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 2 

Abstract 1 

Single-cell transcriptomics (scRNA-seq) is extensively applied in uncovering biological 2 

heterogeneity. There are different dimensionality reduction techniques, but it is unclear 3 

which method works best in preserving biological information when creating a two-4 

dimensional embedding. Therefore, we implemented cellstruct, which calculates three 5 

metrics scores to quantify the global or local biological similarity between a two-6 

dimensional and its corresponding higher-dimensional PCA embeddings at either 7 

single-cell or cluster level. These scores pinpoint cell populations with low biological 8 

information preservation, in addition to visualizing the cell-cell or cluster-cluster 9 

relationships in the PCA embedding. Two study cases illustrate the usefulness of 10 

cellstruct in exploratory data analysis. 11 

 12 

Background 13 

Single-cell transcriptomics (scRNA-seq) is increasingly used to interrogate the 14 

biological heterogeneity and disease progression in different complicated biological 15 

systems. Various dimensionality reduction methods [1-3] are employed to reduce the 16 

high-dimensional features i.e. highly variable genes to two dimensions. t-SNE [4, 5] 17 

and UMAP [6, 7] are commonly used in single-cell analysis packages (e.g. Seurat [8] 18 

and Scanpy [9]) for removing technical noise while maintaining the biological signals 19 

both globally and locally. These two-dimensional embeddings evaluate the 20 

performance of multi-modal/batch integration, define cluster relationship including cell 21 

type annotation, present gene expression changes between different conditions, and 22 

infer trajectories driving developmental or disease progression [10-15], inherently 23 

assuming the preservation of biological information from the underlying gene 24 

expression space. However, dimension reduction often results in information loss 25 
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 3 

because it is difficult to represent all the complex biological variation in 2D. Moreover, 1 

dimension reduction involves highly non-linear mathematical operations, introducing 2 

different degree of transformation to different parts of data. Therefore, the assessment 3 

of local and global structures preservation in the reduced embeddings from the 4 

untransformed data is critical for the selection of most accurate representation of the 5 

underlying variance for making rigorous biological inferences [1, 16-19], minimizing 6 

the chances of data misinterpretations caused by distortions introduced in dimension 7 

reduction [18, 20-22].   8 

 9 

We present cellstruct to evaluate a reduced embedding’s ability to retain global or local 10 

relationships as compared to the reference embedding, at both single-cell and cluster 11 

level. Cell populations with low metric scores indicate poor biological information 12 

retention, guiding users to subset certain cell populations for closer inspection, or to 13 

tune the dimension reduction hyperparameters for the generation of new embeddings 14 

with better structure preservation. Thus, cellstruct is indispensable in scRNA-seq 15 

exploratory analysis, by assessing the fidelity of different two-dimensional embeddings 16 

and by revealing the underlying biological distances/relationships between cells or 17 

clusters. 18 

 19 

Results and Discussion 20 

Cellstruct implements three metrics for assessing the preservation of global or local 21 

relationships between a reduced (e.g. UMAP) and a reference (e.g. PCA) embeddings 22 

at both cluster and single-cell level. It also provides heatmaps and dimension 23 

reductions for visualizing the pairwise cell/cluster distances in different embeddings 24 

(Figure 1A). We discovered that the metric assessing local relationships in the 25 
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 4 

preservation of the k-nearest neighbors does not contribute to better interpretation of 1 

datasets, particularly in refining ambiguous/mixed cell types (detailed analysis in 2 

supplementary text; Figure S1). Thus, we focus on the preservation of global 3 

relationships at both single-cell and cluster level. To achieve this, we devised a global 4 

single-cell (GS) score quantifying the correlation between the global position of a 5 

single cell in the reduced and reference embeddings. Here, the global position of a 6 

single cell is given by its distance against a fixed number of randomly selected 7 

waypoint cells. Similarly, we devised a global cluster (GC) score by correlating the 8 

cluster-cluster distances. 9 

 10 

To illustrate these metrics, we applied cellstruct to a human liver cell atlas [23-27] 11 

(Figures 1A-C) where we calculated the GS and GC scores for different embeddings 12 

i.e. UMAP, t-SNE and Force-Directed Layout (FDL) (Figure S2). Note that we varied 13 

the hyperparameters to generate a tuned UMAP embedding, which will be used for 14 

the remaining analysis (further details in supplementary text; Figure S3). The cluster-15 

cluster distance heatmap, which is used to calculate the GC score, revealed that 16 

hepatocytes are highly dissimilar from other cell types in the reference embedding 17 

(refDR), but this is not accurately reflected in reduced embeddings, particularly in t-18 

SNE (Figure 1D). The lymphoid cells (B/T/NK cells, purple text in Figure 1D) were 19 

clustered closely with mast cells in all embeddings, resulting in high GC scores in 20 

general. Intuitively, one would expect the myeloid cells (macrophages/DCs, blue text) 21 

to be transcriptomically similar to the lymphoid cells, as correctly reflected in the refDR. 22 

However, the UMAP and FDL embeddings placed the myeloid closer to 23 

fibroblast/endothelial cells instead, indicated by the shorter distances in the cluster-24 

cluster distance heatmap. Overall, all reduced embeddings recapitulated the 25 
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 5 

relationships within the “islands” of endothelial and fibroblasts respectively, but t-SNE 1 

failed to reproduce it in the myeloid and lymphoid groups. The distance heatmap for t-2 

SNE also less resembled the refDR counterpart, resulting in the lowest mean GC 3 

score amongst the different reduced embeddings (Figures 1D, S2).  4 

 5 

At the single-cell level, we observed that the endothelial, lymphoid, and mast cells 6 

showed high GS scores, preserving the reference DR’s structure in the UMAP 7 

embedding (Figure 1E), and hepatocytes have the highest variance in GS score 8 

among all cell types (Figure S4), suggesting substantial heterogeneity in the refDR 9 

and/or UMAP embeddings. To investigate this heterogeneity, we sampled 284 10 

hepatocytes (1%) to visualize the normalized pairwise distances between these cells 11 

and 1,000 randomly selected waypoint cells. Three distinct groups were observed to 12 

have very varied GS scores for all reduced embeddings. This variability in the GS 13 

score is alleviated using the FDL embedding, supported by the higher GS scores, 14 

particularly in Group3, due to the elongated projection of hepatocytes in FDL, which 15 

provided a better separation between Group1 and Group3 cells (Figure S5). 16 

Surprisingly, based on the cell-waypoint distance heatmap, Group2 and Group3 cells 17 

are transcriptomically more similar to other cell types, than the remaining hepatocytes 18 

(Figures 1F, S5).  19 

 20 

We also interrogated the cholangiocytes due to their low GS scores. We sampled 428 21 

cholangiocytes (~10%) and identified 81 “outliers” (Group1 and Group 2 cells) with 22 

distinct cell-waypoint distance patterns (Figure S6). Three groups of cells were 23 

identified: Group1 cells are very likely mislabeled as hepatocytes, since they clustered 24 

together with the hepatocytes, Group2 cells represent a rare subpopulation, while 25 
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 6 

Group3 cells are the main cholangiocyte population. Also, we noticed that FDL 1 

provided the worst embedding for cholangiocytes, particularly for Group3 cells, 2 

suggesting that different embeddings might be needed when interpreting different cell 3 

types (Figure S2). Overall, the FDL embedding is best at preserving the underlying 4 

global cell-cell and cluster-cluster relationships (further analysis in supplementary text; 5 

Figure S3). 6 

 7 

We next applied cellstruct to peripheral blood single-cell data from COVID-19 patients 8 

and healthy controls [28]. The T/NK cells showed relatively high GS scores, while the 9 

remaining cell types have relatively lower GS scores, with COVID-CD14 Monocytes 10 

showing the most variability in GS score (Figures 2A, S8A). Thus, we decided to 11 

investigate the COVID-CD14 Monocytes further, sampled 1,657 cells (20%) for which 12 

we plotted the cell-waypoint distance heatmaps (Figures 2B-C, S8B). A small 13 

population of CD14 Monocytes did not cluster with the remaining cells of its type, and 14 

this small population comprises of only COVID-CD14 Monocytes, suggesting that 15 

these cells (black boxed) are different from other COVID-CD14 Monocytes (Figure 16 

S8B), driving the differences within these 20% sampled cells. Four groups of cells 17 

were identified, and they were well delineated in the tuned UMAP embedding of 18 

COVID-CD14 Monocytes only (Figures 2C-D). We revealed that these groups are 19 

significantly associated with the patient severity (Floor.NonVent, ICU.NonVent, and 20 

ICU.Vent) (p<2.2x10-16, Table S1), and Groups A-C shared similar gene set 21 

enrichment with more severe patients (GroupA-ICU.Vent: neutrophil degranulation, 22 

GroupC-ICU.Nonvent: interferon [IFN] signaling, GroupB: both biological processes) 23 

(Figures 2D-G). In addition, the monocytes analysis from Wilk et al. corroborated with 24 

our findings that very few cells within patients C2(1), C3(1), and C7(0) are found in 25 
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 7 

Groups B and C (Table S2), as these patients have an absence of predicted IFN and 1 

IFN regulatory factor activities (Figure S9). 2 

 3 

Finally, we compared cellstruct with scDEED using their 20 simulated datasets 4 

(detailed comparison of simulated dataset 1 in supplementary text; Figure S10). 5 

scDEED assesses the reliability of reduced embeddings and classifies the cells into 6 

trustworthy and dubious [29]. We employed the same statistical approach to classify 7 

trustworthy cells using our GS score. With the respective set of trustworthy cells 8 

separately determined by cellstruct and scDEED, we measured the preservation of 9 

neighboring information using K-nearest neighbors (KNN) and K-nearest clusters 10 

(KNC) metrics. Cellstruct showed significantly higher KNN values in both t-SNE and 11 

UMAP embeddings (mean difference ≥0.15, p<1x10-3), while scDEED exhibited a 12 

higher KNC value in t-SNE (mean difference: 0.17, p=0.01) (Figure S11), suggesting 13 

that the trustworthy cells identified by cellstruct are more robustly preserved in the cell-14 

cell relationships than the scDEED counterpart. Moreover, the computational time for 15 

cellstruct is one-third shorter than scDEED (cellstruct: ≤20 seconds, scDEED: ≤60 16 

seconds) for both t-SNE and UMAP embeddings. Similar to scDEED, our tool is 17 

applicable to different embedding methods, and only the embeddings (and cell 18 

annotation for GC score) are required to run cellstruct. 19 

 20 

Conclusions 21 

In this work, we demonstrated the utility of cellstruct for exploratory data analysis given 22 

different reduced embeddings. We provided several metrics and visualizations, which 23 

quantify the biological information preservation in a reduced embedding, facilitating 24 

the process in making observation-based biological interpretation. Users can now 25 
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 8 

evaluate cell-cell or cluster-cluster similarity in the underlying high-dimensional space, 1 

and they are cautioned with cell populations comprising low/variable metric scores, 2 

avoiding potential misinterpretations from the highly non-linear dimension reduction 3 

procedure. More importantly, we hope cellstruct can bring awareness to the single-cell 4 

analysis community that while 2D embeddings are useful for visualization and 5 

interpretation, such embeddings often transform the underlying data to different extent 6 

for different cell populations. 7 

 8 
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1 

Figure 1. The cellstruct package and application on human liver cell atlas. 2 

(A) Schematic of cellstruct package, which includes three metrics scores and various 3 

visualizations to interrogate cell-cell or cluster-cluster relationships in single-cell data. 4 

(B) Schematic showing the calculation of global single-cell (GS) metric. (C) Cell type 5 

annotation of the liver cell atlas in UMAP, t-SNE, and FDL embeddings. (D) Heatmaps 6 

illustrating the normalized cluster-cluster distances in reference (i.e. refDR) and 7 

reduced (UMAP, t-SNE, and FDL) embeddings. GC scores of each cluster were 8 
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 10 

depicted as single-column heatmaps for each reduced embedding, and cluster labels 1 

were colored by major grouping (blue: myeloid and purple: lymphoid and mast cell). 2 

(E) The distribution of GS scores on UMAP projection, with the mean score indicated 3 

in the title. (F) Heatmaps showing the cell-cell distances between 284 randomly 4 

sampled hepatocytes and 1,000 waypoint cells, in different embeddings. Again, GS 5 

scores were colored in the single-column heatmaps for each embedding. Three 6 

groups of hepatocytes were identified and visualized in each reduced embedding in 7 

Figure S5. 8 

 9 
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1 

Figure 2. Application of cellstruct to the peripheral immune atlas of healthy and 2 

COVID patients.  3 

(A) UMAP embeddings showing the cell type annotation, COVID/healthy samples, and 4 

GS scores (mean score in the title) of the immune atlas. (B-G) The downstream 5 

analysis was focused on the 8,285 COVID-CD14 Monocytes subset, due to their high 6 
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variability in GS score. (B) GS scores of COVID-CD14 Monocytes shown on default 1 

and tuned UMAP embeddings. (C) Heatmap showing cell-cell distances between 2 

1,657 randomly sampled COVID-CD14 Monocytes (same cells as Figure S8B) and 3 

1,000 waypoint cells in reference PCA embedding, divided into four groups of cells 4 

and annotated patient severity. (D) These four groups were delineated on default and 5 

tuned UMAP embeddings, and patient severity was only shown on the tuned UMAP, 6 

which does not show a separation of GroupD cells. (E) A contingency table of the four 7 

monocyte groups and patient severity, colored by the residuals of Chi-squared test. 8 

(F-G) Enriched pathways in different monocyte groups (F) and patient severity (G), 9 

taken from up-regulated genes between the group/severity of interest against 10 

remaining cells. Here, the randomly sampled COVID-CD14 Monocytes from Figure 11 

2C were used, and GroupD monocytes were omitted due to small number of up-12 

regulated genes. Groups A-C are mainly enriched for neutrophil degranulation and 13 

interferon signaling processes, which are respectively detected in ICU.Vent and 14 

ICU.NonVent cells. Floor.Nonvent cells are enriched for translation process. Pathways 15 

specific to patient severity were colored green, orange and purple. 16 

 17 

Methods 18 

Cellstruct 19 

Cellstruct implements three metrics scores to quantify the preservation of global or 20 

local relationships between a reduced and a reference embedding at both global and 21 

local level. Each cell is assigned with GS (global single-cell) and optionally LS (local 22 

single-cell) scores that measure the correlation of its global position between both 23 

embeddings (Figure 1B) and the distances of its nearest neighbors within each 24 

embedding respectively (Figure S1A). Similarly, each cluster (i.e. cell type) is assigned 25 
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with a GC (global cluster) score to describe the preservation of cluster-cluster 1 

relationship.  2 

 3 

Global single-cell (GS) metric score 4 

GS score is the Pearson (default) cell-wise correlation of the cell-waypoint distances 5 

calculated in the reference and reduced embeddings, given by this formula for cell i: 6 

 7 

𝐺𝑆! = 𝑐𝑜𝑟(𝑑𝑖𝑠𝑡"#$0𝑐𝑒𝑙𝑙! , 𝑐𝑒𝑙𝑙%&'()!*+4, 𝑑𝑖𝑠𝑡"#,-.#,0𝑐𝑒𝑙𝑙! , 𝑐𝑒𝑙𝑙%&'()!*+4) 8 

 9 

where 10,000 cells are randomly selected as “waypoint” cells that serve to describe 10 

the global position of each single cell, and pairwise distances between a single cell 11 

and these waypoints are computed in both reference and reduced embeddings to give 12 

the cell-waypoint distances. Note that the same set of waypoints is used across all 13 

single cells. Thus, the GS score indicates how well the global location of each cell is 14 

preserved from the reference to reduced embeddings.  15 

 16 

Local single-cell (LS) metric score 17 

LS score is the ratio of the mean reciprocal-squared-distance of the 30 nearest 18 

neighbors (NN) in the reduced embedding to the 30NN in the reference embedding, 19 

given by this formula for cell i: 20 

 21 

𝐿𝑆! =	
𝑚𝑒𝑎𝑛 ; 1

𝑑𝑖𝑠𝑡"#$(𝑐𝑒𝑙𝑙! , 𝑐𝑒𝑙𝑙/011,"#,-.#,)3
=

𝑚𝑒𝑎𝑛 ; 1
𝑑𝑖𝑠𝑡"#$(𝑐𝑒𝑙𝑙! , 𝑐𝑒𝑙𝑙/011,"#$)3

=
 22 

 23 
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 14 

where the two sets of 30NN of the single cell (i.e. target) are determined using RANN 1 

R package (v.2.6.1), in the reduced and reference embeddings respectively. Thus, the 2 

LS score measures how far the reduced embedding NN are in the reference space, 3 

and the denominator serves as a normalization factor, so that LS varies from 0 to 1.  4 

 5 

Global cluster (GC) metric score 6 

GC score is the Pearson (default) correlation between the cluster-cluster distances 7 

calculated in the reference and reduced embeddings. Similar to the GS score, GC 8 

score evaluates how well the global location of a cluster is preserved between 9 

reference and reducing embeddings. Here, the distances are computed between the 10 

centroid of each cluster. The centroids are determined by averaging each dimension 11 

across all the cells in a cluster. 12 

 13 

Overall, cellstruct takes in a Seurat object and requires users to specify the two input 14 

embeddings (i.e. the reduced and reference embeddings) and optionally cell 15 

annotations (e.g. cell type) for the GC score calculation. If cell annotations were not 16 

provided, Seurat clusterID (i.e. seurat_clusters) will be used instead, giving rise to less 17 

biological interpretable scores. For example, no biological inference could be made 18 

with the observation of short distance between the arbitrarily labeled clusters 1 and 2, 19 

as compared to the more meaningful labels e.g. CD4 and CD8 T cells. By default, 20 

cellstruct will calculate both the GC and GS scores and add these scores into the 21 

metadata of the returned Seurat object. In addition, dimension reduction plots 22 

illustrating the distribution of GC and GS scores as well as the cluster annotation will 23 

be generated for each reduced embedding (Figure S2). 24 

 25 
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Heatmaps and dimension reduction plots are provided as functions to illustrate the 1 

normalized pairwise distances in different embeddings, for better visualization of the 2 

metrics scores. For each cell (or each row in the cell-waypoint distance heatmap), the 3 

cell-cell distances are normalized by the 99 percentile of the distances between the 4 

single cell of interest and the remaining cells (or waypoint cells) in each embedding. 5 

For the purpose of illustration, 1,000 randomly selected cells are used in plotting 6 

heatmap. As for the GC metric visualization (i.e. the cluster-cluster distance heatmap), 7 

cluster-cluster distances are normalized by the maximum distance in each embedding. 8 

 9 

Datasets 10 

Two single-cell datasets (human liver cell atlas from Azimuth 11 

[https://zenodo.org/record/7770308] and peripheral immune atlas from Fred Hutch 12 

[https://atlas.fredhutch.org/fredhutch/covid/dataset/wilk]) were used to demonstrate 13 

our tool. These datasets were preprocessed by the authors, and the Seurat objects 14 

were downloaded for our study. 15 

 16 

Human liver cell atlas consists of 79,492 cells, which are composed of 23 cell types 17 

from the broader groups of hepatocytes, cholangiocytes, fibroblasts, immune cells 18 

(myeloid, T/NK, B, plasma cells, and erythrocytes), mast, endothelial, and stem cells 19 

(Figure 1C). This reference atlas was collated from several liver studies [23-27], 20 

involving 29 donors across a range of ages, for better liver cells annotation and 21 

understanding of the liver-related diseases. We generated UMAP, t-SNE, and FDL 22 

embeddings using the default hyperparameters, and as discussed in the 23 

supplementary text, we also selected another UMAP embedding with different 24 

hyperparameters (Euclidean metric, 50 n.neighbors, and 0.5 min.dist), which has the 25 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 14, 2023. ; https://doi.org/10.1101/2023.11.13.566337doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.13.566337
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

highest mean GS score for the exploratory analysis. For the investigation on 1 

cholangiocytes, we identified 78 “outliers” from all 3,634 cells via the clustering pattern 2 

detected in the cell-waypoint reference distance heatmap (data not shown), and these 3 

78 “outliers”, along with the 350 randomly chosen non-repeating cholangiocytes, were 4 

used to plot the cell-waypoint distance heatmaps in Figure S6A. 5 

 6 

This peripheral immune atlas was generated by Wilk et al. group to study the 7 

pathophysiology of COVID-19. It consists of 44,172 cells, comprising of T/NK, myeloid, 8 

B, red blood cells, plasmablasts, platelets, and granulocytes. The peripheral blood 9 

mononuclear cells (PBMCs) were collected from seven hospitalized COVID-19 10 

patients (four of them developed acute respiratory distress syndrome) and six controls 11 

[28] (Figure 2A left, middle). For this study case, we focused on the COVID-19 CD14 12 

Monocytes, as explained in the Results and Discussion section. 8,285 COVID-CD14 13 

Monocytes were extracted, and UMAP embedding was tuned due to non-uniform 14 

distribution of GS scores across the same cell population and the detection of a group 15 

of partly separated cells with low GS scores on default UMAP (tuned UMAP 16 

parameters: Euclidean metric, 30 n.neighbors, and 0.5 min.dist) (Figure 2B). 17 

Pearson’s Chi-squared test was used to evaluate the association between the four 18 

detected groups of COVID-CD14 Monocytes and patient severity within 1,657 cells 19 

(Table S1, Figure 2E). 20 

 21 

Generation of UMAP, t-SNE, and FDL embeddings 22 

Both UMAP and t-SNE embeddings were implemented with the functions RunTSNE() 23 

and RunUMAP() in the Seurat package. The hyperparameters that we tuned for UMAP 24 

embedding are metric, n.neighbors, and min.dist in the RunUMAP() function. The 25 
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default hyperparameters of RunUMAP() and RunTSNE() are respectively cosine 1 

metric; 30 n.neighbors; 0.3 min.dist and 30 perplexity value. As for FDL, it was 2 

generated using scanpy.tl.draw_graph function in the Scanpy package. All the 3 

arguments were kept as default, unless indicated as otherwise, when we ran these 4 

functions.  5 

 6 

Stability analysis of cellstruct 7 

We performed a stability analysis on the number of waypoint cells for GS score 8 

calculation, by varying the number of waypoints from 1K to 10K, with 1K increment on 9 

UMAP, t-SNE, and FDL embeddings of human liver cell atlas. The GS scores are 10 

independent of the number of waypoint cells from 1K to 10K cells, regardless of the 11 

dimension reduction methods (Figure S7A). Hence, we use 10K cells for GS score 12 

computation and 1K cells for heatmap illustration. In addition, we inspected the stability 13 

of tuneUMAP function, by downsampling the number of cells in human liver cell atlas 14 

to 5K, 8K, 10K, 20K, …, 60K, and 70K cells respectively, studying the performance of 15 

GS score across different dataset size. It was shown that GS scores are relatively 16 

consistent, with at least 20K cells being sampled (Figure S7B). 17 

 18 

Comparison with scDEED 19 

scDEED (v0.1.0) is implemented as an R package. It provides a reliability score, which 20 

is the Pearson correlation of the target’s distances to its closest 50% neighboring cells 21 

in both reference and reduced embeddings, and a classification of dubious and 22 

trustworthy cells, by comparing to a null distribution of reliability score [29]. To compare 23 

cellstruct with scDEED, the same dubious/trustworthy cell classification, implemented 24 

by scDEED, was performed by comparing our GS score to a null distribution, which is 25 
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the GS score assigned to a permuted object generated by scDEED. Using the default 1 

t-SNE and UMAP embeddings from the 20 simulated datasets generated by the 2 

scDEED authors, the preservation of neighboring information was evaluated using the 3 

same two metrics (K-nearest neighbors, KNN and K-nearest clusters, KNC) employed 4 

by them. Trustworthy cells, which were separately identified by cellstruct and scDEED 5 

in the t-SNE and UMAP, in the simulated datasets were retained (Table S3). Default t-6 

SNE and UMAP embeddings were regenerated for these trustworthy cells, and 7 

dubious/trustworthy cells were re-classified for the evaluation of KNN and KNC 8 

metrics, assessing the biological preservation and also the robustness of each tool in 9 

identifying trustworthy cells (i.e. the first round of trustworthy cells). Paired t-test was 10 

used to statistically evaluate the differences in mean KNN and KNC values (Figure 11 

S11).  12 

 13 

Gene set enrichment analysis 14 

Differential expression analysis was performed among the four monocyte groups, 15 

identified by cellstruct, and the three patient severity groups respectively from the 20% 16 

COVID-CD14 Monocytes subset using FindAllMarker function in Seurat (v4.3.0). The 17 

differential genes were tabulated in Tables S4 (monocyte groups) and S5 (patient 18 

severity) respectively. Since Group D has only seven up-regulated genes (adjusted 19 

p<0.05), gene set enrichment analysis was performed in Groups A-C and the three 20 

patient severity groups using enrichR (v3.2) [30-32] and Reactome 2022 database 21 

[33]. The top 10 significant biological processes were shown on the bar plots in Figures 22 

2F-G.  23 

 24 

Availability of data and materials 25 
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The cellstruct R package can be installed from https://github.com/the-ouyang-1 

lab/cellstruct. Data objects and codes for reproducing the figures and analysis can be 2 

found at https://github.com/the-ouyang-lab/cellstruct-reproducibility. 3 
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Additional file 1: Supplementary text (detailed discussions of LS metric and tuning 1 

UMAP hyperparameters, as well as comparative analysis of reduced embeddings and 2 

cellstruct vs scDEED) 3 

Additional file 2: Supplementary figures (Figure S1. Evaluation of local cell-cell 4 

relationships via local single-cell (LS) metric in human liver cell atlas. Figure S2. An 5 

example of cellstruct output using the human liver cell atlas. Figure S3. Four single 6 

cells were selected as an illustration for the comparison between different reduced 7 

embeddings. Figure S4. Distribution of GS scores for UMAP embedding in human 8 

liver cell atlas. Figure S5. Dimension reductions showing three groups of hepatocytes. 9 

Figure S6. Investigating cholangiocytes in the human liver cell atlas using cellstruct. 10 

Figure S7. Stability analysis of GS metric using human liver cell atlas. Figure S8. 11 

Applying cellstruct to the COVID peripheral immune atlas. Figure S9. Corroboration 12 

of COVID-CD14 Monocyte groups, identified by cellstruct, with the author’s original 13 

analysis. Figure S10. Comparative analysis between scDEED and cellstruct using 14 

Simulated Dataset 1. Figure S11. Scatterplot of KNC and KNN values of t-SNE and 15 

UMAP embeddings in 20 simulated datasets.) 16 

Additional file 3: Table S1. Number of cells for each group detected in different patient 17 

severity level. 18 

Additional file 4: Table S2. Number of cells for each sample in each COVID-CD14 19 

Monocyte group. 20 

Additional file 5: Table S3. Number of trustworthy, dubious, and neither cells classified 21 

by scDEED and cellstruct respectively. 22 

Additional file 6: Table S4. Differential genes expression analysis among four 23 

monocyte groups detected in 20% of COVID-CD14 Monocytes. 24 
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Additional file 7: Table S5. Differential genes expression analysis among three patient 1 

severity groups detected in 20% of COVID-CD14 Monocytes. 2 
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