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Abstract 

Introduction 
Emerging evidence suggests association of air pollution exposure with risk of SARS-CoV-2 
infection, but many of these findings are limited by study design, lack of individual-level 
covariate data or are specific to certain subpopulations. We aim to evaluate causal effects of air 
pollution on risk of infection, whilst overcoming these limitations. 

Methods 
Concentrations for black carbon(BC), particulate matter 10(PM10), particulate matter 2.5(PM2.5), 
nitrogen dioxide(NO2) and oxides of nitrogen(NOx) from the Department of Environment, Food 
and Rural Affairs (DEFRA) and Effect of Low-level Air Pollution: A Study in Europe (ELAPSE) 
were linked to postcodes of 53,683 Virus Watch study participants. The primary outcome was 
first SARS-CoV-2 infection, between 1st September 2020 and 30th April 2021. Regression 
analysis used modified Poisson with robust estimates, clustered by household, adjusting for 
individual (e.g., age, sex, ethnicity) and environmental covariates(e.g., population density, 
region) to estimate total and direct effects. 

Results 
Single pollutant analysis showed the direct effect of higher risk of SARS-CoV-2 infection with 
increased exposure to PM2.5(RR1.11,95%CI 1.08;1.15), PM10(RR1.06,95%CI 1.04;1.09), 
NO2(RR1.04,95%CI 1.04;1.05) and NOx(RR1.02,95%CI 1.02;1.02) per 1µg/m3 increment with 
DEFRA 2015-19 data. Sensitivity analyses altering covariates, exposure window and modelled 
air pollution data source produced similar estimates. Higher risk of SARS-CoV-2 per 10-5m-1 
increment of BC (RR1.86, 95%CI 1.62;2.14) was observed using ELAPSE data. 

Conclusion 
Long term exposure to higher concentrations of air pollutions increases the risk of SARS-CoV-2 
infection, highlighting that adverse health effects of air pollution is not only limited to non-
communicable diseases. 
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Introduction 
Air pollution has become recognised as a major environmental threat to human health, not only 
representing a public health crisis, but highlights an inequity both in the UK and internationally.1 
It is an established carcinogenic, including non-respiratory cancers, and there is increasing 
evidence of systemic inflammation and oxidative stress as important pathways for 
cardiovascular and metabolic disease. 2–4 Since the emergence of a global pandemic caused by 
SARS-CoV-2, resources and funding have been funnelled into finding explanations for 
geographical and demographic heterogeneity in COVID-19 incidence and deaths.5 Emerging 
epidemiological findings suggest involvement of air pollution in risk and severity of SARS-CoV-2 
infection.6 
 
There are three proposed mechanisms as to how long-term air pollution exposure is associated 
with higher risk of SARS-CoV-2 infection. Firstly, chronic exposure to air pollution is associated 
with higher risk of underlying respiratory, cardiovascular and metabolic conditions, which 
increase the risk of SARS-CoV-2 infection and worse clinical severity. Secondly, exposure to 
particulate matter (PM), nitrogen dioxide (NO2) and ozone (O3) may alter protein expression and 
alter host immunity to respiratory infections.7,8 PM exposure upregulates the expression of 
Angiotensin-Converting Enzyme 2 (ACE2), which the SARS-CoV-2 spike protein uses to bind to 
and enter host cells.6,9,10 NO2 exposure can lead to inflammation, increase cell permeability and 
impair tissue defences and phagocytic activity by depleting the antioxidant pool. 11 Finally, 
increased concentrations of PM2.5 (i.e., particulate matter less than 2.5micrometers in diameter) 
may increase the rate of COVID-19 transmission by facilitating viral transport over larger 
distances, although there is limited evidence for this mechanism.12,13 
 
Much of the research into the association of air pollution and COVID-19 risk has been grounded 
in ecological studies, which compare population level results that may have systematic 
differences in testing and recording as well as lack available data on confounding factors.14 
More evidence based on longitudinal studies with individual-level data and high resolution air 
pollution maps are needed to better understand this association.14 Kogevinas et al. (2021), 
using individual level data in a cohort study in Spain, found an association with risk of SARs-
CoV-2 infection, but used symptom profiles in their criteria for case definition.15 Mendy et al 
(2021) used individual data from University of Cincinnati hospitals and clinics and demonstrated 
a 62% higher risk of hospitalisation in COVID patients per 1 µg/m3 increment in 10-year mean 
PM2.5 concentration.16 However, this was only in high risk patients, such as those with pre-
existing asthma or chronic obstructive pulmonary disease.16 After adjusting for age, sex, 
socioeconomic status and comorbidities of every COVID-19 case and mortality in California, 
English et al identified those in the highest quintile of long-term PM2.5 exposure were at 20% 
and 51% higher risk of infection and mortality, respectively, compared to those in the lowest 
quintile.17 Covariates such as socioeconomic status and comorbidities were at the 
neighbourhood level.17  
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The Virus Watch study is a community cohort study across England and Wales, including 
serologically confirmed SARS-CoV-2 cases, which indicate prior SARS-CoV-2 infection 
regardless of symptom status at the time of infection. Virus Watch is not limited to clinical 
settings or specific populations and has individual level data on socioeconomic indicators and 
co-morbidities. This individual-level data, coupled with high-resolution air pollution maps, could 
provide further insight beyond association between air pollution and COVID-19 transmission. 
We aimed to estimate the causal effect of long term exposure to black carbon (BC), PM10, 
PM2.5, NO2 and oxides of nitrogen (NOx) on risk of SARS-CoV-2 infection, using adjustments for 
estimating total and direct effect.  

Methods 

Settings 

The Virus Watch study is a household community cohort of acute respiratory infections in 
England and Wales that started recruitment in June 2020.18 As of 28th July 2022, 58,628 
participants were recruited using a range of methods including post, social media and SMS 
messages and letters from their General Practice. Households were recruited from 24th June 
2020 to March 2022 and asked to complete a post enrolment baseline survey containing 
demographic, medical history, financial and occupation questions. Individuals received a weekly 
illness survey via email to collect information on self-reported acute symptoms, vaccination 
status and PCR or lateral flow test results. Households also received a monthly survey of 
demographic, health-related, environmental and behavioural/psychosocial questions. Within the 
larger study, a sub cohort of 15,534 adults received monthly antibody testing. 

Outcome 

The outcome was the first SARS-CoV-2 infection during the second wave in the UK, 1st 
September 2020 to 30th April 2021, during which the dominant variant in the UK was B.1.1.7 
(i.e., alpha).19,20 This time period was selected as testing was not widely available during the first 
wave and vaccination was not widely available during the second wave, therefore minimising 
confounding factors that would need to be considered in the analysis. A SARS-CoV-2 case was 
identified based on the first positive result from the following: 

1. Data linked to the Second Generation Surveillance System (SGSS), which contains 
SARS-CoV-2 test results using data from hospitalisations (Pillar 1) and community 
testing (Pillar 2). Linkage was conducted by NHS Digital using name, date of birth, 
address and NHS numbers, and sent in March 2021.The linkage period for SGSS Pillar 
1 encompassed data from March 2020 until August 2021 and from June 2020 until 
November 2021 for Pillar 2.  

2. Self-reported positive polymerase chain reaction (PCR) or lateral flow device (LFD) 
swabs for SARS-CoV-2 infection as part of the Virus Watch weekly survey. 
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3. Monthly self-collected capillary blood samples (400-600µL) in a subsample of 11,701 

participants, which were tested in United Kingdom Accreditation Service (UKAS)-

accredited laboratories. Serological testing using Roche’s Elecsys Anti-SARS-CoV-2 

electrochemiluminescence assays targeting total immunoglobulin (Ig) to the 

Nucleocapsid (N) protein, or to the receptor binding domain in the S1 subunit of the 

Spike protein (S) (Roche Diagnostics, Basel, Switzerland). At the manufacturer-

recommended seropositivity thresholds (≥1.0 cut-off index [COI] for N and ≥0.8 units per 

millilitre [U/ml] for S). A positive result was defined based on positivity to the N protein.  

4. Clinical-collected venous blood samples tested for the S protein. In-clinic serology was 
conducted twice per participant between September 2020-January 2021 (Autumn round 
n = 3050) and April 2021-July 2021 (Spring round n = 2775)) (see study protocol for 
details).18 Positivity was defined as evidence of S-positivity in absence of receiving any 
COVID-19 vaccination prior to the serological test. 

We used sliding date window matching (14 day window) to identify positive tests recorded by 
both Virus Watch and linkage to UK national records; where both were available, the linkage 
date was used. Where both swab and serological positives were recorded, we used the 
PCR/LFT date, unless the serological positive occurred first. Reinfections were not included.   

Exposure 
Air pollutant concentrations for PM10, PM2.5, NO2 and NOx were extracted from the Department 
of Environment, Food and Rural Affairs (DEFRA). DEFRA’s pollution climate mapping provides 
annual mean concentration at 1x1 kilometres (km) resolution, linked to a grid code with 
northings and eastings. 21 Long term exposure was defined as a five year average (2015-19) 
with separate sensitivity analysis using one year (2019) as the exposure. Annual mean 
concentrations up to 2019 were used as air pollution concentration changed due to COVID-19 
related lockdown/restrictions in 2020. The northings and eastings were converted to longitude 
and latitude and then matched to participants’ postcodes, using longitude and latitude 
coordinates from the Office for National Statistics (ONS). The participants’ residential postcode 
were matched to pollutant concentration for each year by nearest latitude and longitude 
coordinates for each year from 2015-19, after which a five year average was taken. To check if 
the effect estimates were affected by the crude spatial resolution of the DEFRA air pollution 
source, the ELAPSE (Effect of Low-level Air Pollution: A Study in Europe) modelled data was 
used as part of the sensitivity analysis for PM2.5 and NO2. This data also contained estimates for 
BC, a component of PM2.5 and a specific marker for traffic-related air pollution in Europe, so was 
included in the analysis. The ELAPSE high resolution data (100x100 m) was created using a 
novel combination of land use regression and dispersion models, routine monitoring data and 
satellite observations.22 
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Covariates 
Potential confounders were identified using directed acyclic graphs (DAG; supplementary 
information Figure 1) using DAGitty, to provide minimally adjusted unbiased estimates of the 
total and direct effect.23  For estimating total effect two adjustment sets were used; 

Adjustment set 1: 

Age & Sex , Socioeconomic status (i.e. household income), Ethnicity, Migrant Status, 
Occupation, Population Density (i.e. urban vs rural) 

Adjustment set 2: 

Age & Sex, Socioeconomic status (i.e. household income), Geographical Region, Migrant 
Status, Occupation, Population Density (i.e. urban vs rural) 

To estimate direct effect, comorbidities were added to each adjustment set as a binary variable. 
Comorbidities were defined as an individual having at least one of the following conditions; 
respiratory conditions, cardiovascular disease, diabetes, any cancer and obesity. Collapsing of 
data collection variables into categories, e.g., respiratory and cardiovascular diseases, followed 
the same approach as previous Virus Watch analyses.24 Socioeconomic status was defined by 
the reported combined household income, which was then categorised into quintiles. Population 
density was defined as urban or rural settings based on the ONS 2011 Rural-Urban 
Classification for Output Areas in England, defining urban areas as ‘connected built up areas 
identified by Ordnance Survey mapping that have resident populations above 10,000 people’.25 
Occupation was collapsed into the following categories based on UK Standard Occupational 
Classification 2020 codes: administrative and secretarial occupations; healthcare occupations; 
indoor trade, process and plant occupations; leisure and personal service occupations; 
managers, directors, and senior officials; outdoor trade occupations; sales and customer service 
occupations; social care and community protective services; teaching education and childcare 
occupations; transport and mobile machine operatives; and other professional and associate 
occupations (professional and associate professional occupations excluding healthcare, 
teaching, and social care/community protective services).26 

Statistical and sensitivity analysis 

Summary data was reported as means with standard deviations (SD) and proportions. 
Statistical tests to compare covariates between positive and negative cases were Welch’s two 
sample t-test for continuous data and Pearson’s Chi Squared test for categorical data. 
Pearson’s correlation coefficient was used to assess collinearity for annual mean air pollutant 
concentrations. We used a modified Poisson regression model with robust estimates, clustered 
by household, which is an established method for assessing relative risk using cohort data with 
a binary outcome.27 Regression analysis with minimal adjustments, adjustments for total and 
direct effects were carried out using a five year average (2015-2019) from DEFRA’s modelled 
air pollution and ELAPSE modelled air pollution data. Sensitivity analyses for estimating direct 
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effect were carried out based on three assumptions; time frame of measurement, source of 
modelled air pollution estimates and inclusion of children into analysis. ‘Long-term exposure’ is 
not unanimously defined, so a five year average (2015-2019) and one year average (2019) 
were used. Different techniques are used to model air pollutant concentration for high resolution 
maps, including variation in mixture of observational sources used (e.g., ground-level or 
satellite) to ‘improve’ accuracy of estimates. Finally, compared to adults, children receive higher 
doses of air pollution due to their faster respiratory rate and higher intake per kilogram of 
bodyweight.28,29 Although age was adjusted for in our regression analysis, an analysis of just 
adults was also carried out. Regression analysis included both single-pollutant and bi-pollutant 
models. Only PM2.5 and NO2 were included in the bi-pollutant model as interaction terms. These 
two pollutants were selected as they are composites of PM10 and NOx (respectively), were 
available in ELAPSE data for sensitivity analysis and replicates other analyses allowing for 
comparison of outcomes.30 Correlation coefficient was 0.76 and 0.69 between these two 
pollutants in DEFRA and ELAPSE data, respectively (supplementary information Figure 2 and 
3).  

Data management 

The modified Poisson regression analysis was carried out in Stata V17.0 using the mepoisson 
function. All other data management, including wrangling, analysis and visualisation was carried 
out in R 4.1.2 using the following packages; tidyverse, ggplot2, psych, lubridate, gtsummary and 
hutilscpp. 

Results 
Of the 58,627 participants, we excluded 414 who had a positive SARS-CoV-2 test before the 
start of the second wave. 4,530 (mean age 41.2 (22.1), 1.1% SARS-CoV-2 positive) participants 
did not have a postcode that matched the ONS records, so were also excluded (Figure 1). 
Therefore 53,683 participants were included in the analysis, with a mean age of 48.5 (21.77) 
and 53% (28,189) were female. 6.22% (3,341) of participants had a positive SARS-CoV-2 test 
during the second wave. Compared to those without SARS-CoV-2 infection, the positive group 
had a lower mean age, higher proportion of non-White British individuals, higher proportion of 
non-UK born participants and higher proportion of individuals in the lower quintiles of combined 
household income (p < 0.001, Table 1). There were also differences between the two groups for 
household overcrowding, regional location, urban vs rural setting, occupation as well as 
respiratory conditions, ischaemic heart disease, diabetes, cancer and obesity (supplementary 
information Table 1). 
 
Taking a 5 year average of DEFRA’s annual mean air pollutant concentration (i.e., 2015-19), 
mean concentration for NO2, NOx, PM10 and PM2.5 was 15.53µg/m3 (6.81), 22.89µg/m3 (12.38), 
14.74µg/m3 (2.5) and 12.97µg/m3 (1.57). Annual mean concentration for each air pollutant 
changed over time, the highest concentration for all air pollutants in 2016, but there was no 
linear trend (supplementary information Figure 4). The mean distance between location of 
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pollutant concentration estimate and participant postcode was 350.34 (128.52) metres (m) for 
DEFRA’s 2015-19 data. Distances differed between DEFRA’s 2015-19 (350.34m, 95%CI 
349;351) and 2019 (381.58m, 95%CI 380.38;382.78) data. Mean concentration in the positive 
group was higher for all air pollutants regardless of exposure window (i.e., DEFRA’s 2015-19 vs 
DEFRA’s 2019) and source (DEFRA vs ELAPSE), p < 0.001 (Table 2). Apart from NO2 (2015-
19 and 2019) and NOx (2019) when comparing combined household income quintiles of ‘£0-
24999’ and ‘£75000-£124999’, mean concentration of each pollutant differed between quintiles 
with no linear trend using DEFRA data (supplementary information Figure 5).  
 
Using DEFRA 2015-19 data, single pollutant modified Poisson regression analysis showed 
higher risk of SAR-CoV-2 infection with increased exposure to PM2.5, PM10, NO2 and NOx when 
adjusted for age and sex (Figure 2). Estimates for total effect and direct effect were similar for 
PM2.5 (1.11, 95%CI 1.08;1.15) followed by PM10 (1.06, 95%CI 1.04;1.09), NO2 (1.04, 95%CI 
1.04;1.05) and NOx (1.02, 95%CI 1.02;1.02) per 1µg/m3 increment using adjustment set 1. 
Estimates between total and direct effects for adjustment set 2 were also similar: PM2.5 (1.25, 
95%CI 1.17;1.33), PM10 (1.10, 95%CI 1.06;1.14), NO2 (1.04, 95%CI 1.02;1.04) and NOx (1.01, 
95%CI 1.01;1.02) per 1µg/m3 increment. Bi-pollutant modified Poisson regression analysis 
results showed an increase in risk per 1µg/m3 NO2 increment, apart from adjustment set 2 using 
2019 DEFRA data. The higher risk of infection per 1µg/m3 increase in PM2.5 remained in 
adjustment set 2 for 2015-19 (1.22, 95%CI 1.09;1.36) and 2019 (1.19, 95%CI 1.08;1.30), but 
was not statistically significant in adjustment set 1 (Figure 3). 
 
Similar estimates of direct effect were seen between two exposure windows of five years (2015-
19) and one year (2019), regardless of adjustment set 1 vs adjustment set 2 or all participants 
vs adults only (supplementary information Figure 7 and 8). Regression analysis with the 
ELAPSE data showed similar results to the DEFRA data for adjustment set 1, but risk of 
infection per 1µg/m3 increment PM2.5 was lower for adjustment set 2 (1.09, 95%CI 1.04;1.13) for 
both total and direct effect (Figure 4). As seen in estimates using modelled pollutant data from 
DEFRA, estimates of total effect and direct effect were similar for PM2.5, BC and NO2 from the 
ELAPSE data. Risk of SARS-CoV-2 from one 10-5m-1 increment of BC was 1.89 (95%CI 
1.64;2.18), for total effect (adjustment set 1 and 2) and direct effect (adjustment set 1), but was 
1.67 (95%CI 1.39;2.01) for direct effect (adjustment set 2). Apart from NO2 (adjustment set 1), 
the bi-pollutant regression analysis with the ELAPSE data showed no increased risk of SARS-
CoV-2 infection (Figure 5). 
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Figure 1. Flowchart of exclusion process of Virus Watch participants for analysis. 
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Figure 2. Risk of SARS-CoV-2 infection per one µg m-3 increment in single-pollutant model of long-term air pollution exposure 
(DEFRA, five year average 2015-2019), by pollutant.  
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Figure 3.  Risk of SARS-CoV-2 infection per one µg m-3 increment in bi-pollutant model (interaction terms) of long-term air pollution 
exposure (DEFRA), by pollutant, for all participants of the Virus Watch study. 
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Figure 4. Risk of SARS-CoV-2 infection per one µg/m3
 (except BC; 10-5m-1) increment in single-pollutant model of long-term air 

pollution exposure (ELAPSE), by pollutant for all participants of the Virus Watch study. 
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Figure 5. Risk of SARS-CoV-2 infection per one µg/m3 (except BC; 10-5m-1) increment in bi-pollutant model (interaction terms) of 
long-term air pollution exposure (ELAPSE), by pollutant, for all participants of the Virus Watch study. 
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Table 1. Demographic information for all participants, then grouped by positive and negative SARS-CoV-2 groups, with comparison 
of covariates between groups.  
 
 

Characteristic Overall, N = 53,683 Negative, N = 50,342 Positive, N = 3,341 
p-value

1 

Age       <0.001 

Mean (SD) 48.50 (21.77) 48.66 (21.94) 46.11 (18.93)   

Age Group, n (%)       <0.001 

0-17 7,476 (14%) 7,146 (14%) 330 (9.9%)   

35-49 9,320 (17%) 8,530 (17%) 790 (24%)   

18-34 6,540 (12%) 5,944 (12%) 596 (18%)   

50-64 14,796 (28%) 13,798 (27%) 998 (30%)   

65-79 14,531 (27%) 13,937 (28%) 594 (18%)   

80+ 1,020 (1.9%) 987 (2.0%) 33 (1.0%)   

Missing 0 (0%) 0 (0%) 0 (0%)   

Sex, n (%)       <0.001 

Male 23,040 (43%) 21,580 (43%) 1,460 (44%)   

Female 28,189 (53%) 26,319 (52%) 1,870 (56%)   

Intersex/Missing 2,454 (4.6%) 2,443 (4.9%) 11 (0.3%)   

Ethnicity, n (%)       <0.001 

Black 479 (0.9%) 436 (0.9%) 43 (1.3%)   

Mixed 977 (1.8%) 894 (1.8%) 83 (2.5%)   
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Characteristic Overall, N = 53,683 Negative, N = 50,342 Positive, N = 3,341 
p-value

1 

Other Asian 408 (0.8%) 381 (0.8%) 27 (0.8%)   

Other Ethnicity 285 (0.5%) 242 (0.5%) 43 (1.3%)   

Prefer not to say 189 (0.4%) 175 (0.3%) 14 (0.4%)   

South Asian 2,611 (4.9%) 2,306 (4.6%) 305 (9.1%)   

White British 39,620 (74%) 37,306 (74%) 2,314 (69%)   

White Irish 644 (1.2%) 604 (1.2%) 40 (1.2%)   

White Other 2,763 (5.1%) 2,548 (5.1%) 215 (6.4%)   

Missing 5,707 (11%) 5,450 (11%) 257 (7.7%)   

UK Born, n (%)       <0.001 

UK Born 48,498 (90%) 45,650 (91%) 2,848 (85%)   

Not UK Born 5,185 (9.7%) 4,692 (9.3%) 493 (15%)   

Income band, n (%)       <0.001 

£0-24999 9,668 (18%) 9,001 (18%) 667 (20%)   

£25000-£74999 18,777 (35%) 17,449 (35%) 1,328 (40%)   

£75000-£124999 5,594 (10%) 5,148 (10%) 446 (13%)   

£125000-£174999 1,193 (2.2%) 1,106 (2.2%) 87 (2.6%)   

£175000 or more 843 (1.6%) 797 (1.6%) 46 (1.4%)   

Missing 17,608 (33%) 16,841 (33%) 767 (23%)   

Conditions associated with 
air pollution exposure, n 
(%) 

16,795 (30%) 15,663 (30%) 1,132 (33%) <0.001 

1Welch Two Sample t-test for continuous data; Pearson's Chi-squared test for categorical data 
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Table 2. Mean pollutant concentration (µg m-3) for each  
 

Pollutant (Source) Overall, N = 53,683 
Mean (SD) 

Negative, N = 50,342 
Mean (SD) 

Positive, N = 3,341 
Mean (SD) 

p-value1 

NO2 2015-19 (DEFRA) 15.53 (6.81) 15.39 (6.74) 17.64 (7.38)  <0.001 

NO2 2019 (DEFRA) 14.86 (6.44) 14.72 (6.38) 16.88 (6.99)  <0.001 

NO2 (ELAPSE) 28.51 (8.01) 28.34 (7.96) 31.06 (8.23) <0.001 

NOx 2015-19 (DEFRA) 22.89 (12.38) 22.65 (12.24) 26.61 (13.79)  <0.001 

NOx 2019 (DEFRA) 21.56 (11.74) 21.33 (11.61) 25.15 (13.13)  <0.001 

PM2.5 2015-19 (DEFRA) 10.24 (1.59) 10.22 (1.58) 10.61 (1.63)  <0.001 

PM2.5 2019 (DEFRA) 9.63 (1.74) 9.60 (1.74) 10.07 (1.78)  <0.001 

PM2.5 (ELAPSE) 12.97 (1.57) 12.95 (1.57) 13.25 (1.52)  <0.001 

PM10 2015-19 (DEFRA) 14.74 (2.50) 14.71 (2.48) 15.28 (2.65)  <0.001 

PM10 2019 (DEFRA) 14.99 (2.66) 14.95 (2.65) 15.61 (2.78)  <0.001 

BC (ELAPSE) 1.33 (0.37) 1.33 (0.37) 1.44 (0.39) <0.001  
1Welch Two Sample t-test. PM10 = particulate matter 10. PM2.5 = particulate matter 2.5, NO2 = nitrogen dioxide. NOx = oxides of nitrogen. BC = Black Carbon
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Discussion 

This cohort study shows higher risk of SARS-CoV-2 infection with long term exposure to higher 
concentrations of BC, PM2.5, PM10, NO2 and NOx when each pollutant is assessed in isolation, 
regardless of the air pollution data source used. This increased risk is evident when adjusted for 
total effect and direct effects, each giving consistent estimates. Regression analysis adjusted for 
individual covariates including age, sex, socioeconomic status, ethnicity, migrant status, 
occupation, geographical setting and underlying medical conditions. Sensitivity analysis, 
adjusting for direct effect, showed the increased risk of infection remained despite changes to 
potential confounders, time frame of exposure measurement or source of air pollution data. 
There was minimal interaction between PM2.5 and NO2 in bi-pollutant model. Higher risk of 
infection was seen with increments of PM2.5 concentration in adjustment set 2 compared to 
adjustment set 1 (i.e., ethnicity was replaced with region as a covariate). This may be due to 
high spatial variability of PM2.5, so use of region in the adjustment set and data from lower 
resolution pollutant models (e.g., 1km x 1km, compared to 100m x 100m in ELAPSE) would 
impact the estimates.31 

There have been several studies that have identified an increased risk of SARS-CoV-2 infection 
with increases in PM2.5, PM10 and NO2. Few however adjusted their estimates for confounding 
factors with individual level data and none have included BC. Evidence in the UK on long term 
air pollution exposure and risk of SARS-CoV-2 infection at the individual level derives from UK 
biobank.32–35 All of these analyses showed a positive association between long-term PM2.5 and 
NO2 exposure and risk of SARS-CoV-2 infection, but none have taken a causal approach. The 
only study to use individual-level data for socioeconomic status also only included ‘Pillar 1’ data 
from UK Health Security Agency (formerly Public Health England), a time of limited testing.32 
During this time, testing was more likely in urban areas that have greater healthcare resources 
(i.e., easier access to testing) and higher air pollution levels, questioning potential 
overestimation of the positive association.32,36 The results of our analysis confirm this positive 
association, demonstrating a causal effect, during a time when testing was widely accessible in 
both urban and rural areas.  
 
There was little difference in estimates when adjusting for total and direct effects (i.e., inclusion 
of comorbidities). Similar findings have been reported previously, corroborating direct pathways 
are relevant.17,37,38 The direct effects of air pollution on the immune system within lung tissue 
has been explored in human and in vitro studies. Diesel exhaust, which contains NOx, NO2 and 
BC, promotes eosinophilic activity and therefore allergic inflammation and may be associated 
with reduced virus clearance.39 Individuals with short term exposure to higher concentrations of 
NO2, had less effective inactivation of influenza virus on analysis of their bronchoalveolar lavage 
3.5 hours later.40 PM2.5 containing redox-active transition metals, quinones and secondary 
organic aerosols can increase reactive oxygen species (ROS) in the epithelial lining fluid of the 
respiratory tract, similar to levels characteristic of respiratory diseases.41  This oxidative stress 
may also decrease phagocytic function of macrophages impairing immune functions of the 
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lungs.42 PM2.5 may also impair immune function through inhibition of airway antimicrobial 
peptide expression, specifically salivary agglutinin and surfactant protein D, and facilitate 
pathogen adhesion to airway epithelial cells, resulting in host pathogen infection.43 Mechanisms 
specific to SARS-CoV-2 have also been proposed, associating long-term PM2.5 exposure with 
increased alveolar expression of ACE2, increasing the chance of viral receptor binding and 
entry into host cells.6,9,10,44  
 
Our findings require cautious interpretation in causal terms, as there remains a risk of residual 
confounding within our estimates. Analysis was focussed on long-term exposure as we could 
not account for exposure from travel patterns, duration and location of occupational, educational 
or leisure activities. We made an important assumption - which is made by most analyses on 
the association of long-term air pollution exposure and health outcomes - that individual 
exposure was predominantly at residential addresses and these addresses were permanent 
(i.e., at least one year prior to registration). This isn’t entirely inappropriate however, as COVID 
restrictions took place during this study period, so many people were working from home. 
Additionally, concentration of air pollution decreased during 2020 as a result of COVID 
restrictions, so estimates from 2019 or earlier are more reflective of a ‘business as usual’ 
environment. Results of the bi-pollutant model should be interpreted cautiously as there is no 
unanimous agreement on bi-pollutant and multi-pollutant regression analyses, due to conflicting 
opinions on the importance of interactions and collinearity.45–49 We included pollutants that were 
chemically different to one another and selected those with the lowest correlation coefficients, 
although still high at around 0.7, as well as accounted for potential interaction. Although we 
adjusted for covariates such as migrant status and ethnicity in our regression analysis, it must 
be acknowledged that the cohort is predominantly White-British UK-born participants and likely 
more affluent than the general population. Duration and severity of co-morbidities were also not 
accounted for, but any diagnoses after 30th April 2021 were not included in the analysis.  
 
There are several strengths to this analysis. Our cohort consists of 53,683 individuals and we 
only included cases that were confirmed either by serology or PCR. We limited the analysis of 
this cohort study to the second wave of the COVID-19 pandemic to minimise confounding of 
testing and vaccine accessibility. Our cohort consists of participants from a wide range of 
ethnicities, occupation and geographical settings (i.e., England and Wales, urban and rural), 
therefore more generalisable than other city or workforce focused analyses. All covariates were 
based on individual or household level data, minimising residual confounding, and regression 
analysis accounted for household clustering. Our sensitivity analyses demonstrated a higher 
risk of SARS-CoV-2 infection associated with four air pollutants, regardless of exposure window, 
cohort make up (i.e., adults only or all participants) and sources of modelled pollutant data. In 
addition to the novelty of multiple sensitivity analyses to this causal approach, we also included 
BC into our analysis, a traffic-related pollutant that has been overlooked despite its known 
implications on health outcomes.50  
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Conclusion 
There is a higher risk of SARS-CoV-2 infection as a result of long term exposure to higher 
concentrations of BC, PM2.5, PM10, NO2 and NOx. Estimates for total and direct effect were 
similar, suggesting direct pathways may play a key role to risk of infection. Effect estimates 
were similar despite variations in exposure window, covariate adjustment and sources of 
modelled air pollution data for PM2.5, PM10, NO2 and NOx. This study contributes evidence to the 
causal effects of air pollution on risk of SARS-CoV-2 infection with additional novelty of 
sensitivity analyses and inclusion of BC. 
 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 26, 2023. ; https://doi.org/10.1101/2023.10.26.23297598doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.26.23297598
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ethics approval 
This study involves human participants and Virus Watch was approved by the Hampstead NHS 
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