the antibodies stud-
ied in existing serological studies. Our antibody array pri-
marily consists of memory B-cell derived antibodies that are
studied to be broadly neutralizing against different variants
(23, 24, 30). Our results support the empirical results that
our antibody array, primarily consisting of broadly neutraliz-
ing antibodies, maintains their efficacy across different vari-
ants (23, 24, 30). The presence of such broadly neutralizing
antibodies also may indicate a level of prevalence of mem-
ory B-cells within vaccinated individuals that generate such
antibodies (23, 30, 50, 51). A larger and broader study ana-
lyzing the presence of memory B-cells that produce broadly
neutralizing antibodies is needed to support the notion that
the population in general contains memory B-cells that can
produce such broadly neutralizing and effective antibodies.
Such memory B-cells differentiate, and broadly neutralizing
antibodies are produced upon a secondary immune response
to new variant antigens (29, 50).
The utilization of serum antibody neutralization titers can
be accurate in predicting the prevention of initial infection
but are not as accurate in regards to the prediction of the
prevention of serious disease as they only account for anti-
bodies prevalent in the blood at the time of collection, the
secondary immune response cannot be measured via this
method. Neutralization titers, using blood samples, is a bi-
ased measurement method as the proportions of antibodies
within the bloodstream will reflect specific neutralizing ca-
pabilities against recently introduced antigens from infection
or vaccination.
In contrast to this limitation, in our in silico method we use
antibodies that have been studied to be produced upon mem-
ory B-cell stimulation and neutralize SARS-CoV-2 variants
(23, 24, 30). Given a larger sample size of memory B-cell
derived antibodies, we believe that this approach will be a
more accurate and comprehensive approach to assess how
well prior vaccination and/or infection will protect against in-
fection and severe disease against future SARS-CoV-2 vari-
ants and other threats to public and personal health.

Conclusions

Overall, our study indicates ACE2 binding and antibody neu-
tralization of the BA.2.86 variant has not increased over pre-
vious variants. Moreover, we show the ongoing efficacy of
antibodies induced by a variety of means in the global pop-
ulation to fight the BA.2.86 variant. The metrics and meth-
ods we used provide different results from previous empirical
sudies and the media narrative. With increased sample sizes
our metrics and methods will provide improved insight into
the secondary immune response provided by memory B-cells
over traditional blood serum neutralization assays.
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