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Abstract 

In this manuscript, we derive a closed form solution to the full Kermack and McKendrick 

integro-differential equations (Kermack and McKendrick 1927) which we call the KMES. We 

demonstrate the veracity of the KMES using the Google Residential Mobility Measure to 

accurately project case data from the Covid 19 pandemic and we derive many useful, but 

previously unknown, analytical expressions for characterizing and managing an epidemic. These 

include expressions for the viral load, the final size, the effective reproduction number, and the 

time to the peak in infections. The KMES can also be cast in the form of a step function system 

response to the input of new infections; and that response is the time series of total infections. 

Since the publication of Kermack and McKendrick’s seminal paper (1927), thousands of 

authors have utilized the Susceptible, Infected, and Recovered (SIR) approximations; 

expressions putatively derived from the integro-differential equations to model epidemic 

dynamics. Implicit in the use of the SIR approximation are the beliefs that there is no closed 

form solution to the integro-differential equations, and that the approximation is a special case 

which adequately reproduces the dynamics of the integro-differential equations mapped onto the 

physical world. However, the KMES demonstrates that the SIR approximations are not adequate 

representations of the integro-differential equations, and we therefore suggest that the KMES 

obsoletes the need for the SIR approximations by providing not only a new mathematical 

perspective, but a new understanding of epidemic dynamics. 
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Introduction 

Modern epidemiological modeling has its roots in the Kermack and McKendrick 

epidemic model, first published in 1927 (Kermack and McKendrick 1927). Since its publication, 

well over 10,000 authors have referenced and used this paper as a foundational starting point. 

However, as Diekmann points out in his insightful essay (2022 pg. 8), “…an incessant 

community-enforced misconception is that the paper is just about the very special case, the S-I-R 

(Susceptible, Infected, Recovered) model.” In the essay, he also elaborates on his suspicion that, 

despite the many references, the 1927 paper is rarely read by the citing authors. His concluding 

remarks decry the situation and request that the 1927 paper, a “…true gem…in which 

tremendous wisdom lies hidden.” (Diekmann 2022 pg. 9) be thoroughly read and mined for its 

insights.  

In the setting of Diekmann’s comments, we have found two broad themes throughout the 

epidemic literature that references Kermack and McKendrick’s 1927 paper:  

1) The SIR model approximation and its variants are accepted as a special case of the full 

equations (Kermack and McKendrick 1927, Breda et al 2021, Diekmann 2022 and Brauer 

2008). 

2) There are no known or published closed-form solutions to the full set of Kermack and 

McKendrick’s integro-differential equations as evidenced by Diekmann (2021), wherein 
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the authors present a discrete-time model of the integro-differential equations. If a closed 

form solution exists, there is no need for such a model. 

In view of these themes, we strongly support Diekmann’s comments and suggest that the 

“generalizations” highlighted by Diekmann, wherein authors further develop the SIR special 

case, potentially take unknown mathematical risks when assuming that the base SIR model 

faithfully approximates the essence of the integro-differential equations. We point to the 1927 

paper where a close reading reveals that Kermack and McKendrick justify the SIR 

approximation by summarily substituting two constants for their two key parameters: a stark 

contrast to their careful construction of the integro-differential equations themselves. The 

resulting SIR approximation inherently assumes that the affected population is well mixed, an 

assumption rightly pointed out as “unrealistically simple” in the literature (Brauer 2008, pg. 27); 

and this begs the question: is this a warning sign that the approximation may be lacking in 

fidelity to the full equations? Therefore, as Diekmann’s essay seems to suggest, is it not logical 

to choose the integro-differential equations as a starting point to develop generalizations? 

We ask these questions because we assert, for instance, that a solution of Kermack and 

McKendrick’s integro-differential equations themselves need not depend on the assumption of a 

well-mixed population. As we show in this manuscript, starting with their integro-differential 

equations, they can be solved using an equivalent set of expressions that do not invoke the well-

mixed assumption.  
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We also respectfully note here that network-based stochastic models (e.g., Newman, m. 

2002, Diekmann, O et al, 1998, and Youssef, M, 2011), operating on the assumption that 

epidemic dynamics can be projected by summing the collective probabilities of individuals being 

infected by their contacts, have been widely investigated as an alternative to the well-mixed 

assumption. These have even been used to develop estimations of outbreak threshold conditions 

and final sizes of epidemics. However, while these are logical steps towards the use of more 

realistic characteristics of interactions, a significant drawback of all these refinements is that they 

do not yield closed-form analytical expressions describing the course of an epidemic. We 

therefore ask, as suggested by Diekmann’s essay: would an analytical solution to the integro-

differential equations yield significantly more insight, even wisdom, about epidemic dynamics? 

In this manuscript, we address these questions and Diekmann’s call to action in three 

sections: 

1) In Section 1 we derive an analytical solution to the Kermack and McKendrick integro-

differential equations by first recasting the equations and then applying a mean field 

approximation. This allows the solution to be expressed in terms of two parameters: 1) 

transmissibility and 2) population interaction. We call the solution the KMES (Kermack 

and McKendrick Equation Solution). From the KMES, we derive and explicate many 

analytical expressions characterizing epidemic dynamics such as final size, the basic and 

effective reproduction number, the time to peak new infections and the number of 

infections at the peak.  
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2) In Section 2, using the data compiled from several countries during the COVID-19 

pandemic, we then demonstrate that the transmissibility, normalized viral load, and 

population interaction parameters can be deduced in a straightforward manner from early 

pandemic data together with the independently sourced Google Residential Measure 

(Google 2023). We use these values and the KMES to accurately project the course of the 

Covid-19 pandemic in six sampled countries. 

3) In Section 3 we derive additional expressions which can be used to determine the actions 

necessary to control and end an epidemic. We demonstrate the use of these expressions 

with the United States Covid-19 case data from March 2020 to November 2021.  

Within each of these sections, as the opportunity arises, we contrast the epidemic 

dynamics projected by the KMES against those projected by a representative SIR model. In these 

instances, we find the SIR model lacking in fidelity to important dynamics found in the data. 

Section 1: Solution to the Kermack and McKendrick Equations 

(Note: We use the following equation notation, (X, SY-Z), where X is the equation number in 

the body; and if the equation is used in a supplement, Y is the supplement number and Z is the 

number of the equation in the supplement). A list of all equations is provided in Supplement 5. 

Definition of Terms 

We begin by defining several quantities to describe epidemic dynamics.  These are: 𝑁𝑃, the total 

population of people who can become infected during the epidemic; 𝑆(𝑡), the subpopulation that 
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has not yet become infected; 𝑁(𝑡), the subpopulation that is currently or has previously been 

infected; 𝐼(𝑡), the infectiousness of individuals within 𝑁(𝑡); and R(𝑡), the total recovery of 

individuals within 𝑁(𝑡). The relationships among these quantities are further clarified by noting 

that 𝑆(0) is the number of uninfected people in 𝑁𝑃 at the epidemic start, 𝑆(∞) is the number of 

uninfected people at the end of the epidemic, 𝐼(0) is the number of infectious individuals at the 

epidemic start; and therefore, 𝑁𝑃 = 𝑆(𝑡) + 𝑁(𝑡), 𝑁(𝑡) = 𝐼(𝑡) + 𝑅(𝑡), and 𝑁(0) = 𝐼(0).  We 

further assume that for our modelling purposes, 𝑁𝑃 is a constant and that once infected, people 

cannot become reinfected.   

As defined, 𝐼(𝑡) is the infectiousness of the population 𝑁(𝑡) where, by 

“infectiousness”, we mean the ability to infect others.  Also, as defined, 𝑅(𝑡) is the portion of 

𝑁(𝑡) that is unable to infect others and is therefore “not infectious”. To avoid any ambiguities 

in these definitions, we clarify them further using three thought experiments.  

In the first thought experiment, we imagine a person with an active infection who has 

no contact at all or contact only with persons who cannot become infected. This person is 

certainly a member of the ever-infected population 𝑁(𝑡); but since they cannot infect anyone, 

they cannot advance the epidemic. Therefore, they are not included in expressions for the 

number who are infectious; but rather, they are included in 𝑅(𝑡).  

In a second thought experiment, imagine that a person has just infected a particular 

person. In this case, the infecting person cannot reinfect that newly infected person nor can the 

newly infected person infect their infector. In our model, we assume that the frequency and 
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number of interactions between people does not change quickly when compared to the rate at 

which people become infected. Consequently, we assume that the infectors remain somewhat 

durably in infectious contact with the people they have infected. Therefore, according to our 

assumptions, the infectiousness of infectors diminishes with each infection they cause; and, in 

symmetry, the degree to which they are unable to infect others, their recovery, increases.   

In the third thought experiment, as described in Diekmann (2022), during an infection, 

the quantity and quality of the infectious agent within any infected person, the so-called “viral 

load”, will rise and fall with time. Since the potential of a person to infect susceptible people will 

also vary in synchrony, we postulate that the level of infectiousness will approximately track the 

variation in viral load. It is easy to see that those persons whose infection has passed the 

maximum viral load will become increasingly less infectious; and, correspondingly more 

recovered. We say “approximately” when discussing the relationship of infectiousness to 

decreasing viral load, because infectiousness and viral load are not equivalent, as the notions 

developed in the first and second thought experiments make clear. 

Within these definitions and, as illustrated by the three thought experiments, the key 

characteristic is that 𝐼(𝑡) is a measure of infectiousness dependent upon a person’s ability and, 

importantly, opportunity to infect others. This leads inexorably to the conclusion that the 

membership of an individual will necessarily sometimes be split between the 𝐼(𝑡) and 𝑅(𝑡) 

subpopulations. An appreciation of this shared membership is critical to the interpretation of the 

solution that emerges below. 
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Our Approach to the Solution  

The following relationship is a common starting point in epidemic models (Breda et al, 

2021; Diekmann et al, 2021), 

 
𝑑𝑆(𝑡)

𝑑𝑡
= −

𝑑𝑁(𝑡)

𝑑𝑡
= −Λ(𝑡)𝑆(𝑡),     (1) 

where Λ(𝑡) is known as the force of infection and is the product of the disease transmissibility 

(often designated as 𝛽(𝑡)) and I(𝑡). This equation can be deduced from one of Kermack and 

McKendrick’s original equations.  

The motivation behind this starting point is that the problem is usually formulated as the 

need to track the number of originally susceptible people who become infected and, in the 

process, determine the remaining number of people who never become infected. Unfortunately, 

by defining the problem this way and by choosing Equation 1 as the starting point, a modeler 

implicitly makes the critical assumption that S(𝑡) > 0 before Equation 1 can be solved. This 

assumption biases the number and nature of potential solutions and, therefore, we submit it 

should be avoided if possible.  

(Authors’ note: we acknowledge that allowing the possibility that 𝑆(𝑡) = 0 is a violation 

of the accepted tenet that herd immunity is an inherent property of the Kermack and McKendrick 

model. We point out, however, that allowing the possibility that 𝑆(𝑡) = 0 simply requires that 

the force of infection approaches infinity as 𝑆(𝑡) → 0. Of course, 𝐼(𝑡) can never be infinite, 
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however, since the units of 𝛽(𝑡) are 
𝑛𝑒𝑤 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛𝑠

(𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑥 𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒 𝑥 𝑡𝑖𝑚𝑒)
=

1

(𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒 𝑥 𝑡𝑖𝑚𝑒)
 , it, as well 

as the force of infection, will surely approach infinity as 𝑆(𝑡) → 0.) 

As an alternative to the conventional start, we begin our development with a 

complementary relationship, 

 −
𝑑𝑆(𝑡)

𝑑𝑡
=

𝑑𝑁(𝑡)

𝑑𝑡
= 𝐾𝑇(𝑡)𝐼(𝑡),      (2) 

where 𝐾𝑇(t) is a function describing the rate of new infections. Equation 2 arises from the notion 

that the currently infectious subpopulation, 𝐼(𝑡), is the sole cause of new infections. This is a 

“systems” view, in which infections are expressly recognized as the source of all new infections. 

We also note that Equation 2 does not impose any restrictions on the range of the variables 

involved other than the logical restriction that all population totals must always be non-negative.  

A solution to Equation 2 can be found by first writing the additional relationship, 

 
𝑑𝐼(𝑡)

𝑑𝑡
= (𝐾𝑇(𝑡) − 𝜇(𝑡))𝐼(𝑡),      (3)  

where 𝜇(𝑡) is the recovery rate of the infected people. Equation 3 is then easily solved for I(𝑡), 

 𝐼(𝑡) = 𝐼(0)𝑒∫ (𝐾𝑇(𝑏)−𝜇(𝑏))𝑑𝑏
𝑡

0 .     (4)   

Using Equation 4, we can subsequently solve Equation 2 for N(𝑡), 

 𝑁(𝑡) = ∫ 𝐾𝑇(c)I(0)
𝑡

0
𝑒∫ (𝐾𝑇(𝑏)−𝜇(𝑏))𝑑𝑏

𝑐
0 𝑑𝑐    (5) 
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with the logical restriction that 𝑁(𝑡) ≤ 𝑆(0). 

We now introduce the Kermack and McKendrick model and demonstrate that Equations 

2 and 3 are expressions equivalent to the full Kermack and McKendrick integro-differential 

equations. This leads us to the KMES. 

Kermack and McKendrick’s model structure 

Kermack and McKendrick (1927) derived their integro-differential equations by 

imagining 𝑁(𝑡) as the sum of incremental subpopulations which had been infected at the time 

𝑡 − 𝜃; where 𝜃 is the time since infection of each subpopulation. The time history of the 

epidemic was then imagined as a t-by-t array with every successive row representing an 

increment of time, ∆𝑡, and each column representing an increment of 𝜃. In our rendition of the 

model, since 𝜃 has the units of time, we designate each increment of 𝜃 as ∆𝑡, and note that the 

array is square because 𝜃 ≤ 𝑡; and ∆𝜃 = ∆𝑡. 

The progress of each 𝜃 group in Kermack and McKendrick’s analysis was tracked 

through time across the array with each 𝜃 group starting at time 𝑡 − 𝜃 and progressing diagonally 

thereafter. Their equations were then developed by summing over 𝜃 and then taking the limit as 

∆𝜃 and ∆𝑡 → 0. To assist in understanding the relationship between time and 𝜃, a complete 

rendition of the arrays underpinning their equations is presented in Supplement 5. 

We adopt Kermack and McKendrick’s equations 𝜃 convention and adapt the format of 

their equations using the following notation. In our notation, unless otherwise specified, all 

dependent variables and parameters are assumed to depend on both time, t, and 𝜃 (e.g., 𝐼(𝑡, 𝜃) or 
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𝜓(𝑡, 𝜃)). If a variable (not a parameter) is designated as a function of time alone, then it is to be 

understood that the variable has been integrated over all 𝜃. For instance, 𝐼(𝑡) = ∫ 𝐼(𝑡, 𝜃)
𝑡

0
𝑑𝜃. In 

contrast to the variables, however, if we designate a parameter as solely a function of time or 𝜃, 

then the parameter is to be considered constant over the alternate temporal dimension; i.e, 𝜃 or 

time respectively. The dependent variables used in this manuscript are S, I, N, and R; and the 

parameters are: 𝐾𝑇 , 𝑃𝑐 , φ, 𝜑𝑟 , ρ, ψ, μ, β, 𝑃𝑐𝑟 , and 𝛾.  

We also note that Kermack and McKendrick, in their manuscript (1927), expressed the 

parameters, φ and ψ, in different positions within their equations as solely dependent on either 𝜃 

or t, which is sometimes confusing. For clarity, we choose to initially show these parameters as 

dependent on both 𝜃 and t (i.e., we write them as φ(𝑡, 𝜃) and ψ(t, 𝜃)); and then let the analysis 

determine whether they are solely dependent on 𝜃, t, or both. It develops that this heightened 

level of precision is necessary to resolve what would otherwise be ambiguities. 

With the conceptualizations developed above, we now write the Kermack and 

McKendrick integro-differential equations in terms of time, 𝜃, and our dependent variables: 

 
𝑑𝑆(𝑡)

𝑑𝑡
= −

S(t)

𝐴𝑝
(∫ 𝐴(𝑡, 𝜃)

𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
𝑑𝜃 + 𝐴(𝑡, 𝑡)𝐼(0))

𝑡

0
,  (6) 

 𝐼(𝑡) = ∫ 𝐵(𝑡, 𝜃)
𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
𝑑𝜃 + 𝐵(𝑡, 𝑡)𝐼(0)

𝑡

0
,   (7) 

 
𝑑𝑅(𝑡)

𝑑𝑡
= ∫ 𝐶(𝑡, 𝜃)

𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
𝑑𝜃 + 𝐶(𝑡, 𝑡)𝐼(0)

𝑡

0
,  (8) 

 𝑁(𝑡) = 𝐼(𝑡) + 𝑅(𝑡)  (9) 
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where 𝐵(𝑡, 𝜃) = 𝑒− ∫ 𝜓(𝑡,𝑎)𝑑𝑎
𝑡

𝑡−𝜃 , 𝐶(𝑡, 𝜃) = 𝜓(𝑡, 𝜃)𝐵(𝑡, 𝜃), and 𝐴(𝑡, 𝜃) = 𝜑(𝑡, 𝜃)𝐵(𝑡, 𝜃).  

Kermack and McKendrick (1927, p. 703) defined 𝜑(𝑡, 𝜃) as “the rate of infectivity at age 𝜃”, 

and 𝜓(𝑡, 𝜃) as “the rate of removal” of the infected population to the recovered population. 𝐴𝑝 is 

the area that contains the population and, as previously defined, 𝜃 is the time since infection of 

any member of the population 𝑁(𝑡). 

The integration limits in the expression for 𝐵(𝑡, 𝜃) are a critical feature, and, therefore, 

deserve special attention. In the development of their equations, Kermack and McKendrick 

assumed that the 𝐵 term, the infectiousness of each 𝜃 group at time, t, was only a function of 𝜃 

because they assumed that every 𝜃 group would begin and then proceed along identical time 

paths of infectiousness. Consequently, in their manuscript, the integration limits in the 𝐵 term 

were chosen to only depend upon the time since infection (i.e., 0 to 𝜃), regardless of the actual 

time interval. They could have been more precise in their notation. As we show in our definition 

of 𝐵(𝑡, 𝜃), the precise integration limits are 𝑡 − 𝜃 and 𝑡, the actual time interval associated with 

each 𝜃 group. This time interval also has length 𝜃, as in Kermack and McKendrick’s original 

formulation. 

The specification of the proper integration limits is critical to obtaining and 

demonstrating the solution because, as we show in what follows, the fraction of people in the 

contacts of I(𝑡) that have already been infected is dependent on the actual time. Therefore, the 

infectiousness of each 𝜃 group is also dependent on the actual time, not solely the time since 

infection. This is determinant in the path to a closed form. 
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Derivation of the KMES  

Because the path to deriving the KMES is complex, we summarize the steps in the 

following list as a guide: 

1. We first rewrite Equations 6 through 9 solely in terms of time by defining two 

parameters, μ(𝑡) and 𝐾𝑇(𝑡) as the weighted averages of functions of 𝜑(𝑡, 𝜃) and 

𝜓(𝑡, 𝜃) respectively.  

2. We then find the general solution to these rewritten equations and confirm the form of 

the relationships between μ(𝑡) and 𝐾𝑇(𝑡) and between 𝜑(𝑡, 𝜃) and 𝜓(𝑡, 𝜃). 

3. With these relationships in hand, we then proceed to derive an equation describing the 

effect of the population interactions, defined as 𝑃𝑐(𝑡), on the evolution of the fraction 

of ever infected people that are still infected.  

4. This equation is then used to find the final form of the KMES by expressing it and all 

the parameters of the Kermack and McKendrick integro-differential equations in 

terms of 𝐾𝑇(𝑡) and 𝑃𝑐(𝑡) which represent the disease transmissibility and the 

population interactions respectively. 
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Step 1: Rewrite the integro-differential equations 

We begin rewriting and solving Equations 6 through 9 by using the definition of 𝑁(𝑡) as 

the total number of people that have been infected. Therefore: 

 𝑁𝑃 − 𝑆(𝑡) = 𝑁(𝑡)   (10) 

and, 

  
𝑑𝑆(𝑡)

𝑑𝑡
= −

𝑑𝑁(𝑡)

𝑑𝑡
  (11) 

We now restate Equation 2, 

 −
𝑑𝑆(𝑡)

𝑑𝑡
=

𝑑𝑁(𝑡)

𝑑𝑡
= 𝐾𝑇(𝑡)𝐼(𝑡),  (2) 

and we remark that it describes a direct relationship between the cause of the epidemic, the 

infections, and the change in the susceptible population. From its form, the units of 𝐾𝑇(𝑡) must 

be: 
𝑁𝑒𝑤 𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝐼𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑝𝑒𝑟𝑠𝑜𝑛 𝑥 𝑇𝑖𝑚𝑒
 meaning that it is a transmission rate.  This equation embodies the 

notion that, from a systems standpoint, all the new infections must be caused by contact with the 

currently infectious. 

If we divide Equation 6 by Equation 7, and combine the result with Equation 2, we can 

express 𝐾𝑇(𝑡) in terms of Kermack and McKendrick’s variables as, 

 𝐾𝑇(𝑡) = −
𝑑𝑆(𝑡)

𝑑𝑡

𝐼(𝑡)
=

S(t)(∫ 𝐴(𝑡,𝜃)
𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
𝑑𝜃+𝐴(𝑡,𝑡)𝐼(0))

𝑡
0

𝐴𝑃(∫ 𝐵(𝑡,𝜃)
𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
𝑑𝜃+𝐵(𝑡,𝑡)𝐼(0))

𝑡
0

.  (12) 

Likewise, by dividing Equation 8 by Equation 7 we can also define μ(𝑡) as, 
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 μ(𝑡)  =
𝑑𝑅(𝑡)

𝑑𝑡

𝐼(𝑡)
=

∫ 𝐶(𝑡,𝜃)
𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
𝑑𝜃+𝐶(𝑡,𝑡)𝐼(0)

𝑡
0

∫ 𝐵(𝑡,𝜃)
𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
𝑑𝜃+𝐵(𝑡,𝑡)𝐼(0)

𝑡
0

.   (13) 

We note here that, for a given time, t, as 𝜃 goes from 0 to t, μ(𝑡) is defined as the weighted 

average of 𝜓(𝑡, 𝜃) and 𝐾𝑇(𝑡) as the weighted average of 𝜑(𝑡, 𝜃) 
S(t)

𝐴𝑝
.  

We then rewrite Equations 6 through 9 in the following form, 

 −
𝑑𝑆(𝑡)

𝑑𝑡
=

𝑑𝑁(𝑡)

𝑑𝑡
= K𝑇(𝑡) 𝐼(𝑡),  (14)  

 
𝑑𝐼(𝑡)

𝑑𝑡
= 𝐾𝑇(𝑡) 𝐼(𝑡) − μ(𝑡) 𝐼(𝑡),  (15) 

 
𝑑𝑅(𝑡)

𝑑𝑡
= μ(𝑡)𝐼(𝑡) and  (16) 

 𝑆(𝑡) = 𝑁𝑃 − 𝑁(𝑡),   (17) 

where 𝑁(𝑡) = 𝐼(𝑡) + 𝑅(𝑡). As heralded in the introduction, these equations do not require that 

the population be well mixed or specify any level of mixing, and, consequently, later in the 

derivation, we introduce a population interaction term. 

Step 2. Solve the rewritten equations 

We recognize Equations 14 and 15 as Equations 2 and 3, therefore, their solutions are 

Equations 4 and 5, 

  𝑁(𝑡) = ∫ 𝐾𝑇(c)I(0)
𝑡

0
𝑒∫ (𝐾𝑇(𝑏)−𝜇(𝑏))𝑑𝑏

𝑐
0 𝑑𝑐     (5)  

  𝐼(𝑡) = 𝐼(0)𝑒∫ (𝐾𝑇(𝑏)−𝜇(𝑏))𝑑𝑏
𝑡

0       (4)   
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The task remains to determine the requirements of 𝐾𝑇(𝑡) and 𝜇(𝑡) in which Equations 4 

and 3 also solve Equations 6 through 9. We accomplish this by first recalling that 𝐾𝑇(𝑡) and μ(𝑡) 

are defined as the weighted averages of 𝜑(𝑡, 𝜃)
S(t)

𝐴𝑝
 and 𝜓(𝑡, 𝜃) respectively. We then take 

𝐾𝑇(𝑡) = 𝜑(𝑡, 𝜃)
S(t)

𝐴𝑝
 and  μ(𝑡) = 𝜓(𝑡, 𝜃) as an ansatz, and recognize that  

𝑑𝑁(𝑡)

𝑑𝑡
=

𝑑𝑁(𝑡,0)

𝑑𝑡
, since 

the value of  
𝑑𝑁(𝑡,𝜃)

𝑑𝑡
= 0 for all 𝜃 > 0. Then, noting that Equation 2 defines the relationship 

between 
𝑑𝑁(𝑡)

𝑑𝑡
 and 𝐼(𝑡), we can substitute Equations 4 and 2 into Equations 6 and 7, while 

utilizing the exponential forms of 𝐵(𝑡, 𝜃) and 𝐵(𝑡, 𝑡) (keeping in mind that 𝑑𝜃 = 𝑑𝑡), to show 

that if the ansatz 𝐾𝑇(𝑡) = 𝜑(𝑡, 𝜃)
S(t)

𝐴𝑝
 and  μ(𝑡) = 𝜓(𝑡, 𝜃) is true, then Equations 5 and 3 are 

indeed solutions to Equations 6 through 7. We leave this to the reader to follow the steps and 

prove this to themselves. 

Step 3: Define the effect of the population interactions 

Although Equations 4 and 5 are mathematical solutions to the integro-differential 

equations, they can only project the course of an epidemic if we can evaluate the parameters 

𝐾𝑇(𝑡) and μ(𝑡) a priori. To satisfy this need, and, since Kermack and McKendrick did the same, 

we first hypothesize that there are but two free parameters: one describing the disease 

transmission and the other describing the interactions of the population.  

Since 𝐾𝑇(𝑡), was already introduced as the rate of disease transmission from infectious 

people to newly infected people, we assume that it is the parameter describing disease 

transmission and thus can be found in the disease or epidemic data. While we initially make this 
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assumption based on the structure of the equations, this assumption is fully supported in Section 

2 by the data from the Covid-19 pandemic. 

To describe the population interaction, we define a second parameter, 𝑃𝑐(𝑡): 

 𝑃𝑐(𝑡) = lim
∆𝑡→0

∫ 𝑃𝑐𝑟(𝑡)𝑑𝑡
𝑡+∆𝑡

𝑡
,  (18) 

where 𝑃𝑐𝑟(𝑡) is the average rate of infectious contact for the entire population. Consequently, 

𝑃𝑐(𝑡) is understood to be the instantaneous average number of contacts within the population. 

Infectious contacts are allowed to be fractions of a whole between two contacts; or, in other 

words, there is an amplitude associated with every contact; and these weighted contacts average 

to 𝑃𝑐(𝑡) for the population. This is equivalent to a mean field approximation of the population 

interactions. 

Having defined our two plausibly measurable parameters as 𝐾𝑇(𝑡) and 𝑃𝑐(𝑡), we 

continue the analysis by noting that every person within both 𝑁(𝑡) and 𝐼(𝑡) contacts 𝑃𝑐(𝑡) 

people in each period ∆𝑡. In accordance with Equation 2 and beginning at 𝑡 = 0, 𝐾𝑇(0)𝐼(0)∆𝑡 

people within the 𝐼(0)𝑃𝑐(0) group then become infected during the period from 0 to ∆𝑡. 

Concurrently, the number of non-infected people within the 𝐼(0)𝑃𝑐(0) group is reduced to 

𝐼(0)𝑃𝑐(0) − 𝐾𝑇(0)𝐼(0)∆𝑡 + 𝐼(0)∆𝑃𝑐𝑛𝑖(0); where 𝑃𝑐𝑛𝑖(𝑡) is defined as the number of people 

within 𝑃𝑐(𝑡) who are still susceptible. We add the term 𝐼(0)∆𝑃𝑐𝑛𝑖(0) to account for any 

additional susceptible people that the 𝐼(𝑡) group may contact infectiously during the time 

interval ∆𝑡.  
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Therefore, since 
𝐾𝑇(0)∆𝑡

𝑃𝑐(0)
 is the portion of 𝑃𝑐(0) the contacting infected people can no 

longer infect and  
∆𝑃𝑐𝑛𝑖(0)

𝑃𝑐(0)
 is the number of new contacts that can be infected, per potentially 

infectious contact, 𝐼(0)𝑃𝑐(0), the infectiousness of the people within 𝑁(0), has been changed by 

the factor, 1 −
𝐾𝑇(0)∆𝑡−∆𝑃𝑐𝑛𝑖(0)

𝑃𝑐(0)
. After a time ∆𝑡, the infectiousness, 𝐼(∆𝑡), per contact, in the 

affected population 𝑁(∆𝑡) is,  

 𝐼(∆𝑡) = 𝑁(∆𝑡) −
𝐾𝑇(0)∆𝑡−∆𝑃𝑐𝑛𝑖(0)

𝑃𝑐(0)
𝑁(∆𝑡).    (19) 

Dividing both sides by 𝑁(∆𝑡), we obtain a difference equation for the ratio of the 

infectiousness, 𝐼(∆𝑡), to the total of the ever-infected population, 𝑁(∆𝑡), 

 
𝐼(∆𝑡)

𝑁(∆𝑡)
= 1 −

𝐾𝑇(0)∆𝑡−∆𝑃𝑐𝑛𝑖(0)

𝑃𝑐(0)
     (20) 

During the next time step, another 𝐾𝑇(∆𝑡)∆𝑡𝐼(∆𝑡) people within the group 𝑃𝑐(∆𝑡) 

become infected and the infectiousness within 𝑁(2∆𝑡) is changed by an additional factor,  

1 − 
𝐾𝑇(∆𝑡)∆𝑡−∆𝑃𝑐𝑛𝑖(∆𝑡)

𝑃𝑐(∆𝑡)
. This is expressed mathematically as, 

 
𝐼(2∆𝑡)

𝑁(2∆𝑡)
= (1 −

𝐾𝑇(0)∆𝑡−∆𝑃𝑐𝑛𝑖(0)

𝑃𝑐(0)
)(1 −

𝐾𝑇(∆𝑡)∆𝑡−∆𝑃𝑐𝑛𝑖(∆𝑡)

𝑃𝑐(∆𝑡)
).   (21) 

The process repeats itself in each period ∆𝑡; and we can write, 

𝐼(𝑛∆𝑡)

𝑁(𝑛∆𝑡)
= (1 −

𝐾𝑇(0)∆𝑡−∆𝑃𝑐𝑛𝑖(0)

𝑃𝑐(0)
) (1 −

𝐾𝑇(∆𝑡)∆𝑡−∆𝑃𝑐𝑛𝑖(∆𝑡)

𝑃𝑐(∆𝑡)
) … (1 −

𝐾𝑇(𝑛∆𝑡)∆𝑡−∆𝑃𝑐𝑛𝑖(𝑛∆𝑡)

𝑃𝑐(𝑛∆𝑡)
). (22) 
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Applying the second thought experiment, we now make the simplifying assumption that a 

change, ∆𝑃𝑐𝑛𝑖(𝑡), to 𝑃𝑐𝑛𝑖(𝑡) will occur much more slowly than the creation of new infections, 

which means that ∆𝑃𝑐𝑛𝑖(𝑛∆𝑡) ≪ 𝐾𝑇(𝑛∆𝑡)∆𝑡. Therefore, in Equation 22, we decide to neglect the 

∆𝑃𝑐𝑛𝑖(𝑛∆𝑡) terms. (A situation where ∆Pcni(n∆t) is plausibly growing as fast as KT(n∆t)∆t 

indicates an outbreak from the initial epidemic and is explored further in Supplement 3.1.) 

Neglecting the ∆𝑃𝑐𝑛𝑖(𝑛∆𝑡) terms in Equation 22; and, since by definition, 𝑛∆𝑡 = 𝑡, as 

𝑛 → ∞, ∆𝑡 → 0, Equation 22 becomes, 

 
𝐼(𝑡)

𝑁(𝑡)
= 𝐹𝑖(0)𝑒

− ∫
𝐾𝑇(𝑡)

𝑃𝑐(𝑡) 
𝑑𝑡

𝑡
0 ,      (23) 

where 𝐹𝑖(0) =
𝐼(0)

𝑁(0)
; the fraction of 𝑁(𝑡) infected at 𝑡 = 0. Equation 23 is the expression that 

enables us to complete the solution. 

Step 4: The KMES 

By dividing Equation 2 by 𝑁(𝑡), integrating, and exponentiating we obtain,  

 𝑁(𝑡) = 𝑁(0)𝑒
∫ 𝐾𝑇(𝑡)

𝐼(𝑡)

𝑁(𝑡)
𝑑𝑡

𝑡
0 .      (24) 

When Equation 23 is substituted into Equation 24, we find N(t), 

 𝑁(𝑡) = 𝑁(0)𝑒𝐹𝑖(0) ∫ 𝐾𝑇(𝑡)𝑒
− ∫

𝐾T(𝑎)

𝑃𝑐(𝑎)
𝑑𝑎

𝑡
0 𝑑𝑡

𝑡
0 .    (25) 

We then find 𝐼(𝑡) by multiplying Equations 24 and 25,  
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 𝐼(𝑡) = 𝐼(0)𝑒
𝐹𝑖(0) ∫ 𝐾𝑇(𝑡)𝑒

− ∫
𝐾T(𝑎)

𝑃𝑐(𝑎)
𝑑𝑎

𝑡
0 𝑑𝑡

𝑡
0 −∫

𝐾T(𝑡)

𝑃𝑐(𝑡)
𝑑𝑡

𝑡
0 ,   (26) 

and from the definition of 𝑁(𝑡), using Equations 25 and 26 we find 𝑅(𝑡), 

 𝑅(𝑡) = (𝑁(0) − 𝐼(0)𝑒
− ∫

𝐾T(𝑡)

𝑃𝑐(𝑡)
𝑑𝑡

𝑡
0 )𝑒𝐹𝑖(0) ∫ 𝐾𝑇(𝑡)𝑒

− ∫
𝐾T(𝑎)

𝑃𝑐(𝑎)
𝑑𝑎

𝑡
0 𝑑𝑡

𝑡
0 .   (27) 

If we substitute Equations 25 to 27 into Equations 14 through 17, we find that μ(𝑡) =

𝐾𝑇(𝑡)−𝐹𝑖(0)𝐾𝑇(𝑡)𝑒
− ∫

𝐾𝑇(𝑡)

𝑃𝑐(𝑡)

𝑡
0 𝑑𝑡

+
𝐾𝑇(𝑡)

𝑃𝑐(𝑡)
, the sought after expression for μ(𝑡).  

As a check, we can then substitute this expression for μ(t) into Equations 3 and 4 and 

demonstrate their equivalency to Equations 25 and 26. We therefore conclude that Equations 25, 

26, and 27 are solutions to Kermack and McKendrick’s integro-differential equations in terms of 

the transmission and interaction parameters, 𝐾𝑇(𝑡) and 𝑃𝑐(𝑡).  

To completely specify the solution to Kermack and McKendrick’s integro-differential 

equations, in terms of 𝐾𝑇(𝑡) and 𝑃𝑐(𝑡) we now have, 

 𝐵(𝑡, 𝜃) = 𝑒− ∫ 𝜓(𝑡,𝑎)𝑑𝑎
𝑡

𝑡−𝜃 = 𝑒
− ∫ (𝐾𝑇(𝑎)−𝐹𝑖(0)𝐾𝑇(𝑎)𝑒

− ∫
𝐾𝑇(𝑏)

𝑃𝑐(𝑏)
𝑑

𝑎
0 𝑏

+
𝐾𝑇(𝑎)

𝑃𝑐(𝑎)
)𝑑𝑎

𝑡
𝑡−𝜃   (28)  

 𝐵(𝑡, 𝑡) = 𝑒− ∫ 𝜓(𝑡,𝑎)𝑑𝑎
𝑡

0 = 𝑒
− ∫ (𝐾𝑇(𝑎)−𝐹𝑖(0)𝐾𝑇(𝑎)𝑒

− ∫
𝐾𝑇(𝑏)

𝑃𝑐(𝑏)
𝑑

𝑎
0 𝑏

+
𝐾𝑇(𝑎)

𝑃𝑐(𝑎)
)𝑑𝑎

𝑡
0   (29) 

  𝜇(𝑡) = 𝜓(𝑡, 𝜃) =
𝑑𝑅(𝑡)

𝑑𝑡

𝐼(𝑡)
= 𝐾𝑇(𝑡)−𝐹𝑖(0)𝐾𝑇(𝑡)𝑒

− ∫
𝐾𝑇(𝑡)

𝑃𝑐(𝑡)

𝑡
0 𝑑𝑡

+
𝐾𝑇(𝑡)

𝑃𝑐(𝑡)
  (30) 
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 𝜑(𝑡, 𝜃) =
𝐾𝑇(𝑡)𝐴𝑝

𝑆(𝑡)
     (31) 

Equations 25 through 31 are the KMES and they are a solution to Equations 6 through 9.  

Since 𝜓(𝑡, 𝜃) and 𝜑(𝑡, 𝜃) are solely functions of time in Equations 30 and 31, we 

therefore continue this manuscript with the nomenclature, 𝜓(𝑡) and 𝜑(𝑡). Lastly, with no loss of 

generality, since 𝑆(𝑡) = 𝑁𝑃 − 𝑁(𝑡), rather than portray the progress of the epidemic in terms of 

susceptibles, 𝑆(𝑡), we henceforth express it in terms of the total cases, 𝑁(𝑡), as in Equation 25. 

Simplified expressions 

The expressions for 𝑁(𝑡), 𝐼(𝑡), and 𝑅(𝑡) can be rewritten in simplified, more intuitive 

forms. The first of these is what we call the Step Response form, which is found by using the 

expression for 𝐵(𝑡, 𝑡) (Equation 29) to rewrite 𝑁(𝑡), 𝐼(𝑡), and 𝑅(𝑡) as,  

 𝐼(𝑡) = 𝑒∫ 𝐾𝑇(𝑡)𝑑𝑡
𝑡

0 𝐵(𝑡, 𝑡)𝐼(0)  (32) 

 𝑁(𝑡) = 𝑒
∫ (𝐾𝑇(𝑡)+

𝐾𝑇(𝑡)

𝑃𝑐(𝑡)
)𝑑𝑡

𝑡
0 𝐵(𝑡, 𝑡)

𝐼(0)

𝐹𝑖(0)
  (33) 

 𝑅(𝑡) = (
𝑒

∫ (𝐾𝑇(𝑡)+
𝐾𝑇(𝑡)
𝑃𝑐(𝑡)

)𝑑𝑡
𝑡
0

𝐹𝑖(0)
− 𝑒∫ 𝐾𝑇(𝑡)𝑑𝑡

𝑡
0 )𝐵(𝑡, 𝑡)𝐼(0).  (34) 

Since 𝐵(𝑡, 𝑡) is the time varying infectiousness input of the original infected group, 𝐼(0), the 

exponential expressions, 𝑒∫ 𝐾𝑇(𝑡)𝑑𝑡
𝑡

0 , 
𝑒

∫ (𝐾𝑇(𝑡)+
𝐾𝑇(𝑡)
𝑃𝑐(𝑡)

)𝑑𝑡
𝑡
0

𝐹𝑖(0)
, and 

𝑒
∫ (𝐾𝑇(𝑡)+

𝐾𝑇(𝑡)
𝑃𝑐(𝑡)

)𝑑𝑡
𝑡
0

𝐹𝑖(0)
− 𝑒∫ 𝐾𝑇(𝑡)𝑑𝑡

𝑡
0 , are the 

step response functions to this input. As a sensibility check, Equation 32 shows that if there were 
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no recovery, that is, if 𝐵(𝑡, 𝑡)𝐼(0) = 1, the infections would grow exponentially until the entire 

population was infected, an intuitive and reasonable result. This also suggests that, even with a 

finite recovery period, everyone in the initially affected population, 𝑆(0), could eventually 

become infected. 

In a final simplification of the solution, as an approximation, if we assume that both 

𝐾𝑇(𝑡) and 𝑃𝑐(𝑡) in Equations 25 through 27 are constant for a period, we arrive at simplified 

expressions for 𝑁(𝑡), 𝐼(𝑡), and 𝑅(𝑡), 

 𝑁(𝑡) = 𝑁(0)𝑒−𝐹𝑖(0)𝑃𝑐(𝑒
− 

𝐾T
𝑃𝑐

𝑡
−1)    (35) 

 𝐼(𝑡) = 𝐼(0)𝑒
−𝐹𝑖(0)𝑃𝑐(𝑒

− 
𝐾T
𝑃𝑐

𝑡
−1)− 

𝐾T
𝑃𝑐

𝑡

     (36) 

 𝑅(𝑡) = (𝑁(0) − 𝐼(0)𝑒
−

𝐾T
𝑃𝑐

𝑡
)𝑒−𝐹𝑖(0)𝑃𝑐(𝑒

−
𝐾T
𝑃𝑐

𝑡
−1)   (37)  

Expressions describing an epidemic 

Beyond sensibility checks, the availability of a closed form opens a pathway to the 

derivation of expressions useful in epidemic description and management. These, too, can be 

easily compared to real world behavior. We illustrate several of these here using the simplifying 

assumption that 𝐾𝑇 and 𝑃𝑐 are constants and that 𝐼(0) = 𝑁(0) = 1 = 𝐹𝑖(0). These simplifying 

assumptions allow the nature of the expressions to be more easily seen and understood.  
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Final Size 

We first use Equation 35 to find an expression for the final size, 𝑁(∞) as 𝑡 → ∞, 

 𝑁(∞) = 𝑒𝐹𝑖(0)𝑃𝑐.      (38) 

We can see, as suggested by the Step Response form of the solution, that if 𝑃𝑐 is large enough, it 

is possible for 𝑁(∞) to equal 𝑆(0).  

The time it would take for 𝑁(∞) = 𝑆(0) is, 

 𝑡 = −
𝑃𝑐

𝐾𝑇
𝑙𝑛(1 −

ln (𝑆(0))

𝐹𝑖(0)𝑃𝑐
)      (39) 

and the criteria that must be true for the entire population to become infected is, 

 𝐹𝑖(0)𝑃𝑐 > ln (𝑆(0)).      (40) 

Equations 38 through 40 enable us to estimate the level of the social interaction that will 

eventually infect the total population and the time in which this will occur if the social 

interaction level does not change. To the degree that our simplifying assumptions are valid, we 

see that the existence of herd immunity is not an inherent property of the Kermack and 

McKendrick model. 

Basic and Effective Reproduction Number, R0 and REff 

If we divide 𝜓(𝑡) into 𝐾𝑇, we find an expression for the Effective Reproduction Number 

(𝑅𝐸𝑓𝑓): 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 13, 2023. ; https://doi.org/10.1101/2023.11.13.23298463doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.13.23298463
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 

 

 𝑅𝐸𝑓𝑓 =
1

1−𝐹𝑖(0)𝑒
− 

𝐾T
𝑃𝑐

 𝑡
+

1

𝑃c 

.  (41) 

A function of both the disease and the behavior of the population, the value of 𝑅𝐸𝑓𝑓 marks two 

key epidemic points. First, when 𝑅𝐸𝑓𝑓 = 1, the peak in the number of new infections occurs and 

the epidemic begins to decline. Second, when 𝑡 = 0, 𝑅𝐸𝑓𝑓 = 𝑃c = 𝑅0; where 𝑅0 is the Basic 

Reproduction Number. 

Time to Peak New Infections and Peak Size 

By setting 𝑅𝐸𝑓𝑓 = 1 in Equation 41, we obtain the following expression for the time 

when the decline in new cases, 
𝑑𝑁(𝑡)

𝑑𝑡
, begins: 

 𝑡𝑑𝑒𝑐𝑙𝑖𝑛𝑒 =
𝑃𝑐ln (𝐹𝑖(0)𝑃𝑐)

𝐾𝑇
.   (42) 

Likewise, if we differentiate both sides of Equation 35 twice, we find an expression for the time 

when 
𝑑𝑁(𝑡)

𝑑𝑡
 will be maximal,  

 𝑡𝑃𝑒𝑎𝑘 =
𝑃𝑐ln (𝐹𝑖(0)𝑃𝑐)

𝐾𝑇
,   (43) 

where 𝑡𝑃𝑒𝑎𝑘 = the time to the peak of new infections. As it should, the peak in new cases 

coincides with the start of the decline of infections. In addition to sensibility, this illustrates that 

equations derived from different portions of the closed form solution are consistent.  
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Equation 43 demonstrates the relationship between the strength of social intervention 

measures, 𝑃c, and the time to the peak of new infections. When social interventions are stronger 

(smaller 𝑃c), the time to the peak will always be shorter.  

We note here that this relationship between the level of social interaction and the 

movement of the peak projected by the KMES is the opposite of the projection of this 

relationship in the SIR models. In the spirit of sensibility and consistency, we highlight this 

qualitative difference between the projections of the KMES and the SIR models because, as we 

show later, the data from the Covid-19 pandemic supports the KMES projection. 

We can also use Equation 43 and Equation 36 to find the peak value of the infections, 

 𝐼(𝑡)𝑃𝑒𝑎𝑘 =
𝐼(0)𝑒(𝐹𝑖(0)𝑃𝑐−1)

𝐹𝑖(0)𝑃𝑐
.    (44) 

During an epidemic, Equation 44 can be used to estimate the potential level of hospitalizations 

that may occur by estimating the fraction of infections that result in hospitalizations and then 

applying it to the right-hand size of the equation. 

Section 2: Veracity of the solution using pandemic data 

In this section, we first estimate 𝐾𝑇(𝑡) and 𝑃𝑐(𝑡) using early Covid-19 epidemic data. 

Armed with these estimates, we then project the average viral load in individuals with Covid-19 

and the progression of cases in six different countries,  
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Estimation of 𝑲𝑻(𝒕)  

With no other a priori information, we continue to assume that, based on where it arises 

in the model, 𝐾𝑇(𝑡) is a parameter associated with the disease, possibly constant for time 

intervals in which the infectious agent does not vary. We follow this assumption to its logical 

conclusion using the data to guide us.  

We begin the analysis with a further refinement of the definition of 𝑃𝑐(𝑡). As previously 

defined, 𝑃𝑐(𝑡) is a function of the population’s behavior and is the average number of infectious 

contacts a member of subpopulation N(t) has across the entire population. If we also assume that, 

during the initial stages of an epidemic, 𝑃𝑐(𝑡) is a function of population density, and that 

people’s infectious mobility extends over an average effective area per unit of time, we can then 

write an expression for 𝑃𝑐𝑟(𝑡): 

 𝑃𝑐𝑟(t) =
𝐴1𝑟(𝑡)𝑁𝑝

𝐴𝑝
= 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑟𝑎𝑡𝑒,  (45) 

where 𝑁𝑝 is the entire population of the region with the infection,  𝐴𝑝 is the area of the region,  

𝑁𝑝

𝐴𝑝
  is the population density, and  𝐴1𝑟(𝑡) is the area an individual infectiously inhabits per unit 

time. 

Analogous to the way we defined 𝑃𝑐(𝑡) using 𝑃𝑐𝑟(𝑡), we now define a quantity, 𝐴1(𝑡), in 

terms of 𝐴1𝑟(𝑡): 

  𝐴1(𝑡) = lim
∆𝑡→0

∫ 𝐴1𝑟(𝑡)𝑑𝑡
𝑡+∆𝑡

𝑡
,  (46) 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 13, 2023. ; https://doi.org/10.1101/2023.11.13.23298463doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.13.23298463
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 

 

where 𝐴1(𝑡) is the effective area infectiously inhabited by an individual. In specifying the area, 

we make an assumption similar to the assumption that we made for 𝑃𝑐(𝑡) in Section 1; that is, the 

area that a person traverses can change, but we assume that if a change in area alters the ratio 

𝑃𝑐𝑛𝑖(𝑡)

𝑃𝑐(𝑡)
, it does so slowly.  

We call 𝐴1(𝑡) the “effective area” because the population is typically only physically 

present within ~1% of the land within a country or region (Ritchie and Roser 2019). If we take 

this into account, then, 
𝐴1(𝑡)

100
= 𝐴𝑟𝑒𝑎 𝑎𝑐𝑡𝑢𝑎𝑙𝑙𝑦 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒𝑑 𝑏𝑦 𝑎 𝑝𝑒𝑟𝑠𝑜𝑛.  

We can now write a new expression for 
𝐾T(𝑡)

𝑃𝑐(𝑡)
: 

 
𝐾T(𝑡)

𝑃𝑐(𝑡)
=

𝐾𝑇(𝑡)𝐴𝑝

𝐴1(𝑡)𝑁𝑝
. (47) 

By substituting Equation 47 into Equation 25, 𝑁(𝑡) = 𝑁(0)𝑒𝐹𝑖(0) ∫ 𝐾𝑇(𝑡)𝑒
− ∫

𝐾T(𝑡)

𝑃𝑐(𝑡)
𝑑𝑡

𝑡
0 𝑑𝑡

𝑡
0 , assuming 

that both 𝑁(0) and 𝐹𝑖(0) are equal to 1, and both 𝐾𝑇(𝑡) and 𝑃𝑐(𝑡) are constants in the initial 

stages of the epidemic, we can derive the expression: 

  𝐹(𝑁(𝑡) =
𝐴1𝑁𝑝

𝐴
ln (1 +

ln(𝑁(𝑡))

−
𝐴1𝑁𝑝

𝐴

) = −𝐾𝑇t, (48) 

where we see that if 𝐾𝑇 is a constant, then Equation 48 predicts that 𝐹(𝑁(𝑡)) is a linear function 

of time.  
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Table 1. Initial COVID-19 pandemic data and population densities for various countries ((Roser et 

al 2021), case and date data; (Worldometers 2021, population density data) 

  

Date first 

case 

reported 

Calculation 

date 

Days between the 

first case reported 

and the calculation 

date 

Cases on 

calculation 

date, N(t) 

Population density 

(people/km2) 

South Korea 22 Jan 21 Feb 30 204 527 

USA 22 Jan 19 Mar 57 13,663 36 

Sweden 1 Feb 7 Mar 35 179 25 

Italy 31 Jan 24 Feb 24 229 206 

Spain 1 Feb 13 Mar 41 5,232 94 

New Zealand                              28 Feb 19 Mar 20 28 18 

All dates are in 2020.  

Excepting 𝐴1, all the quantities in Equation 48 can be found for each country in the time 

before containment measures were enacted. Therefore, we can use equation 48 to assess whether 

𝐾𝑇 can be reasonably assumed to be constant. Using the values for population density, 𝑁(𝑡), and 

the days between the first case reported and the calculation date found in Table 1 in Equation 48, 

through a process of iteration, we then determined that the best value for 𝐴1 to create the straight 

line plotted in Figure 1 was 0.48 km2. Since we defined 𝐴1 as the effective area, the actual area is 

0.0048 km2, a plausible value. 
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Figure 1. Verification that 𝑲𝑻 is the same for all countries. The data from Table 1 is plotted using Equation 

48 and 𝐴1 = 0.48 𝑘𝑚2. Each data point corresponds to a different country. The value of 𝐾𝑇 is the negative of the 

slope of the line, and 𝐾𝑇  is closely approximated everywhere by 𝐾𝑇 ≈ 0.26 

 

As noted in the figure, the line has an R2 = 0.956 as a fit to the data points and the slope 

of this line is 0.26, the value of 𝐾𝑇.  We take the result of this analysis as strong support for the 

plausibility that, in the initial stages of the pandemic, 𝐾𝑇 was a constant across all the sampled 

countries and is, therefore, appropriately taken to be a parameter of the disease.  

Viral Load 

We now further support our argument that 𝐾𝑇(𝑡) is a parameter of the disease by 

demonstrating that the viral load is parameterized solely by 𝐾𝑇(𝑡). We start with the observation 
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that the step response structure of the KMES suggests that it should also contain an expression 

for the viral load of the disease.  

Equation 29 provides a convenient starting point because it describes the evolution of the 

infectiousness of the initially infected population.  If, in this equation, we continue with the 

assumption that 𝐾𝑇(𝑡) is a constant; and we set 𝑃𝑐 = 𝐼(0) = 1 (i.e., there was only one initial 

infection and this infected person contacted, on average, only one person during the epidemic), 

we then obtain an expression for the infectiousness of the initially infected person, 

 𝐵(𝑡, 𝑡) = 𝑒−(𝑒−𝐾𝑇𝑡−1)−2𝐾𝑇𝑡      (49) 

We know that, as explained in our third thought experiment, infectiousness does not 

equate to the actual viral load. Rather, it is a measure of the ability to infect and is dependent on 

the portion of contacts that remain infectable as well as the viral load. Therefore, since the 

available number of infectable people in 𝑃𝑐 is equal to 𝑅𝐸𝑓𝑓, we must divide 𝐵(𝑡, 𝑡) by 𝑅𝐸𝑓𝑓 

(divide Equation 49 by Equation 41) to extract the viral load from the infectiousness. This 

operation yields (for 𝑃𝑐 = 1), 

 𝑉𝑖𝑟𝑎𝑙 𝐿𝑜𝑎𝑑 = 𝑒−(𝑒−𝐾𝑇𝑡−1)−2𝐾𝑇𝑡(2 − 𝑒−𝐾𝑇𝑡) ,    (50) 

and when we then set 𝐾𝑇 = 0.26 in Equation 50, we obtain Figure 2. Of course, we allow time to 

be negative in both Equation 50 and Figure 2 at the beginning of the infection because the 

initially infectious person did not become infected at 𝑡 = 0. 
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Figure 2. Representation of the normalized viral load of an infected person in the Covid 19 

pandemic. The plot was generated using the value 𝐾𝑇 = 0.26 in Equation 50  

  

As we can see, the plot in Figure 2 has the expected characteristics of a normalized viral 

load. Rising quickly, it reaches a maximum of 1, and then declines to zero at a slower, 

exponential pace. To gauge whether the curve in Figure 2, and therefore, Equation 50, truly and 

adequately represent the normalized viral load, we compared some of its characteristics with 

those of average viral loads estimated from direct measurements of individual Covid-19 patients.  

We find that the curve in Figure 2 has the same overall shape and dynamic change in load 

from the peak to 15 days later as data measured by Challenger et al (2021) and Jones et al 

(2022). In these references, using Covid-19 patient data, Challenger et al (2021) found that the 

base 10 exponential decline rate of the viral load was -0.22 with a credible interval between -0.26 
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and -0.17 whereas Jones et al (2022) found a credible interval of the base 10 exponential decline 

of -0.17 to -0.16. A least squares base 10 exponential curve fit to the plot in Figure 2 between 

day 0 and day 15 has a rate of decline of -0.19 with an R2 value of 0.99. This result is an 

indication of the veracity of the KMES and further suggests that 𝐾𝑇 is, indeed, a parameter of the 

disease. 

Using the Google Residential Mobility Measure data to Project Country Data  

If we assume that both 𝐾𝑇 and 𝑃𝑐 are at least piece-wise constant for periods of time, we 

can differentiate both sides of Equation 35, divide the result by 𝑁(𝑡), rearrange the terms, and 

then take the natural log of both sides to obtain the following useful expression, 

 𝑅𝐶𝑂 = 𝑙𝑛 (
𝑑𝑁(𝑡)

𝑑𝑡

𝑁(𝑡)
) = ln(𝐹𝑖(0)𝐾𝑇) −

𝐾T

𝑃𝑐
𝑡    (51) 

We label this the “Rate of Change Operator” (RCO) because it is a measure of the rate of change 

of 𝑁(𝑡), per person within 𝑁(𝑡). Given an estimate for 𝐾𝑇, the RCO is particularly useful for 

projecting current epidemic conditions because only the readily available contemporaneous 

values of 𝑁(𝑡) and  
𝑑𝑁(𝑡)

𝑑𝑡
  are required to estimate the current values of both 𝑃𝑐 and 𝐹𝑖(0). 

We begin the development of epidemic projections by first applying Equation 51 to data 

(Roser, et al. 2021) from six different countries during the initial stages of the Covid-19 

pandemic to create the curves in Figure 3. As can be seen in that figure, there is a period both 

before and shortly after the date of the imposition of containment actions in the six countries  
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Figure 3. Rate of change operator (RCO) curves for COVID-19 cases in various countries.  An 

epidemic can be described by a piecewise linear model using the RCO (Equation 52). A short segment of orange 

dots in each graph is a linear fit to the corresponding points (blue/white circles) in the observed data. The slopes of 

these dotted-line segments are the values of 
𝑲𝐓

𝑷𝒄
 which are tabulated in Table1.  In some countries, RCO curves 

changed markedly soon after the date containment measures were implemented (arrows): A) South Korea, February 

21; (the oval highlights a departure of the observed data from the RCO slope, indicating failures in, or relaxations of, 

social distancing); B) USA, March 16; C) Sweden did not implement any specific containment measures, so the 

model calibration was begun on April 1, the date when the slope of the RCO curve first became steady. D) Italy, 

March 8; E) Spain, March 14; F) New Zealand, March 25. All dates are in 2020. 
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when these RCO curves became straight lines; an indication that it is reasonable to assume that 

𝐾𝑇 and 𝑃𝑐 were approximately constant during this period. 

We subsequently determined the value of  
𝐾T

𝑃𝑐
  by fitting Equation 51 to short, nine data 

point portions early in the straight segments of the RCO time series. We assumed that this fitted 

value was valid for the first time point in the series. We then calibrated the values for 𝑃𝑐 to 

Google’s Residential Mobility Measure (Google 2023) for each country on that first date using 

the expression: 

 𝑃𝑐𝑎𝑙 =
−𝐾𝑇(𝑡)

𝑆𝑙𝑜𝑝𝑒(1−
𝐺𝑅0
100

)
,    (52)  

where 
𝐾T

𝑃𝑐
= 𝑆𝑙𝑜𝑝𝑒 and 𝐺𝑅0 is the value of the Google Residential Mobility Measure on 

the same first date. The 𝑃𝑐𝑎𝑙 values and dates used for each country are listed in Table 2.  

Having calibrated 𝑃𝑐 to the Google Residential Mobility value on a single date, we then 

used the sequence of Google Residential Mobility data following that date to find the subsequent 

daily values of 𝑃𝑐(𝑡) by multiplying 𝑃𝑐𝑎𝑙 by (1 −
𝐺𝑅

100
) (where 𝐺𝑅 is the Google Residential 

Mobility Measure for that date). Using the value of 𝐾𝑇(𝑡) from Figure 4 and these daily values 

of 𝑃𝑐(𝑡), we then employed Equation 25 to project the course of daily total cases (Figure 4) for 

the six countries.  These predictions matched the actual time series of the daily total cases with 

an R2 > 0.85 in each of the six countries for the 60 days following the date 𝑃𝑐𝑎𝑙 was calculated. 

We also used the derivative of Equation 25 to plot the predicted time series of the daily 

new cases in Figure 5 for the six countries for the same 60 days. These predictions have an R2 
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range of 0.01 (Sweden) to 0.94 (New Zealand); and as seen in the figure, the predicted peak of 

new cases was close to the observed peak for all countries.  

We emphasize that the predictions in Figures 4 and 5 are not fits to the full length of the 

data shown. Rather, one constant, 𝑃𝑐𝑎𝑙, for the indicated dates was estimated using only a short, 

linear portion of the epidemic data starting between 7 to 14 days after the imposition of 

containment measures. 𝑃𝑐𝑎𝑙, the prior estimate of 𝐾𝑇 and the Google Residential Mobility 

Measure for each subsequent day were then used to project the rest of the data.  

 

Table 2. Parameters used to model total cases and new daily cases of infection for different 

countries. 

 𝑲𝐓

𝑷𝒄
 

𝑷𝒄𝒂𝒍  Date range for RCO fit 

South Korea 0.22 1.35 February 29–March 8 

USA 0.076 4.10 March 23–March 31 

Sweden 0.036 8.04 April 1–April 9 

Italy 0.080 4.55 March 17–March 25 

Spain 0.099 3.76 March 26–April 3 

New Zealand 0.12 2.65 March 27–April 4 

Parameters from linear fit of rate of change operator (RCO) data in Figure 1. 
𝑲𝐓

𝑷𝒄
 (slope); 𝑷𝒄𝒂𝒍 was calculated 

using Equation A: 𝑷𝒄𝒂𝒍 =
−𝑲𝑻(𝒕)

𝑺𝒍𝒐𝒑𝒆(𝟏−
𝑮𝑹𝟎
𝟏𝟎𝟎

)
. The value for 𝑮𝑹𝟎 was the value of the Google Residential Mobility 

Measure for that country on the first date in the listed date ranges. All dates are in 2020.  
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 Figure 4. Complete KMES model predictions for daily total case counts. A) South Korea; B) USA; C) 

Sweden; D) Italy; E) Spain; and F) New Zealand.  Dots are daily data points observed from (white-center and all 

blue) or calculated (orange) for each country. The KMES model was calibrated using data from the date ranges 

listed in Table 2. R2 > 0.85 for the model fit for all countries for the 60 days after the 𝑃𝑐𝑎𝑙  was calculated: South 

Korea, March1-April 29; USA, March 24-May 22; Italy, March 18–May 16; Spain, March 27-Maz 25; New 

Zealand, March 27-May 25. Sweden April 2- May 31. The deviation of the model from the data in the USA, panel 

(B), after April is elucidated in Supplement 2. All dates are in 2020.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 13, 2023. ; https://doi.org/10.1101/2023.11.13.23298463doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.13.23298463
http://creativecommons.org/licenses/by-nc-nd/4.0/


39 

 

Figure 5. Complete KMES model predictions for number of new daily cases. A) South Korea, R2 = 0.87; 

B) USA, R2 = 0.31; C) Sweden, R2 = 0.01; D) Italy, R2 = 0.88; E) Spain, R2 = 0.82; and F) New Zealand, R2 = 0.94. 

The orange dotted line is the model in all panels. The blue dots are the daily observations from each country. The. R2 

values are between the model and the data, across countries for the 45 days after containment measures were 

instituted. 
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Section 3: Managing an Epidemic  

An important decision to be made during an epidemic is whether to strengthen or loosen 

restrictions on social interactions. To illustrate how the strengthening of restrictions can affect 

the epidemic outcome, in Figure 6 we present a plot of the total cases and new cases per day for 

four countries in two pairs. We created the figure by matching countries with similar populations 

densities and then assuming this meant their baseline social interaction levels were similar. We 

selected these specific countries, because, in a presumably unintentional natural experiment, the 

paired countries imposed very different social restrictions at the outset of the Covid-19 

pandemic, and as can be seen in the figure, their outcomes were very different.  

  

Figure 6. Total cases and new cases per day for countries with comparable population densities, 

which employed different levels of social containment. 
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In the countries which imposed strict policies (New Zealand and South Korea) the total 

cases leveled off sooner and the new cases per day peaked earlier than in their matching 

countries, Sweden and Spain which imposed less stringent restrictions. This is an intuitive result, 

the sort of thing that a veracious epidemic model should project.    

Of course, it is straightforward to look back in time at data and prescribe a better course 

of action. Since we do not have this luxury at the outset of a pandemic, we need a model that 

accurately projects trends and provides decision support. To this end, we can compare how the 

KMES and SIR approximations project the way new cases will trend as social interactions 

change.  

In Figure 7, we plot simulations of both the SIR approximation and the KMES. We used 

Equation 35 to create the KMES simulation and an Euler approximation to solve the simple SIR 

model found in Brauer (2008).. 

 
𝑑𝑆(𝑡)

𝑑𝑡
= −

𝛽𝐼(𝑡)𝑆(𝑡)

𝑁𝑝
, (53) 

 
𝑑𝐼(𝑡)

𝑑𝑡
=

𝛽𝐼(𝑡)𝑆(𝑡)

𝑁𝑝
− 𝛾𝐼(𝑡),  (54) 

 
𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾𝐼(𝑡), and (55) 

 𝑁𝑝 = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡),  (56)  

where 𝛽 and 𝛾 are constants 
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Figure 7. SIR and KMES simulations with varying levels of social restrictions. The arrows point in the direction 

the curves trend as the social restrictions are increased. The value of 𝛾 = 0.2 in the upper two panels and 𝐾𝑇 = 0.26 

in the lower two panels. 

 

As is easily seen in Plots 6A and B, more social restrictions in the SIR approximation 

(lower 𝛽) result in both the plateau of total cases and the peak in new cases occurring later, 

projections which do not match the data from the countries in Figure 6. This does, however, 

illustrate the phenomenon known as “Flatten the Curve” (Dilaurio, F., et al, 2011) and the 

analytical results for the SIR model in (Kröger and Schlickeiser, 2020).  

In contrast, as seen in the lower panels in the figure, the KMES projects that a peak in 

daily new infections will occur earlier (Plot D in Figure 7; supported by Equations 42 and 43) 

and that total infections will plateau sooner (Plot C in Figure 7) with less social interaction 

(lower values of 𝑃𝑐(𝑡)). These trend projections are, in fact, intuitive, and match well the trends 
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of the actual case data in Figure 6. This supports the veracity of the KMES and contradicts the 

projections of SIR models.  

Diagnosing the status of an Epidemic 

Motivated by the observation that the existing, accepted model of epidemics, the SIR 

model fails to project even the qualitative features of the observed, paired country data, in the 

remainder of this section we demonstrate how to use the analytical expressions developed from 

the KMES in Section 1 to characterize an ongoing epidemic. Then, based on this 

characterization, we suggest how policy recommendations for the public with the aim of ending 

an epidemic could be made.  

We first demonstrate the ability of the KMES to project future cases using the United 

States data from the Covid-19 pandemic. We make this projection by first calculating the value 

of the RCO on a given day and the seven previous days. We then fit Equation 51 to those eight 

known values to find their intercept, ln(𝐹𝑖(0)𝐾𝑇), and slope, 
𝐾T

𝑃𝑐
. We assumed that these values 

were constant for those prior eight days and remained constant for the following 21 days, a total 

of 29 days. Using these in Equation 35 with the time set to 21 days, along with the value of the 

total cases on the chosen day, we projected the total cases 21 days into the future.  

Figure 8 is a plot of that projection overlaid onto a plot of the actual total case data for 

554 days following April 30, 2020. As seen in the figure, the KMES was relatively consistent in 

accurately projecting the cases 21 days in advance. The projected data points have a Mean 

Absolute Percentage Error of 4.1% over the entire period when compared to the actual values.    
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Figure 8 demonstrates the projection power of the KMES; however, a projection alone is 

not adequate for addressing a paramount goal of public health management: recognizing and 

avoiding outbreaks. For detecting emerging outbreaks, we must use a measure which reflects the 

underlying dynamics, such as the 𝑅𝐸𝑓𝑓. Fortunately, if we have an estimate of 𝐾𝑇, we can always 

determine the daily value of the 𝑅𝐸𝑓𝑓 by calculating the contemporaneous RCO and using the 

result in a restatement of Equation 41,  

 𝑅𝐸𝑓𝑓 =
1

1−
𝑒𝑅𝐶𝑂(𝑡)

𝐾𝑇
+

1

𝑃c 

.     (57) 

 

 

Figure 8. Projection of cases in the United States from April 25, 2020 to November 4, 2021. The Orange line is 

the projection of cases 21 days in the future from the point of each actual data point. 
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Of course, we must also first use the technique demonstrated above to evaluate 
𝐾T

𝑃𝑐
 to then find 

the value of 
1

𝑃c 
 for use in Equation 57. 

Figure 9 depicts the application of Equation 57 to the US Covid-19 data (Roser et al, 

2021) for new daily cases over the same time frame as was used in Figure 8. The blue area 

represents the new daily cases, and the orange strip denotes the period when the 7-day average 

𝑅𝐸𝑓𝑓 (computed over the prior 7 days) was greater than 1. The start of each orange section marks 

the beginning of an outbreak; and at the end of each orange section, (where 𝑅𝐸𝑓𝑓 < 1), we find 

the peak in the daily new cases, as might be expected. 

 

Figure 9. Periods when the 7-day average 𝑹𝑬𝒇𝒇 > 𝟏. The Orange areas indicate the periods when the 𝑅𝐸𝑓𝑓 

averaged above 1 for the prior 7 days. 
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Controlling the Epidemic 

If the calculation of 𝑅𝐸𝑓𝑓 identifies an outbreak, social policies should immediately be 

modified to blunt the impact. Here we demonstrate how expressions based on the KMES can be 

used both to set out a program for gaining control of the emerging outbreak and then to 

determine how those control measures might be adjusted to manage the epidemic in a fashion 

consistent with social and political realities.  

We start by defining the acceleration of an epidemic as the derivative of 
𝑑𝑁(𝑡)

𝑑𝑡
. This can 

be derived by differentiating Equation 35 twice: 

𝑑2𝑁(𝑡)

𝑑2𝑡
= (𝐾T𝐹𝑖(0)𝑒

−
𝐾𝑇
𝑃𝑐

𝑡
−

𝐾𝑇

𝑃𝑐
)

𝑑𝑁(𝑡)

𝑑𝑡
= 𝐾𝑇(

𝐼(𝑡)

𝑁(𝑡)
−

1

𝑃𝑐
)

𝑑𝑁(𝑡)

𝑑𝑡
=  (𝑒𝑅𝐶𝑂(𝑡) −

𝐾𝑇

𝑃𝑐
)

𝑑𝑁(𝑡)

𝑑𝑡
= 𝐾T

𝑑𝐼(𝑡)

𝑑𝑡
 .  

       (58) 

Equation 58, with its four equivalent expressions can be used to quickly determine 

whether the control measures in place, represented by 𝑃c, are sufficiently effective. When the 

term, 𝑒𝑅𝐶𝑂(𝑡) −
𝐾𝑇

𝑃𝑐
 , in the third equality is positive, then the control measures are not strong 

enough; and conversely, when this term is negative, the epidemic is being brought under control. 

We note that this latter condition is coincident with 𝑅𝐸𝑓𝑓 < 1. 

The maximum value of 𝑃𝑐 that will begin to bring down the new cases per day is the 

quantity upon which management strategies pivot. If we set the left-hand side of Equation 58 to 

zero, use the third expression from the left in Equation 58 and solve for 𝑃𝑐, we arrive at a 

defining relationship for this critical objective of epidemic management: 
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 𝑃𝑐 < 𝐾𝑇𝑒−𝑅𝐶𝑂(𝑡).   (59) 

Equation 59 succinctly states that 𝑃𝑐 must be managed to stay below 𝐾𝑇𝑒−𝑅𝐶𝑂(𝑡) to 

ensure that the acceleration is negative and therefore, slow the epidemic. Since the 𝑅𝐶𝑂(𝑡) can 

be computed every day and 𝐾𝑇 can be estimated using the technique illustrated in Section 2, the 

maximum level of infectable social contact allowable (𝑃𝑐 in Equation 59) to start or continue 

decreasing the number of new cases per day can always be calculated. (As a side comment, and 

as explained in Supplement 3.1, if the slope of the RCO curve is determined from the graphical 

analysis to be greater than zero, then an outbreak has occurred and immediate reductions in 

social interactions are needed.)   

If the situation warrants, we can determine the time needed to reach a desired reduction in 

𝑑𝑁(𝑡)

𝑑𝑡
, at a future time, 𝑡 + 𝑡𝑡𝑎𝑟𝑔𝑒𝑡 for a given level of social interaction. If we define the 

fractional reduction in cases we desire as 𝐷𝑡𝑓, 

 𝐷𝑡𝑓 =

𝑑𝑁(𝑡+𝑡𝑡𝑎𝑟𝑔𝑒𝑡)

𝑑𝑡
𝑑𝑁(𝑡)

𝑑𝑡

=
𝑁𝑒𝑤 𝐶𝑎𝑠𝑒 𝑇𝑎𝑟𝑔𝑒𝑡 𝑅𝑎𝑡𝑒

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑁𝑒𝑤 𝐶𝑎𝑠𝑒 𝑅𝑎𝑡𝑒
,   (60) 

then, using the derivative of Equation 35, we arrive at the following expression: 

 𝐷𝑡𝑓 = 𝑒−𝑃𝑐 (𝑒
−

𝐾𝑇
𝑃𝑐

(𝑡+𝑡𝑡𝑎𝑟𝑔𝑒𝑡)
−𝑒

−
𝐾𝑇
𝑃𝑐

(𝑡)
)𝑒

−
𝐾𝑇
𝑃𝑐

𝑡target
.   (61) 

If 𝑡 ≫ 𝑡𝑡𝑎𝑟𝑔𝑒𝑡, then 𝑒
−

𝐾𝑇
𝑃𝑐

(𝑡+𝑡𝑡𝑎𝑟𝑔𝑒𝑡)
− 𝑒

−
𝐾𝑇
𝑃𝑐

(𝑡)
≈ 0 and we obtain the following equation 

from the remaining terms: 
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 𝑡𝑡𝑎𝑟𝑔𝑒𝑡 = −
𝑃𝑐ln (𝐷𝑡𝑓)

𝐾𝑇
.   (62) 

Equation 62 quantitates the number of days, 𝑡𝑡𝑎𝑟𝑔𝑒𝑡, that a level of social containment, 𝑃𝑐, must 

be maintained to reach a desired reduction of the current daily cases.  

As an example, in the case of the United States, based on the data shown in Figure 9, a 

very large outbreak started in the last days of September and early October 2020. On October 10, 

2020, there were 58.082 new cases and the outbreak peaked January 8, 2021, 90 days later with 

283,204 recorded cases. Had the US implemented a social program to reduce the number of 

average infectious contacts (𝑃𝑐) to 10 people for those same 90 days, instead of an outbreak and 

a peak, equation 62 projects that the number of new cases on January 8, 2021 would have been 

approximately 5800, a 98% reduction from the actual value.  In Supplement 2, we present further 

examples and additional insights utilizing the data in several additional countries. 

Discussion 

In response to Diekmann’s call for action, the “wisdom” we believe we have found in the 

Kermack and McKendrick integro-differential equations appears to be substantial. Foremost, we 

suggest that the KMES obviates the need for any approximation to these same equations. Rather 

than use an approximation, such as the SIR special case, we can instead use the KMES itself to 

predict the dynamics of an epidemic, to determine whether the societal controls in place are 

adequately managing the epidemic, and to develop quantitative measures for guiding the 

behavior of the populace.  
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It is reassuring that the KMES has an intuitive form, as exemplified by the systems view 

encapsulated in Equation 32: 

 𝐼(𝑡) = 𝑒∫ 𝐾𝑇(𝑡)𝑑𝑡
𝑡

0 𝐵(𝑡, 𝑡)𝐼(0) (32) 

This equation states that the input of infections, 𝐵(𝑡, 𝑡)𝐼(0), is transformed into the time varying 

output of infectiousness, 𝐼(𝑡), through an exponential step response function, 𝑒∫ 𝐾𝑇(𝑡)𝑑𝑡
𝑡

0 . Our 

analysis has led us to affirm this obvious-in-retrospect, practical mathematical characterization of 

epidemic dynamics. 

The KMES also fulfills other expectations. As a first example, we recognize Equations 

25 and 35 as Gompertz equations. This form is supported by Onishi et al (2021) who 

demonstrated that the Covid-19 epidemic time course in many countries was well fit by a 

Gompertz model. These authors do not offer a basic principles argument as to why this is so, but 

they demonstrate a strong correlation to this aspect of our model structure. Additionally, using 

the independently measured population mobility in the Google data, we found that the KMES 

accurately projects phenomena which arose in the Covid epidemic. This contrasts with the weak 

correlations of the SIR construct to mobile phone mobility data found by prior authors 

(Wesolowski 2015). 

With the availability of an analytical solution, previously unknown, pragmatic 

expressions of key epidemiological relationships were found for the following: Time course of 

the epidemic size; Final epidemic size; Time to peak infections; Effective Reproduction number; 

Viral load; as well as expressions for targets for reducing the size of an epidemic along a planned 
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path. The KMES also enabled us to illustrate that phenomena predicted using the SIR 

approximation, herd immunity and “flatten the curve”, are not, in fact, properties of the Kermack 

and McKendrick integro-differential equations. Therefore, we suggest that the analytical 

expressions derived from the KMES should become the first elements in a new toolbox for 

public health officials.  

Conveniently and convincingly, these expressions agree with intuition and behave 

sensibly. For instance, the model expression for Time to the peak in new cases, in Equations 42 

or 43, passes smoothly through the epidemic maximum as the value of 𝑅𝐸𝑓𝑓 passes through one 

as the social interactions are decreased by reducing the value of 𝑃𝑐. This contrasts with the 

behavior of the expression for the time to the peak derived from SIR models (Kröger and 

Schlickeiser, 2020; Equation 59 and Figure 5). While we do not doubt that their expressions have 

been correctly derived from the SIR equations, their expressions do show that, for a given 

population size and initial value of 𝐼(0), the estimated time to the peak in new infections 

becomes increasingly larger as social interactions are decreased and 𝑅𝐸𝑓𝑓 approaches the value 

one. The time to the peak in new infections then suddenly plunges to negative infinity just as 

𝑅𝐸𝑓𝑓 reaches one. This peculiarity mathematically summarizes the claimed phenomena behind 

the concept of “flattening the curve”, but it is unsettling and nonintuitive.  

Our expressions for the time to the peak, Equations 42 and 43, have none of this peculiar 

behavior and, as we’ve demonstrated using Figure 4 and 5, the form of these equations fit well 

the data from different countries which imposed very different containment strategies. These 

equations show that as people interact less frequently (social containment is increased), the peak 
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number of infections is much lower, and it occurs earlier. The KMES shows that strong 

containment actions shorten the epidemic, as one would intuit; and as data from several countries 

clearly demonstrate. This finding is also supported by the data presented in Figure 4 in Harris 

(2023). 

Our expression for the final epidemic size conflicts with an oft derived tenet of 

epidemiology: that an entire population cannot become infected, the so-called phenomenon of 

herd immunity. Equations 38 through 40, mathematical expressions for the final size, the time to 

reach it and the associated contact required, in their mathematical simplicity, give voice to the 

intuitive conclusion that if the people contact each other infectiously at a high enough level for a 

long enough time, an epidemic can spread to an entire population and herd immunity is not 

guaranteed. Epidemiology should be freed from this tautology. 

It should not be surprising that a closed form, complete solution to the epidemic 

equations produces an expression for the viral load. The curve in Figure 2, wholly derived from 

the Covid-19 data, has the characteristics many investigators have expected a viral load to have 

(Challenger et al 2022, Jones et al 2021, Diekmann 2022). While Jones and Challenger reached 

their conclusions through direct measurement of the viral load of thousands of patients, the same 

form has emerged from the KMES using only the country case data.  

Equations 26 and 27 show that both 𝐼(𝑡) and 𝑅(𝑡) directly depend on both 𝐾𝑇(𝑡), a 

property of the disease and 𝑃𝐶(𝑡), a function of the population behavior. It is intuitive and 

obvious that both 𝐼(𝑡) and 𝑅(𝑡) will depend on properties of the disease, but the form of the 

KMES demonstrates the equally obvious fact that their values also depend on the behavior of the 
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population. We explain this dependency in Section 1 and Supplement 1 by showing that 𝐼(𝑡) is 

best interpreted as the total infectiousness within the infected population 𝑁(𝑡). As a 

complementary interpretation, 𝑅(𝑡) is best thought of as the degree of recovery from 

infectiousness within 𝑁(𝑡).  Therefore, a previously infected individual is simultaneously a part 

of both the infected and recovered populations with the degree of membership determined by the 

parameter ψ(𝑡).  

As time goes on, the degree of membership inevitably moves infected individuals 

towards membership in the recovered community, but during this time, the infectiousness of all 

individuals vary with both their viral load and number of contacts. An increase in social contact 

causes an increase in infectiousness, which, in turn, decreases the degree to which the person 

remains in the recovered population and vice versa. Therefore, as an individual’s viral load 

changes, based on time and the disease dynamics, so too, does this individual’s ability to infect 

others change based on their level of social interaction.    

This concept of variable membership erodes the utility and fidelity of a compartmental 

model wherein people move irreversibly from being infected to recovered. Rather, assuming 

individual immunity exists, the proper construct is that there are only two compartments: 1) not 

yet infected, S(𝑡); and 2) previously infected, 𝑁(𝑡); and only from the latter of these is there no 

escape.  

We recognize that our analysis can be improved by an exploration of population 

interactions that differ from the ones we assumed. For instance, we made the simplifying 
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assumption that the ratio 
𝑃𝑐𝑛𝑖(𝑡)

𝑃𝑐(𝑡)
 remains constant as 𝑃𝑐 changes. This is a reasonable assumption, 

but an analysis which does not require its use may provide even deeper insights into epidemic 

behavior and management.   

The analysis can also be further improved by using the enormous amount of case data 

now available. This additional data can improve the estimate of the key parameter, 𝐾𝑇(𝑡), 

including variations in time (with mutations of the infectious agent) and possibly with local 

genetic variations in the population affected. This could further elucidate the actions people and 

governments need to take to achieve the target values of 𝑃𝑐(𝑡). 

The KMES provides new logical and analytical tools to quickly and easily characterize 

the state of an epidemic and provide guidance to public health officials. These tools show, 

unequivocally, that with stronger initial measures, an epidemic can be stopped more quickly with 

much less economic damage than predicted by conventional models. Although each disease 

agent will have its own infectious process, the overall epidemic dynamics can ultimately be 

controlled by the behavior of the population; and the KMES quantitates the necessary level of 

that control.  
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Supplement 1 Insights developed from the KMES  

As we derived the KMES, we did not stop to detail insights provided by some of the 

important expressions. In this section, we will provide those insights. 

The first expression is the relationship described by the derivative of Equation 32: 

 
𝑑(

𝐼(𝑡)

𝑁(𝑡)
)

𝑑𝑡
= −

𝐾𝑇(𝑡)𝐼(𝑡)

𝑃𝑐(𝑡)𝑁(𝑡)
  (23) 

This seemingly simple expression is, along with Equation 2, a fundamental statement of 

an infectious epidemic. 

If we write out the derivative, 
𝑑(

𝐼(𝑡)

𝑁(𝑡)
)

𝑑𝑡
, in Equation S1-1, we obtain:  
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𝑑(

𝐼(𝑡)

𝑁(𝑡)
)

𝑑𝑡
=

𝑑(𝐼(𝑡)

𝑑𝑡

1

𝑁(𝑡)
−

𝑑𝑁(𝑡)

𝑑𝑡

𝐼(𝑡)

𝑁(𝑡)2
= −

𝐼(𝑡)

𝑁(𝑡)

𝐾T(𝑡)

𝑃𝑐(𝑡)
      (S1-2) 

With some rearrangement of the terms, we find the following expression: 

 
𝑑(

𝐼(𝑡)

𝑁(𝑡)
)

𝑑𝑡
=

𝑑𝐼(𝑡)

𝑑𝑡
−

𝑑𝑁(𝑡)

𝑑𝑡

𝐼(𝑡)

𝑁(𝑡)

𝑁(𝑡)
=

−𝐼(𝑡)
𝐾T(t)

𝑃𝑐(𝑡)

𝑁(𝑡)
    (S1-3) 

We highlight equation S1-3, because it brings to light an important insight when we set 

𝑡 = 0, and 𝐼(0) = 𝑁(0). Setting 𝐼(0) = 𝑁(0) and 𝑡 = 0 in Equation S1-3 and recognizing that 

𝑑𝑁(𝑡)

𝑑𝑡
−

𝑑𝐼(𝑡)

𝑑𝑡
=

𝑑𝑅(𝑡)

𝑑𝑡
 we obtain the following: 

 
𝑑𝑅(0)

𝑑𝑡
= 𝐼(0)

𝐾T(0)

𝑃𝑐(0)
     (S1-4) 

Since all three quantities on the righthand side are positive, Equation S1-4 provides a 

possibly startling result: The recovered population begins to grow the instant the epidemic starts! 

Furthermore, Equation S1-4 tells us that the infectiousness of the individuals in the 

population 𝐼(0) (and by extension 𝐼(𝑡)) is not a constant during the time they are infected.  This 

may be obvious because the viral load changes as the infectiousness of a person changes.  

However, Equation S1-4 handily provides us with the initial rate at which the infectiousness of 

population 𝐼(0) is changing. That rate is 
𝐾T(0)

𝑃𝑐(0)
.  

It is not surprising that disease infectiousness is a function of 𝐾T but it is perhaps less 

obvious that the infectiousness changes directly and inversely to the population behavior, 𝑃c.  

The infectiousness of a person is not just dependent on the viral load, but also and comparably so 
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on the contacts a person has with other, not-yet-infected people.  Semantically, if an infected 

person never contacts another noninfected person, they are never truly infectious in the sense that 

they cannot advance the disease.  We can describe 𝑅(𝑡) in an obverse manner, since 𝑅(𝑡) is the 

reduction in the total infectiousness that has occurred in the population, 𝑁(𝑡); and so, it is also a 

function of the disease transmissibility and population behavior. 

We gain further insight into the meaning of the KMES by taking the derivative of 

Equation 34 and dividing by 𝐼(𝑡). Then, using Equation 23 we obtain,  

  
1

𝐼(𝑡)

𝑑𝐼(𝑡)

𝑑𝑡
= 𝐾T

𝐼(𝑡)

𝑁(𝑡)
−

𝐾T

𝑃𝑐
 = 𝐾𝑇 −

𝑅(𝑡)

𝑁(𝑡)
𝐾𝑇 −

𝐾T

𝑃𝑐
. (S1-5) 

The left-hand side of Equation S1-5 is the rate of change of infections per infectious 

person. Since 𝐾𝑇 =
𝑑𝑁(𝑡)

𝑑𝑡

1

𝐼(𝑡)
, and is the rate at which infectious persons cause new infections, the 

terms −
𝑅(𝑡)

𝑁(𝑡)
𝐾𝑇 −

𝐾T

𝑃𝑐
 must be the rate of recovery per infectious person, 

𝑑𝑅(𝑡)

𝑑𝑡

1

𝐼(𝑡)
. 

Finally, we can use Equations 35, and 23 to write this simple expression for the solution 

for total cases if 𝐾𝑇(𝑡) and 𝑃𝑐(𝑡) remain constant: 

 𝑁(𝑡) = 𝑁∞
(1−𝐹𝑖(𝑡))

. (S1-6) 

where 𝐹𝑖(𝑡) =
𝐼(𝑡)

𝑁(𝑡)
= 𝑒

−
𝐾𝑇
𝑃𝑐

𝑡
 and is the fraction infected. 
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Supplement 2. Controlling epidemics early 

The quantitative mathematical relationships derived from the KMES in Section 1 

characterize the dynamics of an epidemic and illustrate that strong and early intervention is 

critical. Equation 38 quantifies that the ultimate number of individuals infected in an epidemic, 

N∞, will be exponentially dependent on the number of people with whom each person interacts.  

The real-world country data provide vivid examples of the consequences projected by the 

KMES. Both South Korea and New Zealand enacted strong and early interventions compared to 

other countries (Campbell, C 2020; Field, A 2020), as reflected by their 
𝐾𝑇

𝑃𝑐
 values (Table 2). 

These strong interventions led to earlier peaks in new cases and to far fewer total cases than in 

other countries (Figures 4 and 5) in the first few months of the pandemic: the peak number of 

new cases in both South Korea and New Zealand was 90–99% lower than in other countries, a 

compelling validation of the explicit statement in the KMES that strong intervention leads to 

exponentially more favorable outcomes. 

In the USA, interventions initiated on March 16 began to have an effect around March 

23, 2020 (Figure 4B); the number of active cases on March 23, 2020 (Roser et al 2021) was 

46,136. Using the values of ln (𝐹𝑖(0)𝐾𝑇(t)) and 
𝐾𝑇

𝑃𝑐
 calculated from the data, Equation 38 

predicts that the ultimate number of cases would have been approximately 1.22 million. If the 

same intervention had been implemented and sustained starting on March 10, when there were 

59 times fewer (782) cases (Roser et al 2021), the model predicts that the ultimate number of 
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cases would also have been 59 times lower, or 20,725. Thus, earlier action could have reduced 

the ultimate number of projected cases by more than 98%. Of course, the projected estimate of 

approximately 1.22 million total USA cases would only have occurred if the effectiveness of the 

interventions that were launched on March 16 had been sustained. Unfortunately, a marked 

reduction in effective interventions occurred in many parts of the USA in mid-April, well before 

the official reopening of the economy (Elassar 2020). This caused a second surge in new cases in 

late April and is why the observed data and the model prediction diverge in Figure 4B.  

As shown in the main body of the paper, Section 1, the KMES provides an estimate of 

the time to the peak of new cases, tmax. Using Equation 42 and the values of ln (𝐹𝑖(0)𝐾𝑇(t)) and 

𝐾𝑇

𝑃𝑐
 calculated from the data, the predicted peak in new cases in the USA would have occurred 

near March 24 if the intervention had begun on March 10. Instead, a 6-day delay in effective 

intervention shifted the initial peak to April 11, 16 days later, as projected, and that peak was 

much higher (Figure 4B). 

As shown, too, in Section 3, epidemic acceleration, the instantaneous potential to change 

the pace of the epidemic, can be determined at any point in the epidemic and depends on the 

social containment actions in effect at that time. What is perhaps less apparent, but predicted by 

the KMES, is that two countries with identical numbers of cases on a given day can, in fact, have 

different accelerations on the same day, and will, therefore, exhibit different dynamics 

immediately after that day.  
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South Korea and New Zealand (Figure 4A and F) had nearly identical case counts when 

each imposed strong containment measures (204 cases in South Korea on February 21, and 205 

in New Zealand on March 25). Their models suggest that their interventions were about similarly 

effective (
𝐾𝑇

𝑃𝑐
 = 0.22 in South Korea and 0.12 in New Zealand; see Table 2). However, since 

South Korea has a much higher population density than New Zealand ((Worldometers 2021), 

data in Table 1), it had a much higher number of interactions when the interventions were 

imposed and, therefore, a higher rate of acceleration, as evidenced by its higher RCO at the time 

of intervention. Indeed, the rate of change of new cases was higher in South Korea than in New 

Zealand, and the later number of cases in South Korea was higher than in New Zealand (Figure 

4A and F).  

Equation 42 clearly illustrates these lessons. As social distancing is strengthened (lower 

𝑃𝑐), the Effective Replication Number decreases, and the epidemic slows. Early and strong 

interventions, especially in countries with indigenously high levels of social interaction, are 

necessary to stop an epidemic in the initial stages. Reopening, enacted too early, can reignite the 

epidemic, dramatically increasing the number of cases. The astonishing magnitude of the effects, 

driven by only a few days of delay, derives from the doubly exponential nature of the underlying 

relationships. 
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Supplement 3. Ending an Ongoing Epidemic 

We can use the KMES to design measures to end an epidemic in an advanced stage. The 

management plan is built by first using Equation 62 to predict the number of days a given level 

of intervention, 
𝐾𝑇

𝑃𝑐
, is needed to reduce the new daily cases by a target fraction, 𝐷𝑡𝑓. 

For example, using Equation 62, we see that a country targeting a 90% reduction of new 

cases per day (e.g., from 50,000 to 5,000 cases per day, 𝐷𝑡𝑓 = 0.1), can attain its target in about 

12 days by imposing a containment level of  
𝐾𝑇

𝑃𝑐
= 0.2. The South Korea and New Zealand data 

demonstrate that Equation 62 is valid and that 
𝐾𝑇

𝑃𝑐
= 0.2 is achievable for this duration. Both 

countries achieved a value of  
𝐾𝑇

𝑃𝑐
 close to 0.2 for the time necessary to produce a 90% reduction. 

It took 13 days for South Korea (March 3–16) and 15 days for New Zealand (April 2–15) to 

reduce their new cases by 90% between the dates shown. 

Returning to the planning example, after achieving the initial 90% reduction, a reasonable 

next step might be to relax social containment to a level that allows the economy to remain 

viable, while preventing the epidemic from erupting again. We can again find the level of  
𝐾𝑇

𝑃𝑐
 

necessary to achieve a chosen target, using Equation 62. If an additional 90% reduction in new 

cases per day is desired, and a period of 90 days is tolerable for that reduction, then a new level 

of approximately  
𝐾𝑇

𝑃𝑐
= 0.026 is needed. This equates to a 90-day period during which each 
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person can be in contact with seven specific people, in an infectable way. Note that this is three 

times less stringent than the original USA shutdown level in April 2020 as shown by the level of  

𝐾𝑇

𝑃𝑐
 calculated for the United States in that period (Table 2). Thus, with a well-planned approach, 

a country can reduce its new daily cases by 99% in approximately 100 days, enabling the country 

to control, and essentially end the epidemic, while simultaneously maintaining economic 

viability.  

If even 0.026 is too restrictive, we can choose a still lower 
𝐾𝑇

𝑃𝑐
, but it must be large 

enough to avoid a new outbreak. A lower bound for the new value of  
𝐾𝑇

𝑃𝑐
, high enough to prevent 

an outbreak, can be found using Equation 54.  

We can easily monitor the progress of interventions using the RCO, as the curve for 

South Korea illustrates (Figure 4A). Had this country maintained the implemented level of 

distancing measures, the data would have followed the initial slope. However, the actual data 

departed from the slope, heralding failures in (or relaxation of) social distancing, which were 

later documented to have occurred during the indicated time frame (Campbell 2020) (circled 

data, Figure 4A). Because it summarizes epidemic dynamics, we can use the RCO to 

continuously determine the effectiveness of implemented measures and whether they need 

adjustment.  
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Supplement 3.1 Outbreaks 

We can see from Equation 51 that if the social interventions are strengthened (lower 𝑃𝑐) 

the slope of the RCO curve will steepen and if the interventions are relaxed, the slope will 

become shallower. Therefore, if the value of 𝐾𝑇(𝑡) does not change due to a change in the 

disease transmissibility, the RCO is a metric for monitoring the population interactions. It is also 

clear that under the assumptions used to develop the KMES, 
𝐾𝑇

𝑃𝑐
  must always be greater than 

zero, and the RCO slope can never become positive. However, this only remains true if these 

three conditions remain true: 1) immunity persists, 2) no new infections are introduced from 

outside the area, 3) ∆𝑃𝑐𝑛𝑖(𝑛∆𝑡) is a much smaller order of magnitude than the new infections, 

𝐾𝑇(𝑛∆𝑡)∆𝑡. We call the latter two conditions the assumption that the epidemic is contiguous. 

If new infections are introduced into a portion of the population that has thus far been 

disconnected from the previously infected area, and therefore, has only susceptible people, then 

the assumption of contiguousness does not hold. This is a common situation when infected 

people travel from an infected area to a previously uninfected area and cause an outbreak. 

In this case, we will begin with Equation 22 and assume that the entirety of the change in 

𝑃𝑐(𝑡) during the time ∆𝑡 is with uninfected new contacts. That is, ∆𝑃𝑐(𝑡) = ∆𝑃𝑐𝑛𝑖(𝑡); and 

Equation 22 becomes, 
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𝐼(𝑛∆𝑡)

𝑁(𝑛∆𝑡)
= (1 −

𝐾𝑇(0)∆𝑡−∆𝑃𝑐(0)

𝑃𝑐(0)
) (1 −

𝐾𝑇(∆𝑡)∆𝑡−∆𝑃𝑐(∆𝑡)

𝑃𝑐(∆𝑡)
) … (1 −

𝐾𝑇(𝑛∆𝑡)∆𝑡−∆𝑃𝑐(𝑛∆𝑡)

𝑃𝑐(𝑛∆𝑡)
)  

        (S3-1) 

and then, since by definition, 𝑛∆𝑡 = 𝑡, as 𝑛 → ∞, ∆𝑡 → 0, Equation S3-4 becomes, 

 
𝐼(𝑡)

𝑁(𝑡)
= 𝐹𝑖(0)𝑒

− ∫
𝐾𝑇(𝑡)−

𝑑𝑃𝑐(𝑡)
𝑑𝑡

𝑃𝑐(𝑡) 
𝑑𝑡

𝑡
0 = 𝐹𝑖(0)

𝑃𝑐(𝑡)

𝑃𝑐(0)
𝑒

− ∫
𝐾𝑇(𝑡)

𝑃𝑐(𝑡) 
𝑑𝑡

𝑡
0    (S3-2) 

The equations for 𝑁(𝑡), 𝐼(𝑡), and 𝑅(𝑡) are then the following: 

 𝑁(𝑡) = 𝑁(0)𝑒
𝐹𝑖(0) ∫ 𝐾𝑇(𝑡)

𝑃𝑐(𝑡)

𝑃𝑐(0)
𝑒

− ∫
𝐾T(𝑎)

𝑃𝑐(𝑎)
𝑑𝑎

𝑡
0 𝑑𝑡

𝑡
0     (S3-3) 

 𝐼(𝑡) = 𝐼(0)
𝑃𝑐(𝑡)

𝑃𝑐(0)
𝑒

𝐹𝑖(0) ∫ 𝐾𝑇(𝑡)
𝑃𝑐(𝑡)

𝑃𝑐(0)
𝑒

− ∫
𝐾T(𝑎)

𝑃𝑐(𝑎)
𝑑𝑎

𝑡
0 𝑑𝑡

𝑡
0 −∫

𝐾T(𝑡)

𝑃𝑐(𝑡)
𝑑𝑡

𝑡
0    (S3-4) 

 𝑅(𝑡) = (𝑁(0) − 𝐼(0)
𝑃𝑐(𝑡)

𝑃𝑐(0)
𝑒

− ∫
𝐾T(𝑡)

𝑃𝑐(𝑡)
𝑑𝑡

𝑡
0 )𝑒

𝐹𝑖(0) ∫ 𝐾𝑇(𝑡)
𝑃𝑐(𝑡)

𝑃𝑐(0)
𝑒

− ∫
𝐾T(𝑎)

𝑃𝑐(𝑎)
𝑑𝑎

𝑡
0 𝑑𝑡

𝑡
0   (S3-5) 

As an alternative, to predict the number of cases in an epidemic affected by an outbreak, 

we can modify Equation 35. Assuming that 𝑡0 = 0, 𝑁(0) = 1, and introducing the notation 

𝑃𝑐𝑥 where 𝑥 denotes the number of the outbreak, Equation 35 can be written as: 

 𝑁(𝑡) = 𝑒−𝑃𝑐1(𝑒
−

𝐾𝑇
𝑃𝑐1

 t
−1).      (S3-6) 
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If a new outbreak occurs in a previously unaffected area of a country, then Equation S3-6 

can be modified as follows: 

 𝑁(𝑡) = 𝑒−𝑃𝑐1(𝑒
−

𝐾𝑇
𝑃𝑐1

 t
−1) +  𝐼2𝑒−𝑃𝑐2(𝑒

−
𝐾𝑇
𝑃𝑐2

 (t−𝑡2)
−1),   (S3-7) 

where 𝐼2 is the number of infectious people who initiated the new outbreak, 𝑃𝑐2 is the social 

interaction parameter in the new outbreak area, and 𝑡2 is the time the new outbreak occurs. We 

have assumed that the disease transmissibility remains the same throughout this illustration. If 

the transmissibility changes in a subset of the population, then a similar formulation, using the 

notation, 𝐾𝑇𝑥, can be utilized to track the populations with the new transmissibility. 

Equation S3-7 can be written in a general form as 

 𝑁(𝑡) = 𝑒−𝑃𝑐1(𝑒
−

𝐾𝑇
𝑃𝑐1

 t
−1) +  𝐼2𝑒−𝑃𝑐2(𝑒

−
𝐾𝑇
𝑃𝑐2

 (t−𝑡2)
−1) … + 𝐼x𝑒−𝑃𝑐𝑥(𝑒

−
𝐾𝑇
𝑃𝑐𝑥

 (t−𝑡𝑥)
−1),  (S3-8) 

where 𝑥 denotes the outbreak number and t > 𝑡2 > 𝑡3 > ⋯ > 𝑡𝑥. For each outbreak 𝑡𝑥, 𝑃𝑐𝑥, and 

𝐼𝑥 need to be determined independently. 

While an epidemic is underway, we can detect an outbreak by monitoring the slope of the 

RCO curve. A positive slope detected in an RCO curve indicates that an outbreak has occurred. 

This is an indication that immediate action, within days, is required from policy makers to 

strengthen intervention measures and prevent the outbreak from overwhelming prior progress in 

controlling the epidemic. 
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By monitoring the RCO curve, we can also detect if the disease changes its 

transmissibility through mutation. In this situation, a proper fit of the parameters in Equation 35 

is not possible and a modification of 𝐾𝑇 is required to accommodate the change. 

Supplement 4: Understanding Kermack and McKendrick’s Arrays 

The Kermack and McKendrick model can be visually represented in discrete form as arrays of 

𝑁(𝑡, 𝜃), 𝐼(𝑡, 𝜃), 𝑅(𝑡, 𝜃) and their derivatives depicted over t and 𝜃 according to this array:  

 

(t,0) (t,∆t) (t,2∆t) ⋯ (t,t-∆t) (t,t)

(t-∆t,0) (t-∆t,∆t) (t-∆t,2∆t) ⋯ (t-∆t,t-∆t) (t-∆t,t)

⋮ ⋮ ⋮ ⋯ ⋮ ⋮

(3∆t,0) (3∆t,∆t) (3∆t,2∆t) ⋯ (3∆t,t-∆t) (3∆t,t)

(2∆t,0) (2∆t,∆t) (2∆t,2∆t) ⋯ (2∆t,t-∆t) (2∆t,t)

(∆t,0) (∆t,∆t) (∆t,2∆t) ⋯ (∆t,t-∆t) (∆t,t)

(0,0) (0,∆t) (0,2∆t) ⋯ (0,t-∆t) (0,t)
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Kermack and McKendrick’s concept of 𝜃 imagined that the time history of the epidemic 

was a square t by t array with each row representing an increment of time, ∆𝑡, and each column 

representing the progress of a 𝜃 group through time. In this conceptualization, each 𝜃 group 

starts at time 𝑡 − 𝜃 and progresses diagonally upward and to the right through the array. This 

formulation of the problem also means that 𝜃 has the units of time, 𝑑𝜃 = 𝑑𝑡., and ∆𝑡 = ∆𝜃. 

Therefore, ∆𝑡 and ∆𝜃 are used interchangeably throughout the array. 

Keeping this convention, we can use Equation 2 and the knowledge that ∆𝑁(𝑡, 𝜃) = 0 

when 𝜃 > 0 to write the matrix for ∆𝑁(𝑡, 𝜃), 

 

 

 

 

 

 

 

The arrays for ∆𝑅(𝑡, 𝜃), ∆𝐼(𝑡, 𝜃), and 𝐼(𝑡, 𝜃) can be written in an identical fashion, 

0 0 ⋯ 0 0

0 0 ⋯ 0 0

⋮ ⋮ ⋮ ⋯ ⋮ ⋮

∆N(t,θ)= 0 0 ⋯ 0 0

0 0 ⋯ 0 0

0 0 ⋯ 0 0

N(0) 0 0 ⋯ 0 0
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0 ψ(t-∆t,0)I(t-∆t,0)∆t ψ(t-∆t,∆t)I(t-∆t,∆t)∆t ⋯ ψ(t-∆t,t-2∆t)I(t-∆t,t-2∆t)∆t ψ(t-∆t,t-∆t)I(t-∆t,t-∆t)∆t

0 ψ(t-2∆t,0)I(t-2∆t,0)∆t ψ(t-2∆t,∆t)I(t-2∆t,∆t)∆t ⋯ ψ(t-2∆t,t-2∆t)I(t-2∆t,t-2∆t)∆t 0

⋮ ⋮ ⋮ ⋯ ⋮ ⋮

∆R(t,θ)=

0 ψ(2∆t,0)I(2∆t,0)∆t ψ(2∆t,∆t)I(2∆t,∆t)∆t ⋯ 0 0

0 ψ(∆t,0)I(∆t,0)∆t ψ(∆t,∆t)I(∆t,∆t)∆t ⋯ 0 0

0 ψ(0,0)I(0,0)∆t 0 ⋯ 0 0

0 0 0 ⋯ 0 0

-ψ(t-∆t,0)I(t-∆t,0)∆t -ψ(t-∆t,∆t)I(t-∆t,∆t)∆t ⋯ -ψ(t-∆t,t-2∆t)I(t-∆t,t-2∆t)∆t -ψ(t-∆t,t-∆t)I(t-∆t,t-∆t)∆t

-ψ(t-2∆t,0)I(t-2∆t,0)∆t -ψ(t-2∆t,∆t)I(t-2∆t,∆t)∆t ⋯ -ψ(t-2∆t,t-2∆t)I(t-2∆t,t-2∆t)∆t 0

⋮ ⋮ ⋮ ⋯ ⋮ ⋮

∆I(t,θ)= -ψ(2∆t,0)I(2∆t,0)∆t -ψ(2∆t,∆t)I(2∆t,∆t)∆t ⋯ 0 0

-ψ(∆t,0)I(∆t,0)∆t -ψ(∆t,∆t)I(∆t,∆t)∆t ⋯ 0 0

-ψ(0,0)I(0,0)∆t 0 ⋯ 0 0

N(0) 0 0 ⋯ 0 0
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It is clear from this notation that ∆𝐼(𝑡, 𝜃) = ∆𝑁(𝑡, 𝜃) − ∆𝑅(𝑡, 𝜃); and it is interesting to 

note that 
∆𝑁(𝑡,𝜃) 

𝐼(𝑡)
 and 

∆𝑅(𝑡,𝜃) 

𝐼(𝑡)
  are, respectively, impulse and step functions in 𝜃. 

We now use the preceding arrays to rederive Equation 4. We start with Equation 7,  

 𝐼(𝑡) = ∫ 𝐵(𝑡, 𝜃)
𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
𝑑𝜃 + 𝐵(𝑡, 𝑡)𝐼(0)

𝑡

0
,   (S4-1,7) 

Our goal is to transform Equation S4-1 to Equation 4 to demonstrate that the arrays are a 

formulation of the Kermack and McKendrick equations. 

I(t-∆t,0)(1-ψ(t-∆t,0)∆t) I(t-∆t,∆t)(1-ψ(t-∆t,∆t)∆t) ⋯ I(t-∆t,t-2∆t)(1-ψ(t-∆t,t-2∆t)∆t) I(t-∆t,t-∆t)(1-ψ(t-∆t,t-∆t)∆t)

I(t-2∆t,0)(1-ψ(t-2∆t,0)∆t) I(t-2∆t,∆t)(1-ψ(t-2∆t,∆t)∆t) ⋯ I(t-2∆t,t-2∆t)(1-ψ(t-2∆t,t-2∆t)∆t) 0

⋮ ⋮ ⋮ ⋯ ⋮ ⋮

I(t,θ)= I(2∆t,0)(1-ψ(2∆t,0)∆t) I(2∆t,∆t)(1-ψ(2∆t,∆t)∆t) ⋯ 0 0

I(∆t,0)(1-ψ(∆t,0)∆t) I(∆t,∆t)(1-ψ(∆t,∆t)∆t) ⋯ 0 0

I(0,0)(1-ψ(0,0)∆t) 0 ⋯ 0 0

N(0) 0 0 ⋯ 0 0
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Referring to the 𝐼(𝑡, 𝜃) array and keeping in mind that the value of 𝐼(𝑡, 0) is the value in 

the (𝑡, 0) place in both the ∆𝑁(𝑡, 𝜃) and 𝐼(𝑡, 𝜃) arrays, 𝐼(0, 0) = 𝑁(0) = 𝐼(0) as shown in the 

array, ∆t = ∆θ, 
𝑑𝑁(𝑡,0)

𝑑𝑡
= 𝐼(𝑡, 0), 𝐵(𝜃) = 𝐵(𝑡, 𝜃), and 𝐵(𝜃, 𝜃) = 𝐵(𝑡, 𝑡), we know that, 

 𝐼(𝑡) = ∑ 𝐼(𝑡,𝑡
𝜃=0  𝜃) = ∑ 𝐵(𝑡, 𝜃)𝐼(𝑡𝑡

𝜃=0 − 𝜃, 0).   (S4-2) 

Equation S4-2 is merely the summation form of S4-1. We use the reference to the 𝐼(𝑡, 𝜃) 

matrix to show where it comes from in the (𝑡, 𝜃) matrices. 

Keeping in mind that 𝜓 is only a function of t, it is also clear from the 𝐼(𝑡, 𝜃) matrix that, 

𝐼(𝑡) = 𝐾𝑇(𝑡 − ∆𝑡)∆𝑡 ∑ 𝐼(𝑡 − ∆𝑡,𝑡−∆𝑡
𝜃=0  𝜃) + (1 − 𝜓(𝑡 − ∆𝑡)∆𝑡) ∑ 𝐼(𝑡 − ∆𝑡,𝑡−∆𝑡

𝜃=0  𝜃)  

       (S4-3) 

This operation can be repeated all the way back through the matrix to finally obtain the 

expression, 

 𝐼(𝑡) = (𝐾𝑇(𝑡 − ∆𝑡)∆𝑡 + 1 − 𝜓(𝑡 − ∆𝑡)∆𝑡)(𝐾𝑇(𝑡 − 2∆𝑡)∆𝑡  

 +1 − 𝜓(𝑡 − 2∆𝑡)∆𝑡) … (𝐾𝑇(0)∆𝑡 + 1 − 𝜓(0)∆𝑡)𝐼(0)   (S4-4) 

Equating 46-4 with S4-1 and taking the limit as ∆t = ∆θ go to zero, we arrive at the 

expression, 
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𝐼(𝑡) = ∫ 𝐵(𝑡, 𝜃)
𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
𝑑𝜃 + 𝐵(𝑡)𝐼(0)

𝑡

0
= 𝑒∫ (𝐾𝑇(𝑡)−𝜓(𝑡))𝑑𝑡

𝑡
0 𝐼(0) = 𝑒∫ 𝐾𝑇(𝑡)𝑑𝑡

𝑡
0 𝐵(𝑡)𝐼(0) 

       (S4-5) 

which is identical to Equation 4 with 𝜓(𝑡) = 𝜇(𝑡). The same approach can be used on the arrays 

for ∆𝑁(𝑡, 𝜃) and ∆𝑅(𝑡, 𝜃) to find expressions for 
𝑑𝑁(𝑡)

𝑑𝑡
 and 

𝑑𝑅(𝑡)

𝑑𝑡
 from which the rest of the 

solution can be determined. 

Supplement 5: List of Equations 

 
𝑑𝑆(𝑡)

𝑑𝑡
= −

𝑑𝑁(𝑡)

𝑑𝑡
= −Λ(𝑡)𝑆(𝑡),     (1) 

 −
𝑑𝑆(𝑡)

𝑑𝑡
=

𝑑𝑁(𝑡)

𝑑𝑡
= 𝐾𝑇(𝑡)𝐼(𝑡),      (2) 

 
𝑑𝐼(𝑡)

𝑑𝑡
= (𝐾𝑇(𝑡) − 𝜇(𝑡))𝐼(𝑡),      (3)  

 𝐼(𝑡) = 𝐼(0)𝑒∫ (𝐾𝑇(𝑏)−𝜇(𝑏))𝑑𝑏
𝑡

0 .     (4)   

 𝑁(𝑡) = ∫ 𝐾𝑇(c)I(0)
𝑡

0
𝑒∫ (𝐾𝑇(𝑏)−𝜇(𝑏))𝑑𝑏

𝑐
0 𝑑𝑐    (5) 

 
𝑑𝑆(𝑡)

𝑑𝑡
= −

S(t)

𝐴𝑝
(∫ 𝐴(𝑡, 𝜃)

𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
𝑑𝜃 + 𝐴(𝑡, 𝑡)𝐼(0))

𝑡

0
,  (6) 

 𝐼(𝑡) = ∫ 𝐵(𝑡, 𝜃)
𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
𝑑𝜃 + 𝐵(𝑡, 𝑡)𝐼(0)

𝑡

0
,   (7) 

 
𝑑𝑅(𝑡)

𝑑𝑡
= ∫ 𝐶(𝑡, 𝜃)

𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
𝑑𝜃 + 𝐶(𝑡, 𝑡)𝐼(0)

𝑡

0
,  (8) 
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 𝑁(𝑡) = 𝐼(𝑡) + 𝑅(𝑡)  (9) 

 𝑁𝑃 − 𝑆(𝑡) = 𝑁(𝑡)   (10) 

  
𝑑𝑆(𝑡)

𝑑𝑡
= −

𝑑𝑁(𝑡)

𝑑𝑡
  (11) 

 𝐾𝑇(𝑡) = −
𝑑𝑆(𝑡)

𝑑𝑡

𝐼(𝑡)
=

S(t)(∫ 𝐴(𝑡,𝜃)
𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
𝑑𝜃+𝐴(𝑡,𝑡)𝐼(0))

𝑡
0

𝐴𝑃(∫ 𝐵(𝑡,𝜃)
𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
𝑑𝜃+𝐵(𝑡,𝑡)𝐼(0))

𝑡
0

.  (12) 

 μ(𝑡)  =
𝑑𝑅(𝑡)

𝑑𝑡

𝐼(𝑡)
=

∫ 𝐶(𝑡,𝜃)
𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
𝑑𝜃+𝐶(𝑡,𝑡)𝐼(0)

𝑡
0

∫ 𝐵(𝑡,𝜃)
𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
𝑑𝜃+𝐵(𝑡,𝑡)𝐼(0)

𝑡
0

.  (13) 

 −
𝑑𝑆(𝑡)

𝑑𝑡
=

𝑑𝑁(𝑡)

𝑑𝑡
= K𝑇(𝑡) 𝐼(𝑡),  (14)  

 
𝑑𝐼(𝑡)

𝑑𝑡
= 𝐾𝑇(𝑡) 𝐼(𝑡) − μ(𝑡) 𝐼(𝑡),  (15) 

 
𝑑𝑅(𝑡)

𝑑𝑡
= μ(𝑡)𝐼(𝑡) and  (16) 

 𝑆(𝑡) = 𝑁𝑃 − 𝑁(𝑡),   (17)  

 𝑃𝑐(𝑡) = lim
∆𝑡→0

∫ 𝑃𝑐𝑟(𝑡)𝑑𝑡
𝑡+∆𝑡

𝑡
,  (18)  

 𝐼(∆𝑡) = 𝑁(∆𝑡) −
𝐾𝑇(0)∆𝑡−∆𝑃𝑐𝑛𝑖(0)

𝑃𝑐(0)
𝑁(∆𝑡).    (19) 

 
𝐼(∆𝑡)

𝑁(∆𝑡)
= 1 −

𝐾𝑇(0)∆𝑡−∆𝑃𝑐𝑛𝑖(0)

𝑃𝑐(0)
     (20) 

 
𝐼(2∆𝑡)

𝑁(2∆𝑡)
= (1 −

𝐾𝑇(0)∆𝑡−∆𝑃𝑐𝑛𝑖(0)

𝑃𝑐(0)
)(1 −

𝐾𝑇(∆𝑡)∆𝑡−∆𝑃𝑐𝑛𝑖(∆𝑡)

𝑃𝑐(∆𝑡)
).   (21) 
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𝐼(𝑡)

𝑁(𝑡)
= 𝐹𝑖(0)𝑒

− ∫
𝐾𝑇(𝑡)

𝑃𝑐(𝑡) 
𝑑𝑡

𝑡
0 ,     (23) 

 𝑁(𝑡) = 𝑁(0)𝑒
∫ 𝐾𝑇(𝑡)

𝐼(𝑡)

𝑁(𝑡)
𝑑𝑡

𝑡
0 .     (24) 

 𝑁(𝑡) = 𝑁(0)𝑒𝐹𝑖(0) ∫ 𝐾𝑇(𝑡)𝑒
− ∫

𝐾T(𝑎)

𝑃𝑐(𝑎)
𝑑𝑎

𝑡
0 𝑑𝑡

𝑡
0 .    (25) 

 𝐼(𝑡) = 𝐼(0)𝑒
𝐹𝑖(0) ∫ 𝐾𝑇(𝑡)𝑒

− ∫
𝐾T(𝑎)

𝑃𝑐(𝑎)
𝑑𝑎

𝑡
0 𝑑𝑡

𝑡
0 −∫

𝐾T(𝑡)

𝑃𝑐(𝑡)
𝑑𝑡

𝑡
0 ,   (26) 

 𝑅(𝑡) = (𝑁(0) − 𝐼(0)𝑒
− ∫

𝐾T(𝑡)

𝑃𝑐(𝑡)
𝑑𝑡

𝑡
0 )𝑒𝐹𝑖(0) ∫ 𝐾𝑇(𝑡)𝑒

− ∫
𝐾T(𝑎)

𝑃𝑐(𝑎)
𝑑𝑎

𝑡
0 𝑑𝑡

𝑡
0 .   (27) 

 𝐵(𝑡, 𝜃) = 𝑒− ∫ 𝜓(𝑡,𝑎)𝑑𝑎
𝑡

𝑡−𝜃 = 𝑒
− ∫ (𝐾𝑇(𝑎)−𝐹𝑖(0)𝐾𝑇(𝑎)𝑒

− ∫
𝐾𝑇(𝑏)

𝑃𝑐(𝑏)
𝑑

𝑎
0 𝑏

+
𝐾𝑇(𝑎)

𝑃𝑐(𝑎)
)𝑑𝑎

𝑡
𝑡−𝜃   (28)  

 𝐵(𝑡, 𝑡) = 𝑒− ∫ 𝜓(𝑡,𝑎)𝑑𝑎
𝑡

0 = 𝑒
− ∫ (𝐾𝑇(𝑎)−𝐹𝑖(0)𝐾𝑇(𝑎)𝑒

− ∫
𝐾𝑇(𝑏)

𝑃𝑐(𝑏)
𝑑

𝑎
0 𝑏

+
𝐾𝑇(𝑎)

𝑃𝑐(𝑎)
)𝑑𝑎

𝑡
0   (29) 

  𝜇(𝑡) = 𝜓(𝑡, 𝜃) =
𝑑𝑅(𝑡)

𝑑𝑡

𝐼(𝑡)
= 𝐾𝑇(𝑡)−𝐹𝑖(0)𝐾𝑇(𝑡)𝑒

− ∫
𝐾𝑇(𝑡)

𝑃𝑐(𝑡)

𝑡
0 𝑑𝑡

+
𝐾𝑇(𝑡)

𝑃𝑐(𝑡)
  (30) 

 𝜑(𝑡, 𝜃) =
𝐾𝑇(𝑡)𝐴𝑝

𝑆(𝑡)
     (31) 

 𝐼(𝑡) = 𝑒∫ 𝐾𝑇(𝑡)𝑑𝑡
𝑡

0 𝐵(𝑡, 𝑡)𝐼(0)  (32) 

 𝑁(𝑡) = 𝑒
∫ (𝐾𝑇(𝑡)+

𝐾𝑇(𝑡)

𝑃𝑐(𝑡)
)𝑑𝑡

𝑡
0 𝐵(𝑡, 𝑡)

𝐼(0)

𝐹𝑖(0)
  (33) 

 𝑅(𝑡) = (
𝑒

∫ (𝐾𝑇(𝑡)+
𝐾𝑇(𝑡)
𝑃𝑐(𝑡)

)𝑑𝑡
𝑡
0

𝐹𝑖(0)
− 𝑒∫ 𝐾𝑇(𝑡)𝑑𝑡

𝑡
0 )𝐵(𝑡, 𝑡)𝐼(0).  (34) 
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 𝑁(𝑡) = 𝑁(0)𝑒−𝐹𝑖(0)𝑃𝑐(𝑒
− 

𝐾T
𝑃𝑐

𝑡
−1)    (35) 

 𝐼(𝑡) = 𝐼(0)𝑒
−𝐹𝑖(0)𝑃𝑐(𝑒

− 
𝐾T
𝑃𝑐

𝑡
−1)− 

𝐾T
𝑃𝑐

𝑡

    (36) 

 𝑅(𝑡) = (𝑁(0) − 𝐼(0)𝑒
−

𝐾T
𝑃𝑐

𝑡
)𝑒−𝐹𝑖(0)𝑃𝑐(𝑒

−
𝐾T
𝑃𝑐

𝑡
−1)   (37)  

 𝑁(∞) = 𝑒𝐹𝑖(0)𝑃𝑐,     (38) 

 𝑡 = −
𝑃𝑐

𝐾𝑇
𝑙𝑛(1 −

ln (𝑆(0))

𝐹𝑖(0)𝑃𝑐
)     (39) 

 𝐹𝑖(0)𝑃𝑐 > ln (𝑆(0)).     (40) 

 𝑅𝐸𝑓𝑓 =
1

1−𝐹𝑖(0)𝑒
− 

𝐾T
𝑃𝑐

 𝑡
+

1

𝑃c 

.  (41) 

 𝑡𝑑𝑒𝑐𝑙𝑖𝑛𝑒 =
𝑃𝑐ln (𝐹𝑖(0)𝑃𝑐)

𝐾𝑇
.   (42) 

 𝑡𝑚𝑎𝑥 =
𝑃𝑐ln (𝐹𝑖(0)𝑃𝑐)

𝐾𝑇
,   (43) 

 𝐼(𝑡)𝑃𝑒𝑎𝑘 =
𝐼(0)𝑒(𝐹𝑖(0)𝑃𝑐−1)

𝐹𝑖(0)𝑃𝑐
.     (44) 

 𝑃𝑐𝑟(t) =
𝐴1𝑟(𝑡)𝑁𝑝

𝐴𝑝
= 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑟𝑎𝑡𝑒,   (45) 

  𝐴1(𝑡) = lim
∆𝑡→0

∫ 𝐴1𝑟(𝑡)𝑑𝑡
𝑡+∆𝑡

𝑡
,   (46) 

 
𝐾T(𝑡)

𝑃𝑐(𝑡)
=

𝐾𝑇(𝑡)𝐴𝑝

𝐴1(𝑡)𝑁𝑝
.  (47) 
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  𝐹(𝑁(𝑡) =
𝐴1𝑁𝑝

𝐴
ln (1 +

ln(𝑁(𝑡))

−
𝐴1𝑁𝑝

𝐴

) = −𝐾𝑇t,  (48) 

 𝐵(𝑡, 𝑡) = 𝑒−(𝑒−𝐾𝑇𝑡−1)−2𝐾𝑇𝑡      (49) 

 𝑉𝑖𝑟𝑎𝑙 𝐿𝑜𝑎𝑑 = 𝑒−(𝑒−𝐾𝑇𝑡−1)−2𝐾𝑇𝑡(2 − 𝑒−𝐾𝑇𝑡) ,    (50) 

 𝑅𝐶𝑂 = 𝑙𝑛 (
𝑑𝑁(𝑡)

𝑑𝑡

𝑁(𝑡)
) = ln(𝐹𝑖(0)𝐾𝑇) −

𝐾T

𝑃𝑐
𝑡     (51) 

 𝑃𝑐𝑎𝑙 =
−𝐾𝑇(𝑡)

𝑆𝑙𝑜𝑝𝑒(1−
𝐺𝑅0
100

)
,     (52)  

 
𝑑𝑆(𝑡)

𝑑𝑡
= −

𝛽𝐼(𝑡)𝑆(𝑡)

𝑁𝑝
,  (53) 

 
𝑑𝐼(𝑡)

𝑑𝑡
=

𝛽𝐼(𝑡)𝑆(𝑡)

𝑁𝑝
− 𝛾𝐼(𝑡),   (54) 

 
𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾𝐼(𝑡), and  (55) 

 𝑁𝑝 = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡),   (56) 

 𝑅𝐸𝑓𝑓 =
1

1−
𝑒𝑅𝐶𝑂(𝑡)

𝐾𝑇
+

1

𝑃c 

.     (57) 

𝑑2𝑁(𝑡)

𝑑2𝑡
= (𝐾T𝐹𝑖(0)𝑒

−
𝐾𝑇
𝑃𝑐

𝑡
−

𝐾𝑇

𝑃𝑐
)

𝑑𝑁(𝑡)

𝑑𝑡
= 𝐾𝑇(

𝐼(𝑡)

𝑁(𝑡)
−

1

𝑃𝑐
)

𝑑𝑁(𝑡)

𝑑𝑡
=  (𝑒𝑅𝐶𝑂(𝑡) −

𝐾𝑇

𝑃𝑐
)

𝑑𝑁(𝑡)

𝑑𝑡
= 𝐾T

𝑑𝐼(𝑡)

𝑑𝑡
 .  

       (58) 

 𝑃𝑐 < 𝐾𝑇𝑒−𝑅𝐶𝑂(𝑡).   (59) 
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 𝐷𝑡𝑓 =

𝑑𝑁(𝑡+𝑡𝑡𝑎𝑟𝑔𝑒𝑡)

𝑑𝑡
𝑑𝑁(𝑡)

𝑑𝑡

=
𝑁𝑒𝑤 𝐶𝑎𝑠𝑒 𝑇𝑎𝑟𝑔𝑒𝑡 𝑅𝑎𝑡𝑒

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑁𝑒𝑤 𝐶𝑎𝑠𝑒 𝑅𝑎𝑡𝑒
,   (60) 

 𝐷𝑡𝑓 = 𝑒−𝑃𝑐 (𝑒
−

𝐾𝑇
𝑃𝑐

(𝑡+𝑡𝑡𝑎𝑟𝑔𝑒𝑡)
−𝑒

−
𝐾𝑇
𝑃𝑐

(𝑡)
)𝑒

−
𝐾𝑇
𝑃𝑐

𝑡target
.   (61) 

 𝑡𝑡𝑎𝑟𝑔𝑒𝑡 = −
𝑃𝑐ln (𝐷𝑡𝑓)

𝐾𝑇
.   (62) 

 
𝑑(

𝐼(𝑡)

𝑁(𝑡)
)

𝑑𝑡
= −

𝐾𝑇(𝑡)𝐼(𝑡)

𝑃𝑐(𝑡)𝑁(𝑡)
  (23) 

 
𝑑(

𝐼(𝑡)

𝑁(𝑡)
)

𝑑𝑡
=

𝑑(𝐼(𝑡)

𝑑𝑡

1

𝑁(𝑡)
−

𝑑𝑁(𝑡)

𝑑𝑡

𝐼(𝑡)

𝑁(𝑡)2 = −
𝐼(𝑡)

𝑁(𝑡)

𝐾T(𝑡)

𝑃𝑐(𝑡)
      (S1-2) 

 
𝑑(

𝐼(𝑡)

𝑁(𝑡)
)

𝑑𝑡
=

𝑑𝐼(𝑡)

𝑑𝑡
−

𝑑𝑁(𝑡)

𝑑𝑡

𝐼(𝑡)

𝑁(𝑡)

𝑁(𝑡)
=

−𝐼(𝑡)
𝐾T(t)

𝑃𝑐(𝑡)

𝑁(𝑡)
    (S1-3) 

 
𝑑𝑅(0)

𝑑𝑡
= 𝐼(0)

𝐾T(0)

𝑃𝑐(0)
     (S1-4) 

  
1

𝐼(𝑡)

𝑑𝐼(𝑡)

𝑑𝑡
= 𝐾T

𝐼(𝑡)

𝑁(𝑡)
−

𝐾T

𝑃𝑐
 = 𝐾𝑇 −

𝑅(𝑡)

𝑁(𝑡)
𝐾𝑇 −

𝐾T

𝑃𝑐
.  (S1-5) 

 𝑁(𝑡) = 𝑁∞
(1−𝐹𝑖(𝑡))

.  (S1-6) 

𝐼(𝑛∆𝑡)

𝑁(𝑛∆𝑡)
= (1 −

𝐾𝑇(0)∆𝑡−∆𝑃𝑐(0)

𝑃𝑐(0)
) (1 −

𝐾𝑇(∆𝑡)∆𝑡−∆𝑃𝑐(∆𝑡)

𝑃𝑐(∆𝑡)
) … (1 −

𝐾𝑇(𝑛∆𝑡)∆𝑡−∆𝑃𝑐(𝑛∆𝑡)

𝑃𝑐(𝑛∆𝑡)
)   (S3-1) 

 
𝐼(𝑡)

𝑁(𝑡)
= 𝐹𝑖(0)𝑒

− ∫
𝐾𝑇(𝑡)−

𝑑𝑃𝑐(𝑡)
𝑑𝑡

𝑃𝑐(𝑡) 
𝑑𝑡

𝑡
0 = 𝐹𝑖(0)

𝑃𝑐(𝑡)

𝑃𝑐(0)
𝑒

− ∫
𝐾𝑇(𝑡)

𝑃𝑐(𝑡) 
𝑑𝑡

𝑡
0    (S3-2) 
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 𝑁(𝑡) = 𝑁(0)𝑒
𝐹𝑖(0) ∫ 𝐾𝑇(𝑡)

𝑃𝑐(𝑡)

𝑃𝑐(0)
𝑒

− ∫
𝐾T(𝑎)

𝑃𝑐(𝑎)
𝑑𝑎

𝑡
0 𝑑𝑡

𝑡
0     (S3-3) 

 𝐼(𝑡) = 𝐼(0)
𝑃𝑐(𝑡)

𝑃𝑐(0)
𝑒

𝐹𝑖(0) ∫ 𝐾𝑇(𝑡)
𝑃𝑐(𝑡)

𝑃𝑐(0)
𝑒

− ∫
𝐾T(𝑎)

𝑃𝑐(𝑎)
𝑑𝑎

𝑡
0 𝑑𝑡

𝑡
0

−∫
𝐾T(𝑡)

𝑃𝑐(𝑡)
𝑑𝑡

𝑡
0    (S3-4) 

 𝑅(𝑡) = (𝑁(0) − 𝐼(0)
𝑃𝑐(𝑡)

𝑃𝑐(0)
𝑒

− ∫
𝐾T(𝑡)

𝑃𝑐(𝑡)
𝑑𝑡

𝑡
0 )𝑒

𝐹𝑖(0) ∫ 𝐾𝑇(𝑡)
𝑃𝑐(𝑡)

𝑃𝑐(0)
𝑒

− ∫
𝐾T(𝑎)

𝑃𝑐(𝑎)
𝑑𝑎

𝑡
0 𝑑𝑡

𝑡
0   (S3-5) 

 𝑁(𝑡) = 𝑒−𝑃𝑐1(𝑒
−

𝐾𝑇
𝑃𝑐1

 t
−1).      (S3-6) 

 𝑁(𝑡) = 𝑒−𝑃𝑐1(𝑒
−

𝐾𝑇
𝑃𝑐1

 t
−1) +  𝐼2𝑒−𝑃𝑐2(𝑒

−
𝐾𝑇
𝑃𝑐2

 (t−𝑡2)
−1),   (S3-7) 

 𝑁(𝑡) = 𝑒−𝑃𝑐1(𝑒
−

𝐾𝑇
𝑃𝑐1

 t
−1) +  𝐼2𝑒−𝑃𝑐2(𝑒

−
𝐾𝑇
𝑃𝑐2

 (t−𝑡2)
−1) … + 𝐼x𝑒−𝑃𝑐𝑥(𝑒

−
𝐾𝑇
𝑃𝑐𝑥

 (t−𝑡𝑥)
−1),  (S3-8) 

 𝐼(𝑡) = ∫ 𝐵(𝑡, 𝜃)
𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
𝑑𝜃 + 𝐵(𝑡, 𝑡)𝐼(0)

𝑡

0
,            (S4-1,7) 

 𝐼(𝑡) = ∑ 𝐼(𝑡,𝑡
𝜃=0  𝜃) = ∑ 𝐵(𝑡, 𝜃)𝐼(𝑡𝑡

𝜃=0 − 𝜃, 0).   (S4-2) 

𝐼(𝑡) = 𝐾𝑇(𝑡 − ∆𝑡)∆𝑡 ∑ 𝐼(𝑡 − ∆𝑡,𝑡−∆𝑡
𝜃=0  𝜃) + (1 − 𝜓(𝑡 − ∆𝑡)∆𝑡) ∑ 𝐼(𝑡 − ∆𝑡,𝑡−∆𝑡

𝜃=0  𝜃)  (S4-3) 

𝐼(𝑡) = (𝐾𝑇(𝑡 − ∆𝑡)∆𝑡 + 1 − 𝜓(𝑡 − ∆𝑡)∆𝑡)(𝐾𝑇(𝑡 − 2∆𝑡)∆𝑡  

 +1 − 𝜓(𝑡 − 2∆𝑡)∆𝑡) … (𝐾𝑇(0)∆𝑡 + 1 − 𝜓(0)∆𝑡)𝐼(0)   (S4-4) 
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𝐼(𝑡) = ∫ 𝐵(𝑡, 𝜃)
𝑑𝑁(𝑡−𝜃,0)

𝑑𝑡
𝑑𝜃 + 𝐵(𝑡)𝐼(0)

𝑡

0
= 𝑒∫ (𝐾𝑇(𝑡)−𝜓(𝑡))𝑑𝑡

𝑡
0 𝐼(0) = 𝑒∫ 𝐾𝑇(𝑡)𝑑𝑡

𝑡
0 𝐵(𝑡)𝐼(0) 

       (S4-5) 
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