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Abstract12

Understanding how the genome of a virus evolves depending on the host it13

infects is an important question that challenges our knowledge about several14

mechanisms of host-pathogen interactions, including mutational signatures,15

innate immunity, and codon optimization. A key facet of this general topic16

is the study of viral genome evolution after a host-jumping event, a topic17

which has experienced a surge in interest due to the fight against emerging18

pathogens such as SARS-CoV-2. In this work, we tackle this question by in-19

troducing a new method to learn Maximum Entropy Nucleotide Bias models20

(MENB) reflecting single, di- and tri- nucleotide usage, which can be trained21

from viral sequences that infect a given host. We show that both the viral22

family and the host leave a fingerprint in nucleotide usages which MENB23

models decode. When the task is to classify both the host and the viral fam-24

ily for a sequence of unknown viral origin MENB models outperform state25

of the art methods based on deep neural networks. We further demonstrate26

the generative properties of the proposed framework, presenting an example27

where we change the nucleotide composition of the 1918 H1N1 Influenza28

A sequence without changing its protein sequence, while manipulating the29

nucleotide usage, by diminishing its CpG content. Finally we consider two30
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well-known cases of zoonotic jumps, for the H1N1 Influenza A and for the31

SARS-CoV-2 viruses, and show that our method can be used to track the32

adaptation to the new host and to shed light on the more relevant selective33

pressures which have acted on motif usage during this process. Our work34

has wide-ranging applications, including integration into metagenomic stud-35

ies to identify hosts for diverse viruses, surveillance of emerging pathogens,36

prediction of synonymous mutations that effect immunogenicity during viral37

evolution in a new host, and the estimation of putative evolutionary ages for38

viral sequences in similar scenarios. Additionally, the computational frame-39

work introduced here can be used to assist vaccine design by tuning motif40

usage with fine-grained control.41
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Author summary42

In our research, we delved into the fascinating world of viruses and their43

genetic changes when they jump from one host to another, a critical topic44

in the study of emerging pathogens. We developed a novel computational45

method to capture how viruses change the nucleotide usage of their genes46

when they infect different hosts. We found that viruses from various families47

have unique strategies for tuning their nucleotide usage when they infect the48

same host. Our model could accurately pinpoint which host a viral sequence49

came from, even when the sequence was vastly different from the ones we50

trained on. We demonstrated the power of our method by altering the nu-51

cleotide usage of an RNA sequence without affecting the protein it encodes,52

providing a proof-of-concept of a method that can be used to design better53

RNA vaccines or to fine-tune other nucleic acid-based therapies. Moreover54

the framework we introduce can help tracking emerging pathogens, predict-55

ing synonymous mutations in the adaptation to a new host and estimating56

how long viral sequences have been evolving in it. Overall, our work sheds57

light on the intricate interactions between viruses and their hosts.58

1 Introduction59

The recent COVID-19 pandemic inspired the scientific community to investi-60

gate zoonotic transmission of viruses [Parrish et al., 2008, Andersen et al., 2020]61

and the subsequent evolutionary dynamics of viral adaptation to a new62

host. Several experimental [Starr et al., 2020, Moulana et al., 2022] and63

computational [Rodriguez-Rivas et al., 2022, Tubiana et al., 2022] investi-64

gations pointed out the impact of amino-acid mutations in the spike glyco-65

protein and their effects on its interaction with the human ACE2 receptor,66

which conferred a fitness advantage and resulted in selective sweeps of new67

variants [Kang et al., 2021, Lee et al., 2022].68

Another fundamental question is identifying Pathogen-Associated Molec-69

ular Patterns (PAMPs) in a viral sequence [Akira and Hemmi, 2003] and70

predicting how the virus changed those patterns to adapt to the human71

environment and to alter innate immune recognition and response. This72

topic had been previously explored for the H1N1 strain of the 1918 H1N173

influenza pandemic. In this context it has been shown that the viral genome74

evolved in a predictable way to lose CpG motifs (a cytosine followed by a75

guanine in the 5’-to-3’ sense) after entering its human host from an avian76

reservoir [Greenbaum et al., 2008, Greenbaum et al., 2014]. This observa-77
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tion, together with the fact that most human-infecting viruses have a low78

abundance of CpG motifs, was followed by the identification of the CpG-79

dependent receptor specificity of the human Zinc-finger Antiviral Protein80

(ZAP, coded by ZC3HAV1 gene) [Gao et al., 2002, Takata et al., 2017], im-81

plying such approaches can identify recognition sites by host anti-viral re-82

striction factors. Similar analyses for the early evolution of SARS-CoV-83

2 have been carried out [Di Gioacchino et al., 2021, Kumar et al., 2022],84

showing a similar pressure to reduce CpG motifs in CpG-rich regions of85

the viral genome. Finally, understanding and controlling the impact of a86

foreign RNA sequence on the stimulation of the innate immune response87

has an important application in DNA and RNA vaccine design in order88

to avoid over-stimulating the host innate reaction to nucleic acids in the89

vaccine[Zhang et al., 2023], while also optimizing for features such as codon90

bias [Pardi et al., 2018].91

These questions are facets of the fundamental problem of determining92

how the interaction of a virus with its host is imprinted upon evolving viral93

genomes. This topic has been considered in several contexts [Hall et al., 2013,94

Bloom et al., 2023], demonstrating that viruses of the same family accumu-95

late mutations to use similar nucleotide patterns when they evolve in inter-96

action with a specific host. This idea has been in turn the cornerstone of97

a fruitful series of works aimed at determining the host of a virus from its98

genome. Remarkably, it has been shown that methods that do not resort99

to sequence alignment perform, for this specific task, comparably well with100

alignment-based methods [Li and Sun, 2018]. These methods typically rely101

on using machine learning based on the frequencies of k-mers (subsequences102

of length k) up to a given length kmax, either alone [Tang et al., 2015,103

Brierley and Fowler, 2021], together with other features such as physical-104

chemical properties of amino-acids [Young et al., 2020], or using a hybrid105

method that integrates alignment-based features [Babayan et al., 2018]. Re-106

cently, techniques based on deep neural networks have been suggested to107

solve the task of finding the correct host of a given virus, completely by-108

passing the choice of the features used for a model [Mock et al., 2020]. While109

most of these methods can give remarkable classification performances, there110

is a pressing need for techniques that are effective at the classification task111

while remaining at the same time simple to use and interpretable. The latter112

point is particularly important to increase our molecular understanding of113

the evolutionary processes that a virus undergoes after an host switch, which114

can then be targeted by a antiviral therapies during a zoonitic transmission.115

In this work, we address all these issues by taking a novel approach:116

we build a maximum entropy model whose parameters are inferred to cap-117
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ture short-range (up to 3-mers) nucleotide usage patterns in viral genome118

sequences. Maximum-entropy models have been already used in several con-119

texts, such as for protein sequences [Morcos et al., 2011, Cocco et al., 2018,120

Mayer et al., 2022], neuronal spiking activity [Tavoni et al., 2017, Ferrari et al., 2017]121

and social dynamics [Bialek et al., 2012, Chen et al., 2022], demonstrating122

the effectiveness and flexibility of this approach. In the context of viral123

evolution and identification of PAMPS in RNA sequences the approach124

introduced here extends the selective force model previously introduced125

[Greenbaum et al., 2014, Tanne et al., 2015, Di Gioacchino et al., 2021] which126

reproduced the motif usage of a particular k-mers only: CpG dinucleotide127

and other individual motifs. In analogy to k-mer based methods our model128

does not require any alignment or annotation of the genetic sequence under129

analysis. We show our technique is simple but extremely effective to tackle130

the host classification task, resulting in performances comparable with deep131

neural network models or, in the more challenging setting where no phylo-132

genetic information is available, superior in its discrimination capability.133

2 Results134

2.1 MENB: a model for host and viral origin classification135

Our unsupervised learning model, MENB, infers parameters associated for
each k-mer up to k = 3 and defines a probability distribution on viral se-
quences (of a fixed length), in such a way that the expected k-mer frequen-
cies from this distribution match with those observed in the training data.
As shown in Methods Sec. 5.1.1, this results in the following probability
distribution for a viral sequence s:

p(s) ∝ exp

(∑
a∈S

f (1)
a na(s) +

∑
ab∈S

f
(2)
ab nab(s) +

∑
abc∈S

f
(3)
abc nabc(s)

)
,

where S is the set of nucleotides, nm(s) is the number of times the mo-136

tif m is present in s, and the parameters indicated by f are the “forces”137

[Greenbaum et al., 2014] to be inferred from the training data.138

To train our model we collected viral sequences from the BV-BRC database139

[Olson et al., 2022], and filtered the data for sequences of three host classes:140

human, avian and swine viruses. We required at least 150 (different) viral141

genomes for each host class, and this left us with 4 viral families: Coro-142

naviridae, Flaviviridae, Picornaviridae, and Orthomyxoviridae(focusing on143

Influenza A alone). We stress that such number of sequences is in principle144
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not necessary to train our models: a single sequence (of sufficient length)145

is enough, provided that the number of motifs observed in that sequence is146

representative. To avoid biases in choosing this reference sequence, however,147

we decided to train the models on sets of 100 sequences (the remaining se-148

quences are used as test set). We then test the model in the task of host149

classification from a viral sequence. We consider three strategies to assign150

an host to a given viral sequence. In the simplest one, called “MENB-H”, for151

each host h we grouped together the sequences belonging to different viral152

families and trained a single MENB model that approximates the probabil-153

ity p(s|h). Given a new sequence s, we can therefore estimate the probability154

of it coming from host h using Bayes formula p(h|s) ∝ p(s|h) p(h), where155

p(h) is a prior that we will consider uniform over the host distribution.156

To introduce a more complex strategy we start by training a set of MENB157

models p(s|h, v) at fixed viral family v and host h. As in the previous case,158

we can then obtain the probability of a sequence to be associated to a host-159

virus, (h, v), pair as p(h, v|s) ∝ p(s|h, v) p(h, v). If we know the viral origin160

(v0) of the test sequence we can limit ourselves to compare models trained161

for that family on different host, a strategy that we name “MENB-H|V”,162

and by assuming an uniform prior p(h, v0) we obtain p(h|s, v0) ∝ p(s|h, v0).163

If, on the contrary, we ignore the viral family of the sequence we can then164

sum over the different viral families to have a probability a virus is associated165

with a given host, a strategy that we will call “MENB-H,V”. By assuming166

again a uniform prior we obtain p(h|s) ∝
∑

v p(s|h, v). Remarkably, for all167

viral genomes analyzed in this work, there is a unique term that contributes168

much more than all the others to the above summation. Hence we can169

associate to a viral sequence a specific host as the most likely origin, and170

likewise guess the viral family from the term that mostly contributes to the171

probability of that host.172

The results of the host classification task on test viral sequences, after173

having trained the models using the three strategies (“MENB-H”, “MENB-174

H,V”, “MENB-H|V”) discussed are displayed in in Fig. 1A. We first notice175

that the viral agnostic models, MENB-H, has a low accuracy: the accu-176

racy averaged over the viral families is about 51%, blue dashed line), only177

marginally better than random guessing (33%, black dashed line), with per-178

formances comparable to random guessing for Coronaviridae and Orthomyx-179

oviridae. Similar results have been observed elsewhere [Mock et al., 2020].180

A possible explanation for the failure of this viral-agnostic host inference181

strategy is that viral genomes are highly constrained (for instance, they182

need to code for multiple, sometimes overlapping protein sequences while183

interacting with viral proteins for encapsulation), hence not free to evolve to184
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change their nucleotide usage in a way that depends uniquely upon the host.185

Such explanation is confirmed by the improved performances obtained when186

learning viral-families dependent models for each hosts (“MENB-V,H”), and187

marginalizing over viral families to find the most probable host. “MENB-188

V,H” gives an average performance in classification of (85%, orange bars189

in Fig. 1A ). Moreover when comparing (Fig. 1B) the values of v that give190

the largest contribution to the sum with the real viral families. We find an191

average accuracy of about 97%, confirming that the “MENB-V,H” strategy192

is able to predict, with a very good accuracy, both the host and the viral193

family of a new sequence.194

2.2 Comparison of MENB with other approaches195

Given the performance of MENB models for the host classification task, a196

natural question is how it compares with other state-of-the-art approaches.197

To answer this, we considered VIDHOP [Mock et al., 2020], a deep-neural198

network designed specifically for this task which can be obtained from a pub-199

lic code repository re-trained by any user. The authors in [Mock et al., 2020]200

noticed that their algorithm could not generalize to viruses of different fam-201

ilies, so they designed VIDHOP to work at fixed viral family. As we demon-202

strated, MENB can in principle work without information about the viral203

family of the target sequence, but to make the comparison fairer we modi-204

fied our approach to use MENB models to assess the host of viral sequences205

at fixed viral family: we considered as hosts directly the argmaxh p(h, v|s),206

where the correct viral family v is used instead of summing on all possible207

families. We retrained VIDHOP and MENB on the same sequences, and208

compared their performances. As expected from the higher complexity (in209

terms of number of learnable parameters) of VIDHOP, its performances are210

better than MENB in most cases and in particular for Coronaviridae, while211

being very similar for Orthomyxoviridae, as shown in Fig. 1A (green and red212

bars). On the other hand, VIDHOP requires many more resources (in terms213

of time and computational power) with respect to MENB (for instance, for214

each viral family VIDHOP requires about 1 hour on a 56-core CPU, while215

MENB requires less than 5 minutes on 3 cores).216

We then wanted to confirm that the host classification results we ob-217

tained with MENB models are actually related to viral adaptation to their218

hosts, and not caused by spurious effects such as phylogenetic correlations219

that lead to strong similarity of sequences in the training and test set.220

We therefore designed a more difficult classification task based on out-of-221

distribution data points: we trained our model on a part of the viral se-222
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quences (the first half for Coronaviridae, Flaviviridae and Picornaviridae,223

and on all segments but PB2 for Orthomyxoviridae), and used it to deter-224

mine the host from the other part of the sequences. In this way the classifi-225

cation is performed on sequences that are completely different (in terms of226

edit distance) from those used during training, but as shown in Fig. 1C and227

D, the model can still determine quite precisely the viral family of the test228

part of the sequences (the average accuracy is about 89%), and performs229

much better than a random classifier in determining the host (the average230

accuracy is about 67%), although the performances are degraded with re-231

spect to those obtained with full sequences. Remarkably, in this test MENB232

performs sensibly better than VIDHOP, whose results are only marginally233

superior than those of a random classifier (black dashed line in the plot).234

It is therefore reasonable to expect that the extremely good performance of235

VIDHOP on full sequences relies on the large similarity between training236

and test sequences, even if cross-validation during training is used to select237

the best model on a validation dataset.238

In general, the performance of MENB models derive from the differences239

between the probability distributions over viral sequences that each model240

learns. In Fig. 2 we show the symmetrized Kullback-Leibler (KL) divergence241

(for a definition, see Methods Sec. 5.1.3) between each pair of distributions.242

Remarkably, models trained on viruses infecting the same host encode far243

more different probability distributions than models trained on viruses of244

the same family, suggesting that the nucleotide usage is more driven by245

phylogenetic correlations than by host adaptation. This is compatible with246

the much greater performances of the MENB models in discriminating viral247

families rather than hosts, and the smaller divergences within viral families248

ultimately justify the choice of using the “MENB-H,V” strategy. Moreover,249

we notice that Orthomyxoviridae viruses have smaller differences between250

hosts with respect to other viral families, probably because of their tendency251

to commonly undergo reassortments with segments of viruses adapted to252

different hosts.253
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Figure 1: MENB models can predict host and viral family of viral
genomes. A: accuracy of MENB models trained on all viruses with the
same host (blue bars) and on all virus-host pairs (orange bars) on the host
classification task on the test set of viral genomes; green bars are obtained
using the same models used for the orange bar, but using only the correct
viral family of the target viral genome, and red bars are the accuracy of the
host classification task in this same setting with the VIDHOP algorithm.
B: accuracy of MENB models trained on all virus-host pairs in determining
the correct viral family for the target test genome as the one that mostly
contributes in the host classification. C: same as A, but the training is done
on the first half of the genome (for Coronaviridae, Flaviviridae, Picornaviri-
dae) or on all segments but PB2 (for Orthomyxoviridae), and the test is
done on the remaining part of the sequence. D: same as B, with the same
task as described in C.
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Figure 2: Viruses infecting the same host use nucleotides in dif-
ferent ways. Symmetrized Kullback-Leibler divergences between all (full)
MENB model pairs considered in this work. The divergence is computed
with respect to sequences having an arbitrary length of 1000 nucleotides,
see Methods Sec. 5.1.3.
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2.3 Generative power of MENB models254

In Fig. 3 we focus on the human Orthomyxoviridae viral sequences and we255

show that the MENB model reproduces, as expected, the 1-, 2- and 3-mer256

statistics of the training set (Suppl. Fig. 5). Moreover, it generalizes to new257

sequences in the test set, which are not used for the training, when full258

genomes are used (Fig. 3A). These performances are only slightly degraded259

when a fraction of each genome is used in the training test and the test set260

contains new sequences and the unseen part of the genome (Fig. 3C), further261

showing how nucleotide usage biases encompass the full viral sequences and262

can be learned from a fraction of them.263

The MENB models are trained to reproduce the frequency of 1-, 2-, and264

3-mers observed in the training dataset; we next investigated how well these265

models reproduce higher order statistics. To do so, we sampled sequences266

from the probability distribution encoded by MENB models (using a stan-267

dard Metropolis–Hastings algorithm) and compared to the 4-mer frequencies268

observed in these sampled sequences with those of the training dataset. In269

Fig. 3B,D we show that MENB model almost perfectly capture the 4-mer270

statistics.271

In Fig. 4 we further show how we can leverage MENB models together272

with the Metropolis–Hastings sampling algorithm to change the nucleotide273

usage of a protein-coding sequence, while keeping fixed its amino-acid se-274

quence. As an illustration, we considered the PB2 coding region of the 1918275

H1N1 strain and wanted to reduce its number of PAMP associated CpG276

motifs [Greenbaum et al., 2008, Greenbaum et al., 2014].277

We thus synthetically evolved the 1918 sequence by the Metropolis–Hasting278

dynamics and using the MENB the force parameters inferred from the 1918279

sequence apart from fCpG which we fixed to fCpG = −1.9. Such fCpG value280

is close to the average value in the human genome and is sensibly lower than281

the one in the original H1N1 strain (fCpG = −0.6). The original amino-acid282

content of the 1918 sequence was kept by accepting only synonymous muta-283

tions in the Metropolis–Hasting sampling dynamics [Chatenay et al., 2017].284

As shown in Fig. 4 this resulted in a global change of the nucleotide content285

of the sequence, where CpG dinucleotides and CpG-containing 3-mers are286

mostly affected, while other dimers and trimers are generally conserved, see287

Suppl. Fig. 8. Generation of synthetic sequences under fixed constraint on288

other motifs can be analogously carried on by changing the corresponding289

forces.290
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2.4 Viruses adapt to their host after hosts jumps: Applica-291

tions to H1N1 influenza and SARS-CoV-2292

We demonstrated that our model can infer the host of viral sequences from293

their nucleotide statistics alone. Here we show the model describes the294

evolution of a viral strain after a host jump. We start with the case of295

1918 H1N1 influenza pandemics: we collected all PB2 segments available296

in our dataset associated to the H1N1 strain up to 2008. It is commonly297

accepted that the pandemics originated with a jump from avian to human298

hosts [Taubenberger et al., 2005]. To compare the two hosts we will use in299

our analysis the human and the avian model trained, for each host, on all300

the segments of influenza viruses excluding PB2 to avoid potential overfit-301

ting. Before assigning sequences to their host, we built a phylogenetic tree,302

on a random subsample of up to 20 sequences per year, using Nextstrain303

[Hadfield et al., 2018]. Fig. 5A shows the log-probability difference between304

the influenza-human and influenza-avian MEMB models at fixed viral family305

as a function of time since 1918. The log-probability difference allows classifi-306

cation of the host, similarly to the host classification task with MENB-H,V in307

Fig.1 from the sequences sampled over time but also from the reconstructed308

roots along the phylogenetic tree. We observe that the maximum-entropy309

model is misled in the assessment of the host of the 1918 PB2 segments310

(left side of Fig. 5A), which is wrongly classified as an avian virus, while311

being sampled in humans. This mislcassification is a clear signature of the312

host jump which had just occurred and originated the 1918 pandemic. The313

classification changes with time: as the virus evolve in contact with the hu-314

man host, the model assigns to it higher log-probability differences, giving315

equal scores to human and avian origin around 1950. For more recent sam-316

ples the model is more and more confident about the human classification.317

Quite remarkably, the log-probability score introduced here works as a sort318

of “molecular clock”, by steadily increasing as the virus adapts to the new319

host. Similar results are obtained also by a simple model only reflecting the320

nucleotide usage or also including the CpG forces [Greenbaum et al., 2014]321

(Suppl. Fig. 4), although in these cases the difference of log-probability be-322

tween the two models is less pronounced, confirming that host adaptation323

takes place at different order on motif’s usage.324

As a final application of our MENB models, we turned to the SARS-325

CoV-2 virus. We wanted to check if we can see hints of host adaptation as326

for the 1918 H1N1 virus. This case is different from H1N1 as the orig-327

inal host of SARS-CoV-2 is currently unknown and subject of scientific328

debate [Andersen et al., 2020]; we have therefore assumed that the origi-329
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nal Wuhan sequence is representative of the (unknown) previous host and330

build its MEMB model from this unique sequence, while building the model331

for SARS-Cov-2 in human host from the sequences collected during the re-332

cent pandemic waves and collected in Nextstrain [Hadfield et al., 2018]. We333

stress that although in principle our method could be used to investigate the334

most likely origin of SARS-CoV-2, this would require Coronaviridae data of335

other species (such as pangolins and bats), but current data is biased towards336

sequences similar to the human SARS-CoV-2 and hence not representative337

of the original host.338

The log-probability difference between the two models is plotted in Fig. 6339

as a function of time for the first 1100 days from the start of the 2020 pan-340

demic. It shows a slow but steady adaptation to human nucleotide usage341

(black line, whose slope is significantly different from 0 with a p-value of342

10−9). Quite surprisingly, the slope of the fitting line is larger for sequences343

collected in the last 6 months (data downloaded on June 30th, 2023), sug-344

gesting an increase of the adaptation speed in the Omicron 23A variant345

that appeared in early January 2023 and rapidly took over the entire SARS-346

CoV-2 global population. In the above analysis we have taken into account347

a number of limitations and delicate points that we discuss here. First, the348

SARS-CoV-2 sequence data is heavily biased, both geographically (a large349

fraction of the sequences are collected in a small number of countries) and350

temporarily (the rate of sequence collection increased steadily in the first351

months of the pandemics). Second, as discussed above, we have used the352

single Wuhan sequence to infer the model for the unknown virus transmit-353

ting host. Third, the time over which the adaptation to the human host has354

been sampled is much smaller than that of the H1N1 strain, on such a short355

time scale adaption driven by non-synonymous mutations with clear fitness356

advantages could result in a confounding signal.357

To address the first issue we used a curated dataset of sequences collected358

by Nextstrain [Hadfield et al., 2018] to build the model of SARS-CoV-2 in359

the human host: in this dataset sequences are subsampled to reduce biases360

from different geographic regions and time periods, and most of the se-361

quences are collected in the last 6 months. As for the second issue, although362

a MENB model can be trained with a single sequence, in this case the motif363

frequencies are less representative of the virus-host pair under analysis, so364

additional caution must be used in this case in interpreting the results ob-365

tained. Indeed, by construction the initial log-likelihood associated to the366

“Wuhan” host will be higher than the one for human Coronaviridae. More-367

over the “Wuhan” host is likely not to be the human [Andersen et al., 2020],368

but using specific viral sequences that has been collected in bats or pangolins369
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(that have been suggested to be the reservoir of SARS-CoV-2 ancestors)370

due to their similarity with the Wuhan sequence would give very similar re-371

sults. Regarding the third problem outlined before, there is no way to deal372

with it other than collecting sequences for longer times, but the questions373

of whether some early signals of host adaptation can be spotted with the374

genomes observed so far is still well-posed.375

16

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 30, 2023. ; https://doi.org/10.1101/2023.10.28.564530doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.28.564530
http://creativecommons.org/licenses/by/4.0/


Year
1925 1950 1975 2000

H
um

an
 -

 A
vi

an
 s

co
re

-1.0

-0.5

0.0

0.5

1.0

time (days)
0 500 1000

H
um

an
 -

 W
uh

an
 s

co
re

-8.0

-7.5

-7.0

-6.5

A

B

data daily avg (last 180 days) fit (first 1089 days) fit (last 180 days)

Figure 5: MENB models can be used to quantify host adaptation
dynamics after host jumps. A: Scatter plot of loglikelihood differences
of the MENB Orthomyxoviridae human and avian models versus time of
H1N1 Influenza A sequences. The colored lines are the reconstructed paths
of the inferred phylogenetic tree that connect the root to each leaf (observed
sequence), and the score versus inferred time is plotted also for the internal
node (inferred) sequences. B: Scatter plot of loglikelihood differences of the
MENB Coronaviridae model versus a MENB model trained on the original
Wuhan SARS-CoV-2 sequence versus time from December 26th 2019. The
black line is a linear fit on the first 1089 days (slope: 9 · 10−5, p-value:
10−9), the orange line is a linear fit of the last 180 days (slope: 3.5 · 10−4,
p-value: 10−7). To ease the visualization of the increasing trend of the score
difference in the last 180 days, daily averages of the score differences are
plotted as orange points.
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2.5 MENB models’ parameters reflect biologically-relevant376

features377

The MEMB models offer the advantage to have a relatively low number378

of learnable parameters and that each of them is related to the usage of379

the corresponding motif. Such models are therefore ideal candidates for380

interpretation, that in turn can be useful to accumulate insight into potential381

roles in molecular biology of motifs, for instance associated to the recognition382

by the host innate immune system.383

To showcase this we considered two models trained on the PB2 seg-384

ments of Orthomyxoviridae viruses: one (“H1N1 1918”) has been trained on385

the sequence collected in 1918, the other (“H1N1 2007”) has been trained386

on 26 sequences collected in 2007. In Fig. 6A we show the entire param-387

eter profile of the two models. Parameters different form zero reflect the388

presence of selective forces which push up or down the number of the cor-389

responding motif with respect to sequences generated uniformly at random.390

Considering the fact that the 1918 strain was likely of avian origin, the first391

interesting remark is an overall similarly of the force profile in the two cases,392

especially for nucleotides and dimers, which indicate that many of the force393

parameters did not significantly change during the adaptation to the hu-394

man host. The two dinucleotides with the largest negative forces are the395

CpG, reflecting the well-known avoidance of CpG motifs, followed by UpA,396

another known avoided motif that is supposed to have a role in codon ef-397

ficiency [Tulloch et al., 2014, Atkinson et al., 2014]. Moreover, the force in398

UpG motif is large and positive, likely due to the C>U and A>G mutational399

processes on, respectively, CpG and UpA motifs. This observation points400

out an important concept that is commonly overlooked in k-mer analyses of401

genetic sequences: the lack of one or more motif is necessarily compensated402

by an increase in abundance of other motifs, and vice-versa. In our frame-403

work this is deeply connected to the gauge choices that have to be taken due404

to conservation of probabilities at single, di and tri-nucleotide levels and are405

discussed in more details in Methods Sec. 5.1.2.406

The differences in the parameter profile of In Fig. 6A disclose the selective407

pressures on the nucleotide biases, dimers and trimers driving the evolution408

of the viral sequence in the adaptation to the new host. The most striking409

differences between the 1918 and the 2007 viruses are the further decreases410

in the CpG force, as well as CGU motifs decrease, from a value around zero411

in 1918 to a negative value in 2007. An opposite evolution is observed for412

the GpG force increasing from zero to a positive value and for the CGG force413

which relaxes from a negative value toward zero in the 2007 (see also Supp.414
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Fig.9). The decrease in CpG forces confirms previous findings and what415

obtained with a simpler model containing only the CpG force, moreover the416

different behavior for the tri-nucleotide mirrors the context dependence of417

the CpG loss [Greenbaum et al., 2008, Greenbaum et al., 2014].418

A more rigorous way to study the evolution of the forces is to find the419

key parameters to discriminate the models inferred from the 1918 and 2007420

sequences. This problem can be addressed within the framework of inte-421

grated gradients [Sundararajan et al., 2017]:We compute the symmetrized422

KL divergence between the two MENB models as the sum of attributions,423

i. e. integrated gradients with respect to each parameter (more details about424

the procedure are given in Methods Sec. 5.1.3; see Suppl. Fig. 7 for the425

comparison of symmetrized versus non-symmetrized KL divergences). In426

Fig. 6B we show the values for the top-20 attributions to the symmetryzed427

KL divergence: consistently with the forces differences, we find that the428

largest attribution is on CpG dinucleotide, and several 3-nucleotides mo-429

tifs containng CpG (CGA, CGU, CGG, CCG) are present. The GpG and430

GpA and UpA dinucleotides and several related trinucleotides (TGG, GGC,431

GGC, CGG, GAG, TAC, TAG) have a large attribution too.432

Once the inference of parameters is performed we can analytically com-433

pute the expected number of 1-, 2-, and 3-nucleotide motifs in a viral se-434

quence according to the MENB models (see Methods Sec. 5.1.3), which (as435

shown in Fig. 5) should reproduce, by model construction, the motif fre-436

quencies in the data, as previously shown in Fig. 8A. It is interesting to437

compare the force attributions in flu evolution to the relative difference in438

motif frequency Fig. 6C as, due to network effects, they are only marginally439

related. Nucleotide or dinucleotide usage can, for instance, be driven also440

by the di-nucleotide and tri-nucleotide forces. In agreement with the force441

attributions, the CpG dinucletide shows, among all dinucleotides resulting442

in human-adapted H1N1 strains, the largest relative decrease in 2007 with443

respect to 1918. Moreover we observe more UA and AA nucleotides with444

respect to the 1918 strain. As for 3-mers, the signal is dominated by de-445

crease in usage of specific CpG-containing motifs, although for instance an446

increase of TAC motifs is observed (Fig. 6B). It is important to notice that447

relative changes of 3-mers cannot be compared immediately with those of448

2-mers, due to the fact that there are 64 different 3-mers and 16 2-mers and449

so individual 3-mers are in general rarer than individual 2-mers and largest450

changes are to be expected.451

We next discuss the force comparison in the context of virus and host452

classification, from MENB models inferred from the ensemble of sequences453

for a fixed viral family and host, to bring out similarities and difference in454
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motif usage through the force parameters. The overall similarity of force455

profiles is again apparent, see Suppl. Fig. 1, reflecting a direct cross contam-456

ination and adaptation through zoonotic transmissions or the presence of457

similar molecular mechanisms driving the adaptation of the viral sequences458

to the host. Compatibly with Fig. 2 largest differences are present among459

viruses than among hosts. The attributions and differences in motif usage460

depends quite strongly on both viral family and pair of host analyzed, as461

shown in Supp. Fig. 3 and Supp. Fig. 2, further underlying the peculiarities462

of each viral family and host and the importance of inferring MENB models463

for each viral family and host independently.464

3 Discussion465

We demonstrate our maximum-entropy approach can successfully be used466

to predict from a sequence its viral origin and host based on conditional467

probabilities and Bayes rule. Consistently with some recent empirical ob-468

servations [Mock et al., 2020], we show viral sequences adapt to the host469

nucleotide usage under specific viral-family depending constraints. In the470

host-classification task, our interpretable MENB algorithm has competi-471

tive performance with state-of-the-art approaches based on deep neural472

networks, despite being far simpler in terms of number of learnable pa-473

rameters. As expected by classical bias-variance trade-off considerations474

[Posani et al., 2022], our methods is less subject to the specific details of475

the training data, and shows remarkable out-of-distribution generalization476

properties. This can be of direct applicability in practical cases, such as477

when a new viral subfamily is discovered which possesses a genome different478

enough from those used in the training set. This scenario is likely to become479

more and more relevant in the near future, as new viral sequences continue480

to be discovered [Tisza et al., 2020, Edgar et al., 2022].481

Our framework can predict the viral genome evolution in a new host, as482

the log-probability difference in the new host with respect to the previous483

host increases in time and measures how well the sequence has adapted to its484

new host environment. This is clearly shown for the H1N1 Influenza for for485

which we have 100 years of sampled sequences at our disposal; we see a sim-486

ilar trend of host adaptation for the SARS-CoV-2 pandemics as well, which487

hass accelerated with the expansion of new variants [Di Gioacchino et al., 2021,488

Kumar et al., 2022].489

An important open question is whether the adaptation to the host that490

we observe directly provides a fitness advantage to the viruses, or if it is a491
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Figure 6: The learned parameters of MENB models can be directly
visualized and interpreted. A: Plot of each of the 84 parameters (forces)
learned by MENB models trained on all segments but PB2 of H1N1 In-
fluenza A strains collected in 2007 (blue) and of the 1918 strain (orange).
B: Attributions computed with the method of integrated gradients (Meth-
ods Sec. 5.1.3) for the symmetrized Kullback-Leibler divergence between
the MENB models used in panel A. To allow for an easier visualization only
the 20 parameters with the highest contribution (in absolute value) to the
symmetrized KL divergence are shown. Light blue bars denote negative at-
tributions. C: Relative difference in expected motif frequencies between the
MENB models used in panel A (Methods Sec. 5.1.3). Only the 5 top differ-
ences (in absolute value) are plotted for 2-mers and 3-mers. Blue (orange)
bars correspond to positive (negative) differences.
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neutral consequence of the viral evolution within a new environment. Ar-492

guments for both possibilities exist: for instance, viruses can reduce their493

CpG content after infection in an host that uses CpG-recognizing antiviral494

mechanisms (as ZAP in humans) [Shaw et al., 2021], which is likely an adap-495

tation that provides a fitness advantage. On the other hand, the interferon-496

inducible antiviral protein APOBEC A3G in humans causes hypermutations497

on cytosines [Chemudupati et al., 2019] and as such it decreases the C con-498

tent in viral genomes. In this case it is possible that the observed mutations499

are those that fix in the viral population without destroying the viral life500

cycle, and so can have null or (extremely) weak replicative fitness effects.501

The two effects can also coexist and emerge from sequence data on different502

time scales of the viral evolution. The analysis of the attributions on the503

early evolution SARS-CoV2 in Supp. Fig (6), shows that among the little504

changes observed on the overall force parameters, the attributions contain-505

ing C and U and their repetition (UUU, CCC) are the largest one. These506

results are cosistent with previous analysis showing the large diminution of507

C occurrences [Hodcroft, 2021] and the presence of local pressures on the508

CpG, on specific regions of the genome. In particular, large CpG diminu-509

tion has been observed in the N protein open reading frame which occupies510

a small region in the genome but is one of the most abundant transcript in511

the cytoplasm [Di Gioacchino et al., 2021].512

The work described here has several potential applications. The fast and513

flexible host detection algorithm introduced here can easily be integrated514

within metagenomics studies to infer the host of viruses, even if it is quite dif-515

ferent from the sequences used to train the algorithm. Moreover, recent stud-516

ies have pointed out viral mimicry by some repeats in the human genome,517

and our group has suggested to use a MENB model to identify similari-518

ties between genomic regions and viral families [Šulc et al., 2023]. Secondly,519

MENB models can be broadly used to study emerging pathogens and their520

adaptation to new hosts, as a support in surveillance studies. Moreover the521

modeling at the nucleotide level is necessary to capture some features of vi-522

ral evolution which should further combined research within the inference of523

epistatic fitness landscapes of viral genomes that including in a single model524

synonymous and non-synonymous mutations, as the synonymous mutations525

may well have fitness costs [Neher and Shraiman, 2011, Zeng et al., 2021].526

Finally, thanks to their generative properties underlined here, MENBmodels527

are ideal candidate for the optimization in RNA vaccine design for efficiency528

and minimizing rejection due to immunogenicity [Pardi et al., 2018]. By529

preditcing how viruses adapt to their new host we can better understand530

mechanisms that drive their adaptation and design intervention531
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5 Methods536

5.1 The maximum entropy nucleotide bias model537

In this section, we will first give a maximum-entropy derivation of the MENB538

model as given in Eq. (2.1). This will clarify why some of the parameters539

can be arbitrarily fixed as they are redundant (gauge choice) and we will540

discuss the specific choices in this regard made here. Finally we will describe541

how all the computations involving the MENB model used in this paper can542

be performed exactly and efficiently building on classical statistical-physics543

methods.544

5.1.1 Maximum entropy justification545

Consider an set of sequences observed (data), we want to find a probabil-546

ity distribution on the sequence space (model) such that: (i) the observed547

frequencies of nucleotides, 2-mers and 3-mers in the data match those ex-548

pected by sampling sequences according to the model, and (ii) the entropy549

−
∑

s p(s) log p(s) is maximized. Therefore the MENB model probability550

distribution maximizes the following quantity551

−
∑
s

p(s) log p(s) +
∑
a∈S

f (1)
a

(
⟨na(s)⟩ − nobs

a

)
+
∑
ab∈S

f
(2)
ab

(
⟨nab(s)⟩ − nobs

ab

)
+
∑
abc∈S

f
(3)
abc

(
⟨nabc(s)⟩ − nobs

abc

) (1)

over p(s) and the Lagrange multipliers f
(1)
a , f

(2)
ab and f

(3)
abc. Here ⟨f(s)⟩ =552 ∑

s p(s)f(s), and quantities with the obs superscript are averages com-553

puted on the data sequences. By taking the functional derivative with554

respect p(s), we obtain the functional form given in Eq. (2.1), where the555

Lagrange multipliers, that we also call force parameters, need to be fixed so556

that the observed frequencies of nucleotides, 2-mers and 3-mers in the data557

match those expected by sampling sequences according to the model. Foll-558

wing [Greenbaum et al., 2014], this parameter inference can be performed559
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by computing the partition function560

Z =
∑
s∈SL

exp

(∑
a∈S

f (1)
a na(s) +

∑
ab∈S

f
(2)
ab nab(s) +

∑
abc∈S

f
(3)
abc nabc(s)

)
(2)

that normalizes the probability distribution in Eq. (2.1) and using it to es-561

timate the quantities ⟨na(s)⟩, ⟨nab(s)⟩, ⟨nabc(s)⟩. Finally, a root-finding562

algorithm such as the Newton–Raphson method can be used to find the cor-563

rect values for the parameters. Optionally the observed quantities nobs
a , nobs

ab564

and nobs
abc can be regularized by adding pseudocounts to avoid parameter di-565

vergences or to give less weight to the sequence details during the inference.566

5.1.2 Gauge choices for MENB model567

The MENB model specifies a probability distribution over sequences of568

length L. As such, any change of parameters that does not change the prob-569

ability of any sequence does not have any observable effect and it is called570

a gauge degree of freedom. For instance, we can send f
(1)
a → f

(1)
a +K and,571

for any value of K, this modification does not impact the probability of any572

sequence as it can be readily showed using the fact that
∑

a∈S na(s) = L.573

As a consequence, we are free to choose a value for K so that, for instance,574

f
(1)
T = 0, or so that

∑
a∈S f

(1)
a = 0.575

The presence of gauge degrees of freedom stems from the fact that there576

are many ways of choosing the 84 force parameters in Eq. (2.1) so that the577

observed frequencies of nucleotides, 2-mers and 3-mers in the data match578

those expected from to the model. Indeed, although this requirement can be579

written as a set of 84 equations, some of them are not independent because580
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of the following considerations:581 ∑
a∈S

na(s) = L∑
ab∈S

nab(s) ≃ L∑
a∈S

nax(s) ≃ nx,
∑
a∈S

nxa(s) ≃ nx ∀x ∈ S∑
abc∈S

nabc(s) ≃ L∑
ab∈S

nabx(s) ≃ nx,
∑
ab∈S

naxb(s) ≃ nx

∑
ab∈S

nxab(s) ≃ nx ∀x ∈ S∑
a∈S

nxya(s) ≃ nxy,
∑
a∈S

naxy(s) ≃ nxy ∀x, y ∈ S

(3)

where the symbol ≃ means that the condition is respected in the large-L582

limit, which is the relevant case for all sequences considered in this work.583

This set of equations can be used to fix the gauge degrees of freedom (“choose584

the gauge”), and we do so in this work by choosing a gauge where the585

maximum number of parameters is set to zero, that we call lattice-gas gauge586

(with a slight abuse of notation), or by choosing a gauge where there is no587

arbitrary symmetry breaking among the model parameters, that we call588

zero-sum gauge.589

For the lattice-gas gauge, we decide to set to zero all forces of the form590

f
(1)
T , f

(2)
Tx ∀x ∈ S, f (2)

xT ∀x ∈ S, f (3)
TTT , f

(3)
TTx ∀x ∈ S, f (3)

TxT ∀x ∈ S, f (3)
xTT ∀x ∈ S,591

f
(3)
Txy ∀x, y ∈ S, f (3)

xyT ∀x, y ∈ S. Therefore non-zero T -containing forces only592

have the form hxTy with x, y ∈ S. This means that the effective number of593

free parameters to be inferred goes from 84 to 48.594

The lattice-gas gauge is particularly useful to speed-up the inference595

process and to avoid the Newton–Raphson method to fail to converge due596

to flat directions in the parameter space, but it is not practical when looking597

at the inferred parameters to interpret them. For this reason after inference598

we use the zero-sum gauge, that is defined by the following set of equations599 ∑
a∈S

f (1)
a = 0∑

a∈S
f (2)
xa =

∑
a∈S

f (2)
ax = 0 ∀x ∈ S∑

a∈S
f (3)
xya =

∑
a∈S

f (3)
axy = 0 ∀x, y ∈ S.

(4)

25

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 30, 2023. ; https://doi.org/10.1101/2023.10.28.564530doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.28.564530
http://creativecommons.org/licenses/by/4.0/


5.1.3 Computation of the partition function and related quanti-600

ties601

An remarkable characteristic of the MENB model is that the partition func-602

tion Z given in Eq. (2) can be computed exactly in a time that scales linearly603

with the length of the sequence L using the so-called transfer matrix method,604

well-known in statistical physics. This method has been already described605

for a similar problem in [Greenbaum et al., 2014] (Supporting Information),606

and the only difference in this case is that the matrices also contain a term607

that accounts for the 3-body interaction.608

Once the partition function of a MENB model is computed, we have609

immediate access to a wealth of relevant quantities. In particular, we can610

compute the expected number of ℓ-mers M as611

⟨nM (s)⟩ = ∂

∂f
(ℓ)
M

logZ, (5)

which is the main quantity used to produce Fig. 6B.612

Another relevant quantity is the Kullback-Leibler divergence between613

two models, p1 and p2. It can be written as614

DKL(p1, p2) =
∑
s

p1(s) log

(
p1(s)

p2(s)

)
= logZ2−logZ1+

∑
s

p1(s)
(
E2(s)−E1(s)

)
.

(6)
logZ1 and logZ2 can be computed exactly with the transfer matrix method,615

and to compute the last term on the r.h.s. of Eq. (6) we define616

Z12(λ) =
∑
s

e−E1(s)+λ
(
E2(s)−E1(s)

)
, (7)

and we have617 ∑
s

p1(s)
(
E2(s)− E1(s)

)
=

∂

∂λ
logZ12(λ)

∣∣∣∣
λ=0

. (8)

From the KL divergence we can compute the attributions showed in Fig. 6C.618

Following [Sundararajan et al., 2017], we consider two MENB models de-619

fined by the force parameters f1 and f2. We will use the notationDKL(f1,f2)620

to denote the KL divergence between the models with parameter f1 and f2.621

Thanks to the fundamental theorem of calculus for line integrals, and using622

DKL(f1,f1) = 0, we get623

DKL(f1,f2) =
∑
i

(f1,i − f2,i)

∫ 1

0
∇iDKL(f2 + t(f1 − f2),f2) dt. (9)
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The individual terms of the sum in this equations are the attribution plotted,624

after rescaling for the total KL divergence, in Fig. 6C and Suppl. Fig. 3. As625

a final remark, we notice that the attributions depends on the gauge used.626

In this work we always computed attributions in the zero-sum gauge, and627

we observe that if the parameters f1 and f2 are from models in the zero-sum628

gauge, then Eqs. (4) still hold for f1+ t(f1−f2), and so the path of models629

used in Eq. (9) preserve the zero-sum gauge.630

5.2 Data and code availability631

All sequence data has been collected from the BV-BRC database [Olson et al., 2022].632

After discarding short viral sequences (length lower than 1000 bases), we se-633

lected the pairs of host and viral family so that each viral family has at least634

100 sequences annotated with each host chosen. We discarded Influenza A635

sequences collected after 2009 as the database is dominated by strains of636

the H1N1 “swine flu”, whose triple-reassortment origin [Garten et al., 2009]637

and (likely) not perfect adaptation to humans is a confounding factor dur-638

ing training. The resulting dataset, that is the starting point for all the639

results presented here, is available at https://zenodo.org/doi/10.5281/640

zenodo.10050076. The SARS-CoV-2 data used for Fig. 5B can be down-641

loaded at https://nextstrain.org. Notice, however, that this data is often642

updated as it is focused on the last 6 months. To allow exact reproducibil-643

ity of our results we uploaded the data we used (downloaded on June 30th644

2023) together with the sequence data at https://zenodo.org/doi/10.645

5281/zenodo.10050076.646

The code to infer models is written in Julia and publicly available in the647

GitHub repository at https://github.com/adigioacchino/MaxEntNucleotideBiases.648

jl.649

We trained our MENB models on 100 viral sequences randomly selected650

from our dataset for each pair of host and viral family. We replicated651

this sub-sample three times, observing quite small quantitative differences652

based on the sequence choice (see error bars in Fig. 1). For the compar-653

ison with VIDHOP presented in Fig. 1A, C we used exactly the same se-654

quences. A Snakemake pipeline to train and test the MENB models on the655

data used here is available at https://github.com/adigioacchino/MENB_656

snakemake.657
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Suppl. Fig. 1: All forces shown for each model learned in this work.
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Suppl. Fig. 2: Relative difference in motif usage shown for each pair of hosts
at given viral family. Blue bars correspond to increases in motif usage, and
orange bars to decreases. Only the 3 highest differences (in absolute value)
are shown for nucleotides, 2-mers and 3-mers.
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Suppl. Fig. 3: Attribution to symmetrized KL divergence shown for each pair
of hosts at given viral family. Blue bars correspond to positive attributions,
and orange bars to negative attributions. Only the 10 highest attributions
(in absolute value) are shown.
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Suppl. Fig. 4: Loglikelihood differences of simplified MENB Orthomyxoviri-
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In panel A a model with only nucletide force inferred is used, and in panel
B these forces are inferred together with the CpG force. The colored lines
are the reconstructed paths of the inferred phylogenetic tree that connect
the root to each leaf (observed sequence), and the score versus inferred time
is plotted also for the internal node (inferred) sequences.
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Suppl. Fig. 6: A: Plot of each of the 84 parameters (forces) learned by
MENB models trained on the SARS-CoV-2 sequence collected in Wuhan in
December 2019 (blue) and on sequences collected in June 2023 (orange). B:
Relative difference in expected motif frequencies between the MENB models
used in panel A (Methods Sec. 5.1.3). Only the 5 top differences (in absolute
value) are plotted for 2-mers and 3-mers. Blue (orange) bars correspond to
positive (negative) differences. C: Attributions computed with the method
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Suppl. Fig. 8: Comparison between the number of motif observed in the 1918
H1N1 PB2 sequence and in PB2-coding sequence synthetically evolved to
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Suppl. Fig. 9: Comparison between the forces inferred on the 1918 and in
2007 H1N1 sequences. Blue/orange bars correspond to increased/decreased
forces of 2007 sequences with respect to the 1918 sequence.
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