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Predicting protein-protein interactions (PPIs) using only se-
quence information represents a fundamental problem in biol-
ogy. In the past five years, a wide range of state-of-the-art deep
learning models have been developed to address the computa-
tional prediction of PPIs based on sequences. Convolutional
neural networks (CNNs) are widely adopted in these model ar-
chitectures; however, the design of a deep and wide CNN ar-
chitecture that comprehensively extracts interaction features
from pairs of proteins is not well studied. Despite the de-
velopment of several protein language models that distill the
knowledge of evolutionary, structural, and functional informa-
tion from gigantic protein sequence databases, no studies have
integrated the amino acid embeddings of the protein language
model for encoding protein sequences.In this study, we intro-
duces a novel hybrid classifier, xCAPT5, which combines the
deep multi-kernel convolutional accumulated pooling siamese
neural network (CAPT5) and the XGBoost model (x) to enhance
interaction prediction. The CAPT5 utilizes multi-deep convo-
lutional channels with varying kernel sizes in the Siamese ar-
chitecture, enabling the capture of small- and large-scale local
features. By concatenating max and average pooling features
in a depth-wise manner, CAPT5 effectively learns crucial fea-
tures with low computational cost. This study is the first to
extract information-rich amino acid embedding from a protein
language model by a deep convolutional network, through train-
ing to obtain discriminant representations of protein sequence
pairs that are fed into XGBoost for predicting PPIs. Experimen-
tal results demonstrate that xCAPT5 outperforms several state-
of-the-art methods on binary PPI prediction, including general-
ized PPI on intra-species, cross-species, inter-species, and strin-
gent similarity tasks. The implementation of our framework is
available at https://github.com/anhvt00/MCAPS
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Introduction
In the complex cellular environment, proteins regularly in-
teract with each other, providing the foundation for numer-
ous vital biological functions. These interactions, called
protein-protein interactions (PPIs), act as regulatory hubs for
a diverse range of cellular processes, including gene expres-
sion, cell signaling, and metabolic pathways. To recognize
and analyze PPIs, a wide variety of experimental methods,
both high-throughput and low-throughput, have been created.

Nevertheless, these techniques are often hindered by their
high cost, time-intensive nature, and limited accuracy. The
field of computational biology has witnessed the emergence
of various methods to predict PPIs. These computational ap-
proaches have the potential to infer a large number of PPIs
with a high degree of accuracy. A substantial portion of these
methods is focused on predicting PPIs solely through protein
sequences.
Deep learning models have emerged as the vanguard of com-
putational approaches for binary PPI prediction. Notable
among these is DPPI (1), which employs a deep Siamese-
like convolutional neural network with random projection
and data augmentation, using PSI-BLAST (2) protein rep-
resentations as inputs. DPPI has the distinction of being the
first deep learning model to achieve state-of-the-art perfor-
mance in binary PPI prediction. PIPR (3) employs a Siamese
architecture and a residual recurrent convolutional neural net-
work (RCNN) to capture both local significant features and
sequential features, providing an automatic multi-granular
feature selection mechanism.
D-SCRIPT (4) is a deep-learning model that predicts protein-
protein interactions directly from protein sequences. It has
two stages: the first stage generates rich features for each
protein, and the second stage predicts an interaction based
on these features. D-SCRIPT innovative is in its structurally
aware design, which encodes a physical model of protein
interaction to predict how proteins interact and form path-
ways. FSNN-LGBM (5) is a hybrid classifier that com-
bines a functional-link-based neural network (FSNN) and a
LightGBM boosting classifier. DeepTrio (6) follows a mask
multiscale CNN architecture that captures multiscale contex-
tual protein sequence information using multiple parallel fil-
ters. Topsy-Turvy (7) is a computational method that com-
bines both sequence-based and global network-based views
of protein interaction. During training, it takes a transfer-
learning approach by incorporating patterns from both global
and molecular-level views, resulting in state-of-the-art per-
formance in PPI prediction.
TAGPPI (8) incorporates both sequence features and pre-
dicted structural information and employs graph representa-
tion learning methods on contact maps to obtain 3D struc-
ture features of proteins. HNSPPI (9) adopts a feature fusion
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strategy of both network topology and sequence information
for comprehensive feature extraction and employs a simple
classifier for predictions, making it both lightweight and effi-
cient. Graph-BERT (10) utilizes a language model-based em-
bedding SeqVec to represent protein sequences and a graph
convolutional neural network with the training strategy of
subgraph batches using a top-k intimacy sampling approach.
The MARPPI model (11) is a multi-scale architecture resid-
ual network designed for predicting Protein-Protein Interac-
tions (PPIs). It employs a dual-channel and multi-feature ap-
proach, leveraging Res2vec for association information be-
tween residues and utilizing pseudo amino acid composition,
autocorrelation descriptors, and multivariate mutual informa-
tion for comprehensive feature extraction.

Materials and Methods
Model Architecture. In this section, we present the general
architecture of our xCAPT5 model, which combines the neu-
ral network xCAPT5 with the boosted model XGBoost for
sequence-based binary PPIs prediction. xCAPT5’s architec-
ture is depicted in Figure 1. In general, our model encom-
passes five distinct phases, namely Amino Acids (AA) en-
coding layer, protein sequence learning layer, protein pair
learning layer, intermediate layer, and prediction layer. Each
layer plays a crucial role in the overall architecture and func-
tionality of xCAPT5. xCAPT5 utilizes a deep multi-kernel
convolutional neural network in a Siamese architecture to
effectively capture and leverage the mutual latent represen-
tations between two protein sequences, which can be used
to predict PPIs. Protein sequences are represented as amino
acid embeddings using the Protein Language Model ProtT5-
XL-UniRef50 (12), which captures various protein proper-
ties including evolutionary, physicochemical, and structural
information.

Encoding Phase. To generate the amino acid embeddings,
xCAPT5 employs the Protein Language Model ProtT5-XL-
UniRef50. This model effectively captures the nuanced rela-
tionships and features within protein sequences. By leverag-
ing its pre-trained knowledge and understanding of protein
structures and functions, ProtT5-XL-UniRef50 maps each
amino acid in the input sequences to a high-dimensional rep-
resentation. xCAPT5 transforms a pair of protein sequences,
denoted as S and S′, into corresponding amino acid em-
beddings represented by X and X ′. These embeddings are
structured as matrices, where X and X ′ have dimensions of
R1200×1024, encode crucial information about the amino acid
composition and order in the respective protein sequences.

Protein Sequence Learning Phase. Following the encoding
phase, the protein sequence learning phase in xCAPT5 delves
into extracting and comprehending the intricate patterns and
representations inherent within pairs of amino acid embed-
dings, X and X ′. To achieve this, xCAPT5 employs a
Siamese architecture that utilizes deep multi-kernel convolu-
tional neural networks (CNNs) combined with the concatena-
tion of global average pooling (GAP) and global max pooling
(GMP).

The Siamese architecture is employed to process two protein
sequences simultaneously, capturing their respective patterns
and representations in a shared network. This architecture
facilitates the learning of the latent relationships and interac-
tions between the individual protein sequences. Within the
Siamese architecture, the deep multi-kernel CNNs serve as
the backbone for extracting meaningful features from the pro-
tein sequences. These CNNs employ multiple convolutional
kernels, each with a different size k ∈ [2,3,4], to capture both
local and global features. The multi-kernel approach enables
the network to explore and learn diverse spatial relationships
and motifs within the protein sequences, enhancing its ability
to comprehend the complex characteristics embedded within
them. To extract and capture the intricate information em-
bedded within the rich-information amino acid embeddings,
xCAPT5 constructs deep CNNs corresponding to each ker-
nel size. The deep CNN within xCAPT5 is structured with
five sequential layers, each representing a level of depth in
the network.
The first layer (Convolutional Layer) applies a set of filters
with kernel size k to the input X (the amino acid embeddings)
in the first module or the output of the third layer from the
previous module d-th Zdk with d∈ [1,4], we denote Z0

k := X .
These filters capture different local patterns and interactions,
allowing the network to detect important features within the
protein sequences

Cd
k = Convk(Zd−1

k ),d ∈ [1,5] (1)

The second layer (Swish Activation Layer), introduces
non-linearity into the network via the swish activation func-
tion (13). This function enables the model to capture intricate
relationships and dependencies among the learned features
effectively. The layer maps the feature maps Cd

k generated
by the convolutional operations in the preceding layer to a
set of activated feature maps Y d

k .

Y d
k = swish(Cd

k)) (2)

The third layer (concatenation of average pooling (AP)
and max pooling (MP)) receives the activated feature maps
Y d
k as inputs and performs both AP and MP operations fol-

lowed by a spatial dropout operation, referred to as Spatial-
Drop, a regularization technique that randomly deactivates
entire feature maps during training to prevents the model
from relying excessively on specific spatial locations or local
patterns, thereby reducing overfitting. This layer effectively
combines global context information, derived from AP, and
the most discriminative local features, derived from MP. Fol-
lowing the pooling operations, another spatial dropout opera-
tion is applied to further enhance the robustness of the model.
The output of this layer is a set of pooled and regularized fea-
ture maps Zdk .

Zdk = SpatialDrop
([

MP
(

Y d
k

)
,AP

(
Y d
k

)])
(3)

The Fourth Layer (Pooling Accumulation), not a direct
layer in the flow of information through the deep CNN, in-
stead it functions as a sidechain module. The GMP and GAP
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Fig. 1. General architecture of xCAPT5 model.

operations are applied to the output from the second layer
Y d
k , producing two vectors that represent the most signifi-

cant (GMP) and average (GAP) features. These two vectors
are then concatenated to form a comprehensive feature map
that carries both global and local information about the input,
which is then subjected to a dropout operation (denoted by
Drop) to reduce overfitting.

Gd
k = Drop

([
GMP

(
Y d
k

)
,GAP

(
Y d
k

)])
(4)

Consequently, the vectors Gd
k that are generated at each depth

are accumulated in a depth-wise manner. This depth-wise ac-
cumulation ensures a comprehensive aggregation of informa-
tion from all levels of the network. As a result, the module
efficiently manages and integrates the critical feature infor-
mation that has been extracted and processed by the previous
layers in the deep CNN. This procedure facilitates a depth-
wise understanding of the hierarchical representations of the
protein sequences, thereby enhancing the model’s ability to
interpret and learn from complex protein sequence data.

Gk =
[
G1
k, ...,G5

k

]
(5)

After the depth-wise pooling accumulation for each kernel
size k, the resulting vectors Gk are concatenated. This com-
prehensive representation, denoted as G, captures a wide ar-
ray of features from the input sequences. The vector G ∈
R1200 is a fusion of information extracted by convolutional
layers with different kernel sizes. We apply the batch nor-
malization (BatchNorm) and the dropout operation follow to
make the training more stable and generalize better.

G = Drop(BatchNorm([G2,G3,G4])) (6)

Deep CNN with different multiple kernel size working to-
gether allows the model to capture different scales of spatial
relationships in the input data. Smaller kernel sizes can cap-
ture fine-grained, local features, while larger kernel sizes can

pick up on more global, abstract features. By concatenating
the accumulated vectors for each kernel size, the model can
retain and leverage these diverse scales of features simulta-
neously. Upon capturing the features from the protein se-
quences through the convolutional neural networks (CNNs),
these features embodied in the vector G are directed into a
feed-forward block for further refinement and transforma-
tion. This process entails the application of linear transfor-
mations along with non-linear activation functions within the
feed-forward block. As a result, the model is capable of en-
capsulating the vital characteristics of the protein sequence
more effectively, contributing to a reduction in data dimen-
sionality. The Siamese architecture ensures that both se-
quences in the pair go through the same processing steps with
shared weights. This means that for the second sequence in
the pair, a feature tensor G′ is created in the same way as G
was for the first sequence. Both sequences are independently
fed through the same deep multi-kernel CNNs, and the ex-
tracted features from each are then passed through the same
feed-forward block. For each sequence, the output from the
feed-forward block is a vector S ∈ R186 or S′ ∈ R186, de-
pending on whether it’s the first or second sequence in the
pair. The feed-forward block comprises three consecutive
layers, each with a fully connected layer followed by a swish
activation function and dropout. Here, W1 ∈R744×1200, b1 ∈
R744,W2 ∈R372×744, b2 ∈R372,W3 ∈R186×372, b3 ∈R186

denote the weights and biases of the first, second, and third
layer, respectively.

S1 = Drop(swish(W1G+ b1)) (7)
S2 = Drop(swish(W2S1 + b2)) (8)
S = Drop(swish(W3S2 + b3)) (9)

Sequence Pair Learning Phase. In the sequence pair learn-
ing phase, the goal is to capture the dependencies and char-
acteristics that define the interaction between two protein
sequences. To achieve this, the processed features of the
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two sequences, denoted as S and S′, are combined and
fed into a multi-layer perceptron (MLP). This phase is cru-
cial for learning the latent relationships and interactions be-
tween the pair, enabling accurate prediction of their inter-
action. To form a composite feature map, the refined fea-
ture vectors S and S′ are concatenated, resulting in a com-
bined feature map P = [S2,S′2] ∈ R372. This composite fea-
ture map captures the information from both sequences and
their potential mutual information. This concatenated feature
map is then passed through a multi-layer perceptron (MLP),
which composes of two densely connected layers, each fol-
lowed by a swish activation function and a dropout opera-
tion. Here, M1 ∈R328×372, c1 ∈R328,M2 ∈R164×328, c2 ∈
R164,M3 ∈R1×164, c3 ∈R denote the weights and biases of
the first-, the second fully connected layer, and the output
layer respectively.

P1 = Drop(swish(M1P + c1)) (10)
P2 = Drop(swish(M2P1 + c2)) (11)
P3 = M3P2 + c3 (12)

p = 1
1+e−P3

(13)

these equations illustrate the transformations that the com-
bined feature map undergoes as it is passed through the MLP.
The final output of the MLP, represented as p, is obtained by
applying a sigmoid function to the output of the final dense
layer. This sigmoid function maps the final output to a range
between 0 and 1, thus making it interpretable as the probabil-
ity of interaction between the protein sequence pair.

The intermediate phase. Subsequent to the initial training
phase of the neural network xCAPT5, the derived repre-
sentations from xCAPT5 are put into use. Once training
is complete, the dataset is passed through xCAPT5 and the
model’s penultimate layer representations, denoted as P , are
extracted. These derived representations, P , are then fed into
a XGBoost (14), a powerful gradient boosting framework,
proceeds to further refine these representations, enhancing
the model’s ability to capture complex patterns in the data.
This additional layer of processing serves to enhance the
model’s overall predictive power and accuracy.

Prediction Phase. Once the XGBoost model is fully trained,
it can be used to predict PPIs. The model outputs a score for
each protein pair, which can be interpreted as the predicted
probability of interaction for that pair. A decision threshold is
set, often at 0.5 for binary classification tasks. If the predicted
probability is greater than this threshold, the model predicts
that the pair of sequences interact. If the predicted probabil-
ity is lower than the threshold, the model predicts that they do
not interact. By leveraging the strengths of both deep learn-
ing through xCAPT5 and gradient boosting through XG-
Boost, the model is able to effectively learn from the protein
sequence data and accurately predict protein-protein interac-
tions.

Model Hyperparameters. We use three kernel size of
2,3,4. For each kernel size, each CNN is designed with a

depth of 5 modules. The network employs a spatial dropout
rate of 0.15 and a standard dropout rate of 0.05 to prevent
overfitting and enhance generalization. We configure the hid-
den layers with 744, 372, and 186 units, while the final mul-
tilayer perceptron (MLP) after the merge has 328 and 164
units. For the optimization, we employ the Adam optimizer
(15) with learning rate 1e-3, Amsgrad setting (? ), epsilon
1e-6, and batch size 64.
Regarding the XGBoost, the gbtree booster is used for uti-
lizing gradient boosting trees. Regularization is applied via
a reg_lambda (L2 regularization term on weights) of 1 and
an alpha value (L1 regularization term on weights) of 1e-7
to prevent overfitting. Subsampling of the dataset and col-
umn sampling by tree are set at 0.8 and 0.2 respectively. The
model utilizes 1000 estimators with a maximum tree depth
of 5 to ensure a balance between model complexity and per-
formance. The model also sets a minimum child weight of
2 to avoid overfitting. Furthermore, gamma of 1e-7 is used
as a minimum loss reduction parameter and eta of 1e-6 as a
learning rate to maintain a slow and steady model learning
process.

Datasets and Experiments. In this paper, we did three
intensively thorough experiments to evaluate the perfor-
mance of our model, comparing it with recent state-of-the-
art PPI prediction models on several benchmark datasets.
The evaluation metrics used were accuracy, precision, re-
call, specificity, F1-score, and Matthews correlation coeffi-
cient (MCC), Area Under the Receiver Operating Character-
istic curve (AUROC), and Area Under the Precision-Recall
curve (AUPRC).
The first experiment involves evaluating the learning capacity
of models by conducting five-fold cross-validation on three
golden standard datasets. These datasets include the Martin
H. pylori dataset (16) with 1458 positive pairs and 1365 nega-
tive pairs, the Guo yeast dataset (17) with 5594 positive pairs
and 5594 negative pairs, and the Pan human dataset (18) with
27593 positive pairs and 34298 negative pairs.
The second experiment focuses on evaluating the generalized
inference capacity of models on three tasks: intra-species in-
ference, cross-species inference, and inter-species inference.
For intra-species evaluation, we use three human PPI datasets
from Li’s work (19): HPRD with 3516 PPIs, DIP with 1468
PPIs, and HIPPIE HQ (high-quality) with 15489 PPIs, and
HIPPIE LQ (low-quality) with 101684 PPIs. Cross-species
evaluation involves testing the models on datasets from other
species, including mouse, fly, yeast, C. elegans, and E. coli,
retrieved from Sledzieski’s datasets (4). These datasets con-
sist of 5000 positive pairs and 50000 negative pairs, except
for the E. coli dataset, which has 2000 positive pairs and
20000 negative pairs. The inter-species evaluation focuses on
human-other species PPI test datasets from Yang’s work (20).
The datasets involve 8 viruses: HIV with 9880 positive pairs
and 98800 negative pairs, Herpes with 5966 positive pairs
and 59660 negative pairs, Papilloma with 5099 positive pairs
and 50990 negative pairs, Influenza with 3044 positive pairs
and 30440 negative pairs, Hepatitis with 1300 positive pairs
and 13000 negative pairs, Dengue with 927 positive pairs and
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9270 negative pairs, Zika with 709 positive pairs and 7090
negative pairs, and Sars-CoV-2 with 586 positive pairs and
5860 negative pairs.
The third experiment involves evaluating the learning capac-
ity of models on more constrained datasets with different
stringent similarity in sequences. Chen’s multispecies dataset
((3)) is used, with stringent similarity values ranging from
0.01 to 0.4. The performance of the models is evaluated us-
ing five-fold cross-validation, with higher stringent similarity
values indicating more challenging datasets.
Our proposed xCAPT5 model is compared with five state-of-
the-art models, including PIPR, FSNN-LGBM, D-SCRIPT,
Topsy-Turvy, and DeepTrio. We note that Topsy-Turvy and
D-SCRIPT are only compared in the second experiment due
to computational constraints.

Results
Cross-validation performance. On the Martin data set
(Table 1), xCAPT5 exhibits a consistent superior perfor-
mance across various performance metrics. The model leads
with an outstanding accuracy of 97.27%, significantly 1%
higher than its closest competitor, FSNN-LGBM of 96.49%.
xCAPT5 also excels in other metrics such as precision
of 97.30%, specificity of 97.44%, F1-Score of 97.19, and
Matthews Correlation Coefficient (MCC) of 94.82%. In-
terestingly, while HNSPPI shows a marginally better recall
score of 99.39%, it falls short in other metrics like precision
and MCC. This suggests that while HNSPPI is excellent at
identifying true positives, it may not be as well-rounded as
xCAPT5, which exhibits high performance in multiple met-
rics simultaneously.
Experimental results on the Guo data set demonstrate that
xCAPT5 outperforms all compared models by significant
margins across multiple key metrics. With a remarkable ac-
curacy of 99.76%, xCAPT5 eclipses its nearest competitor,
HNSPPI, which scored 98.57% in accuracy. (Table 2).In
terms of precision, xCAPT5 maintains its dominion with
a score of 99.76%, compared to FSNN-LGBM’s 98.73%,
once again indicating superior specificity. The model’s re-
call rate is 99.75%, making it the leader in identifying true
positive cases as well; the closest competitor here is HN-
SPPI at 98.85%. The same trend is evident in the specificity,
F1-score, and Matthews Correlation Coefficient (MCC) cat-
egories, where xCAPT5 posts scores of 99.77%, 99.37% and
99.52%, respectively.
Furthermore, on the Pan dataset, xCAPT5 significantly out-
performs its closest competitors across all metrics, showcas-
ing an accuracy of 99.77% with an exceptionally low stan-
dard deviation of 0.02%. The closest competitor, FSNN-
LGBM, has a slightly lower accuracy of 99.50% but with a
notably higher standard deviation of 0.28%, indicating less
consistent results. The gap between xCAPT5 and its com-
petitors is also significant. While FSNN-LGBM lags by a
narrow margin of 0.27% in accuracy, this difference is ampli-
fied by the variation indicated by standard deviations. In pre-
cision, recall, and other metrics, xCAPT5 consistently ranks
highest, almost always surpassing the 99.5% threshold with

minimal variance.

Generalized inference evaluation. We evaluate the gener-
alization capacity of xCAPT5 and compared models by train-
ing them on human-centric data sets and subsequently testing
on independent data sets. Our assessment encompasses a di-
verse range of test scenarios, spanning intra-species (human),
cross-species (model organisms), and inter-species (human-
virus) PPI datasets. The foundational training on human
datasets equipped the models to discern patterns and fea-
tures intrinsic to human protein interactions. By subjecting
them to disparate test datasets, we aimed to ascertain the
models’ proficiency in extrapolating their predictions beyond
the confines of their training data. This rigorous analysis of-
fers insights into the models’ competence in reliably predict-
ing PPIs across varied biological contexts. Furthermore, it
paves the way for the potential extrapolation of these models
to species with scant or non-existent PPI data. In scenarios
where specific PPI data is absent but protein sequence in-
formation is available, the models’ foundational training on
human datasets can be harnessed to facilitate informed pre-
dictions.

Intra-species inference. The intra-species inference analysis
presents the evaluation results of different methods on two
distinct training datasets: the balanced training dataset Pan
and the imbalanced training dataset Sledzieski. The perfor-
mance of the methods is measured in terms of recall percent-
age on various test datasets.
Supplementary Table 1 shows the evaluation results for the
intra-species dataset trained on the balanced Pan dataset.
Across all test datasets (HPRD, DIP, HIPPIE HQ, HIPPIE
LQ), xCAPT5 consistently achieves the highest recall. For
instance, on the HPRD dataset, xCAPT5 achieves a recall
of 96.16%, outperforming both PIPR (91.95%) and FSNN-
LGBM (94.28%). The same trend is observed for other test
datasets as well, with xCAPT5 consistently outperforming
the other methods. xCAPT5 ranks first in terms of recall per-
centage for all of these datasets.
Supplementary Table 2 presents the evaluation results for the
intra-species dataset trained on the imbalanced Sledzieski
dataset. Despite the imbalance in both the training dataset
and the test datasets, xCAPT5 again demonstrates superior
performance. It achieves the highest recall on most test
datasets. For example, on the DIP dataset, xCAPT5 achieves
a recall of 67.64%, surpassing the recall of PIPR (30.79%)
and FSNN-LGBM (48.71%). It achieves the highest recall
on most test datasets, including HPRD, DIP, and HIPPIE
HQ. However, it is worth noting that Topsy-Turvy achieves
a slightly higher recall percentage of 51.22% on the HIPPIE
LQ dataset compared to xCAPT5’s 40.92%.

Cross-species inference. The cross-species inference analy-
sis shows the evaluation performance of different methods
on cross-species datasets trained on two different training
sets: Pan and Sledzieski. The test datasets represent various
species: E. coli, Fly, Mouse, Worm, and Yeast.
In the Supplementary Table 3, where models are trained
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Table 1. 5-Fold cross-validation performances of methods on Martin dataset

Method Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-Score (%) MCC (%)

PIPR 80.84 ± 0.44 81.44 ± 0.69 81.55 ± 0.85 80.32 ± 0.67 81.43 ± 0.45 61.69 ± 0.89
FSNN-LGBM 96.49 ± 0.13 96.03 ± 0.26 97.23 ± 0.04 95.69 ± 0.29 96.62 ± 0.12 92.98 ± 0.25
MARPPI 91.80 ± 1.16 90.69 ± 2.68 94.51 ± 1.13 91.22 ± 1.25 NA 83.74 ± 2.32
HNSPPI 93.21 ± 0.35 88.47 ± 0.53 99.39 ± 0.21 NA 93.59 ± 0.32 93.21 ± 0.35
Our xCAPT5 97.27 ± 0.12 97.30 ± 0.24 97.07 ± 0.20 97.44 ± 0.11 97.18 ± 0.25 94.82 ± 0.20

Report with mean and sd

Table 2. 5-Fold cross-validation performances of methods on Guo dataset

Method Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-Score (%) MCC (%)

PIPR 96.47 ± 0.21 96.31 ± 0.23 96.67 ± 0.22 96.65 ± 0.22 96.48 ± 0.20 92.45 ± 0.42
FSNN-LGBM 98.46 ± 0.20 98.73 ± 0.25 98.18 ± 0.18 98.74 ± 0.25 98.45 ± 0.20 96.92 ± 0.39
MARPPI 96.03 ± 0.76 98.12 ± 0.98 93.51 ± 1.22 98.82 ± 0.25 NA 91.83 ± 1.32
TAGPPI 97.81 98.10 98.26 98.10 97.80 95.63
HNSPPI 98.57 ± 0.11 98.30 ± 0.22 98.85 ± 0.13 NA 98.57 ± 0.11 NA
Our xCAPT5 99.76 ± 0.05 99.76 ± 0.04 99.75 ± 0.07 99.77 ± 0.04 99.37 ± 0.27 99.52 ± 0.10

Report with mean and sd

Table 3. 5-Fold cross-validation performances of methods on Pan dataset

Method Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-Score (%) MCC (%)

PIPR 98.26 ± 0.02 98.68 ± 0.04 97.40 ± 0.04 97.93 ± 0.03 98.04 ± 0.02 96.49 ± 0.03
FSNN-LGBM 99.50 ± 0.28 98.48 ± 0.12 99.39 ± 0.54 99.58 ± 0.10 99.43 ± 0.32 98.98 ± 0.57
Graph-BERT 99.02 ± 0.13 98.94 ± 0.88 99.15 ± 0.95 98.57 ± 1.19 99.04 ± 0.10 98.00 ± 0.28
Our xCAPT5 99.77 ± 0.02 99.75 ± 0.03 99.75 ± 0.02 99.80 ± 0.02 99.62 ± 0.06 99.55 ± 0.03

Report with mean and sd

on the balanced training set Pan, we observe varying per-
formance across the different methods and test datasets.
D-SCRIPT consistently demonstrates the highest Precision,
with values ranging from 70.64% (Yeast) to 85.47% (Mouse).
It also achieves competitive F1-Scores, ranging from 33.88%
(Yeast) to 53.68% (Fly), indicating a good balance between
Precision and Recall. D-SCRIPT also performs well in terms
of AUROC and AUPRC, achieving high values in most test
datasets. Our model xCAPT5 shows the highest Recall val-
ues in several test datasets, such as Fly (83.08%) and Worm
(71.02%). However, its Precision is relatively lower com-
pared to D-SCRIPT.
In the Supplementary Table 4, where models are trained on
the unbalanced training set Sledzieski, we can observe a de-
crease in overall performance compared to the first table. The
Precision values of all methods are generally lower, indicat-
ing a higher number of false positives. However, xCAPT5
still shows the highest Precision, ranging from 9.18% (E.
coli) to 9.45% (Yeast). Notably, the Recall values are con-
sistently high across all methods and test datasets, ranging
from 85.62% (Yeast) to 99.55% (E. coli) for xCAPT5.

Inter-species inference. In the Supplementary Table 5, the
evaluation inference performance of our proposed model
xCAPT5 and compared models on inter-species datasets

trained on the balanced training set Pan is presented. The test
datasets include Dengue, HIV, Hepatitis, Herpes, Influenza,
Papilloma, SARS-CoV-2, and Zika.
Experimental results indicate that xCAPT5 generally per-
forms the best across different test datasets. For exam-
ple, in the Dengue test dataset, xCAPT5 achieves a preci-
sion of 9.21%, recall of 97.19%, F1-score of 16.83%, AU-
ROC of 50.73%, and AUPRC of 9.44%. Our model demon-
strates competitive performance across most test datasets. It
achieves the highest Precision on the Hepatitis and Papilloma
datasets and the highest Recall on the HIV dataset. Addi-
tionally, xCAPT5 achieves the highest F1-Score on the Zika
dataset.
In the Supplementary Table 6, the evaluation inference
performance of different methods on inter-species datasets
trained on the unbalanced training set Sledzieski is presented.
The test datasets are the same as in the Supplementary Table
5. Experimental results indicate that xCAPT5 performs well
in most test datasets. For example, in the Dengue test dataset,
xCAPT5 achieves a precision of 23.36%, recall of 35.66%,
F1-score of 28.22%, AUROC of 54.90%, and AUPRC of
14.71%. Among the compared models, xCAPT5 consistently
outperforms others in terms of Precision, Recall, and F1-
Score on most test datasets. Notably, xCAPT5 achieves the
highest Precision on the Hepatitis and Herpes datasets and the
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Table 4. 5-Fold cross-validation performances of methods on
stringent Chen multispecies datasets

Similarity Methods Accuracy (%) F1-Score (%)

Any

PIPR 98.19 98.17
DeepTrio 98.20 98.20
TAGPPI 99.15 99.15
Our xCAPT5 99.72 99.61

≤ 40%

PIPR 98.29 98.28
DeepTrio 97.83 97.98
TAGPPI 99.10 99.16
Our xCAPT5 99.76 99.60

≤ 25%

PIPR 97.91 98.08
DeepTrio 97.52 97.75
TAGPPI 98.99 99.06
Our xCAPT5 99.74 99.61

≤ 10%

PIPR 97.54 97.79
DeepTrio 97.32 97.62
TAGPPI 98.97 99.08
Our xCAPT5 99.70 99.53

≤ 1%

PIPR 97.51 97.80
DeepTrio 97.11 97.47
TAGPPI 98.89 98.89
xCAPT5 99.73 99.60

Report with mean.

highest Recall on the HIV and Hepatitis datasets. It also ob-
tains the highest F1-Score on the HIV and Influenza datasets.

Stringent similarity evaluation. In this section, we assess
the ability of our proposed model xCAPT5 to generalize to
datasets with varying constraints on sequence similarity (Ta-
ble 4). xCAPT5 stands out with its exceptional performance.
It consistently achieves an accuracy of 99.72% and an F1
score of 99.61% across various sequence identities. This
performance remains stable even when the sequence identity
threshold tightens from 40% to just 1%. Such consistency
indicates that xCAPT5 consistently delivers accuracy rates
above 99.70% and F1 scores over 99.50%.

On the other hand, while PIPR, TAGPPI, and DeepTrio show
commendable results, there’s a noticeable pattern: their per-
formance metrics slightly decrease as the sequence identity
requirements become stricter. This indicates that these mod-
els might face challenges when adapting to less familiar se-
quence spaces. The fluctuations in accuracy and F1-Score of
xCAPT5 are minimal, with the most significant change be-
ing a mere 0.06% in accuracy. This consistent performance,
even under tightening sequence similarity constraints, under-
scores xCAPT5’s robustness and superior generalization ca-
pabilities. Unlike many models that might falter under strict
conditions, xCAPT5’s resilience is evident, suggesting that
it’s adept at handling a broad spectrum of sequence identities
without significant performance degradation.

Hyperparameter effect. In this section, we assess the im-
pact of hyperparameters on the performance of the xCAPT5
model, with a specific focus on the neural network archi-
tecture of xCAPT5. We employed a 5-fold cross-validation
method on the Guo dataset to assess the neural architecture
of xCAPT5 under different hyperparameter configurations.
We note that increasing the number of kernel sizes from 2
to 3 leads to a significant performance improvement across
multiple metrics. This suggests that a wider range of ker-
nel sizes enables the model to detect a broader spectrum of
patterns in the input data, enhancing overall performance.
However, further increasing to four results in a decline in
performance (Supplementary Figure 2). This deterioration
can be attributed to increased complexity, making it harder
for xCAPT5 to learn and generalize effectively. The model
becomes more susceptible to capturing noise and irrelevant
details, hindering its ability to discern relevant patterns and
leading to decreased performance.
The depth of a Convolutional Neural Network (CNN), tradi-
tionally defined by the number of layers, plays a pivotal role
in the model’s learning capacity. However, in the context
of the xCAPT5 model, the depth is uniquely characterized
by the number of modules, with each module representing
a level of depth. The xCAPT5 model is composed of five
such modules, signifying a depth of five. As the depth of the
network increases, denoted by the number of modules in the
xCAPT5 model (Supplementary Figure 1), there is a corre-
sponding improvement in the model’s performance. The op-
timal performance is observed when the network comprises
five modules. This optimal depth is influenced by certain pa-
rameters, such as the padding of the sequence length to 1200
and the use of a pooling size of 4.
Furthermore, our investigation encompasses the comparison
of xCAPT5’s performance using different amino acid embed-
dings. In this regard, we discovered that leveraging the large
protein language models like ProtT5-XL-U50, ProtT5-XL-
BFD, ProtBert-BFD (12), and PlusRNN (21) provides su-
perior results compared to traditional approaches like one-
hot encoding and physicochemical concatenated with Skip-
Gram embedding (Supplementary Figure 3). This highlights
the importance of incorporating advanced protein language
models in enhancing the predictive capabilities of xCAPT5.

Conclusions
In this study, we proposed xCAPT5, a novel hybrid classifier
that integrates the deep multi-kernel convolutional accumu-
lated pooling siamese neural network (xCAPT5) with a XG-
Boost model for improved protein-protein interaction (PPI)
prediction. A defining aspect of xCAPT5’s architecture is
its deployment of a deep multi-kernel convolutional neural
network (CNN) within a Siamese structure. This approach
allows the model to delve deeper into the intricate patterns
encoded within and between protein sequences, enabling it
to learn robust, discriminative features. The use of multiple
kernels in the CNN allows the model to explore these patterns
at different scales, increasing its ability to recognize a vari-
ety of sequence motifs, which can be critical for determining
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protein interactions.
Next, the integration of Global Average Pooling (GAP) and
Global Max Pooling (GMP) further augments the model’s
performance. Pooling operations reduce the spatial dimen-
sions of the CNN output while retaining the most essential in-
formation. The use of both GAP and GMP in a concatenated
manner ensures that the model retains the most representa-
tive features (as identified by GMP) while also preserving
average trends in feature maps (as captured by GAP). This
dual-pooling strategy enables the model to generate more
comprehensive and meaningful representations of protein se-
quences. Finally, the incorporation of XGBoost, an opti-
mized distributed gradient boosting library, as the second
phase of xCAPT5 training, further boosts its performance.
By learning on the representations generated by the neural
network, XGBoost enhances the predictive capability of the
model, leveraging its strength in handling mixed-type data,
missing values, and its innate resistance to overfitting.
Our xCAPT5 model exhibits state-of-the-art performance
as demonstrated through rigorous cross-validation on mul-
tiple well-established datasets. In the cross-validation analy-
sis, xCAPT5 was evaluated alongside PIPR, FSNN-LGBM,
TAGPPI, HNSPPI, Graph-BERT, and MARPPI on three
datasets: Martin, Guo, and Pan. xCAPT5 consistently out-
performed the other methods across all datasets, achieving
the highest on each metrics.
The experimental results of the cross-species inference anal-
ysis revealed interesting insights. When trained on the
balanced dataset Pan, xCAPT5 consistently demonstrated
strong performance across multiple evaluation metrics, in-
cluding Precision, Recall, F1-Score, AUROC, and AUPRC.
This suggests that xCAPT5 is capable of effectively predict-
ing protein-protein interactions across different species when
provided with a balanced training dataset.
The inter-species inference analysis further highlights the
state-of-the-art performance of xCAPT5 trained on Pan and
Sledzieski. xCAPT5 consistently outperformed the com-
pared SOTA models in terms of Precision, Recall, and F1
on most test datasets, regardless of the training dataset. No-
tably, xCAPT5 achieved the highest Precision on the Hepati-
tis and Papilloma datasets and the highest Recall on the HIV
and Hepatitis datasets. These findings emphasize the effec-
tiveness of xCAPT5 in predicting protein-protein interactions
across different species, regardless of the training data.
Finally, the experimental results from the stringent similarity
evaluation demonstrate the excellent generalization ability of
xCAPT5 in comparision with several SOTA models, includ-
ing PIPR, TAGPPI, and DeepTrio. Interestingly, xCAPT5
can consistently achieve the highest accuracy and F1 among
all compared SOTA models across different sequence simi-
larity thresholds. This is a valuable characteristic of xCAPT5
as it allows reliable PPI predictions even in cases where se-
quence homology is low.
In future work, we aim to explore the interpretability of
xCAPT5 predictions through contact maps, a binary, two-
dimensional representation that illustrates the contacts or in-
teractions between two different proteins. It visualizes all

pairwise spatial contacts between amino acid residues from
the two proteins. These maps represent the interactions be-
tween distinct protein complexes, may hold the key to in-
terpreting xCAPT5’s predictive power. Additionally, by in-
corporating attention mechanisms, we could discern which
aspects of the contact maps are most critical for accurate
PPI prediction. Furthermore, the development of a multi-
channel input scheme to accommodate diverse information
sources such as evolutionary profiles, physicochemical prop-
erties, or secondary structure predictions can also enhance
the model. Collectively, these explorations could enhance our
understanding of protein-protein interactions and the predic-
tive power of xCAPT5.
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Supplementary data on hyperparameter effects

Supplementary Fig. 1. Evaluation hyperparameter depth of xCAPT5

Supplementary Fig. 2. Evaluation hyperparameter width of xCAPT5

Supplementary Fig. 3. Evaluation hyperparameter embeddings of xCAPT5.
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Supplementary data on intra-species inference

Supplementary Table. 1. Evaluation inference performance of methods on intra-species dataset trained on
Pan dataset

Test datasets Methods Recall (%)

HPRD
PIPR 91.95
FSNN-LGBM 94.28
xCAPT5 96.16

DIP
PIPR 93.46
FSNN-LGBM 93.33
xCAPT5 96.75

HIPPIE HQ
PIPR 91.23
FSNN-LGBM 91.29
xCAPT5 94.55

HIPPIE LQ
PIPR 92.26
FSNN-LGBM 91.92
xCAPT5 93.92

Report with mean.

Supplementary Table. 2. Evaluation inference performance of methods on intra-species dataset trained on
Sledzieski dataset

Test datasets Methods Recall (%)

HPRD

PIPR 22.84
FSNN-LGBM 40.93
D-SCRIPT 12.62
Topsy-Turvy 51.22
xCAPT5 58.53

DIP

PIPR 30.79
FSNN-LGBM 48.71
D-SCRIPT 11.44
Topsy-Turvy 56.67
xCAPT5 67.64

HIPPIE HQ

PIPR 32.24
FSNN-LGBM 46.41
D-SCRIPT 12.54
Topsy-Turvy 45.19
xCAPT5 58.84

HIPPIE LQ

PIPR 22.83
FSNN-LGBM 38.54
D-SCRIPT 7.23
Topsy-Turvy 51.22
xCAPT5 40.92

Report with mean.
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Supplementary data on cross-species inference

Supplementary Table. 3. Evaluation inference performance of methods on cross-species dataset trained on
Pan dataset

Test datasets Methods Precision (%) Recall (%) F1-Score (%) AUROC (%) AUPRC (%)

E. Coli
PIPR 8.91 90.21 16.22 46.88 8.53
FSNN-LGBM 8.67 92.14 15.84 47.51 8.73
xCAPT5 9.18 99.55 16.79 50.47 9.17

Fly
PIPR 8.59 87.70 15.65 44.39 8.13
FSNN-LGBM 8.74 92.59 15.98 48.01 8.78
xCAPT5 9.29 96.70 16.95 51.13 9.71

Mouse
PIPR 8.72 89.76 15.89 46.78 8.53
FSNN-LGBM 8.85 93.12 16.16 48.59 8.86
xCAPT5 9.36 97.46 17.07 51.52 9.35

Worm
PIPR 8.61 90.24 15.73 43.35 7.98
FSNN-LGBM 8.81 93.63 16.11 48.36 8.83
xCAPT5 9.31 96.50 16.98 51.24 9.30

Yeast
PIPR 8.52 85.62 15.50 43.83 8.03
FSNN-LGBM 8.86 93.29 16.19 48.68 8.88
xCAPT5 9.45 94.78 17.18 51.98 9.43

Report with mean.
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Supplementary Table. 4. Evaluation inference performance of methods on cross-species dataset trained on
Sliedzieski dataset

Test datasets Methods Precision (%) Recall (%) F1-Score (%) AUROC (%) AUPRC (%)

E. Coli

PIPR 55.81 17.30 26.41 70.85 31.59
FSNN-LGBM 19.10 24.95 21.63 57.19 11.59
D-SCRIPT 75.54 38.30 50.83 86.03 53.54
Topsy-Turvy 39.81 46.40 42.85 64.30 37.22
xCAPT5 44.41 64.95 52.75 78.41 32.03

Fly

PIPR 52.17 14.44 22.62 73.21 29.56
FSNN-LGBM 22.62 30.42 25.95 60.01 13.21
D-SCRIPT 81.56 40.00 53.68 84.17 59.69
Topsy-Turvy 63.01 75.62 68.74 90.07 67.66
xCAPT5 62.77 83.08 71.51 91.08 53.69

Mouse

PIPR 67.06 34.94 45.94 85.08 52.53
FSNN-LGBM 32.05 51.56 39.53 70.32 20.93
D-SCRIPT 85.47 34.48 49.14 79.92 54.91
Topsy-Turvy 59.03 71.04 64.48 86.41 60.80
xCAPT5 53.14 84.78 65.33 87.64 54.35

Worm

PIPR 62.81 15.64 25.04 76.54 34.80
FSNN-LGBM 25.49 29.50 27.35 60.44 13.93
D-SCRIPT 85.03 32.98 47.53 80.21 56.31
Topsy-Turvy 70.55 63.85 67.04 85.20 62.98
xCAPT5 77.52 71.02 74.13 86.48 59.69

Yeast

PIPR 37.71 10.56 16.50 71.30 22.68
FSNN-LGBM 22.27 24.76 23.45 58.06 12.36
D-SCRIPT 70.64 22.28 33.88 78.89 40.46
Topsy-Turvy 48.32 54.36 51.16 76.20 43.14
xCAPT5 62.87 58.82 60.78 79.67 44.72

Report with mean.
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Supplementary data on inter-species inference

Supplementary Table. 5. Evaluation inference performance of methods on inter-species dataset trained on
Pan dataset

Test datasets Methods Precision (%) Recall (%) F1-Score (%) AUROC (%) AUPRC (%)

Dengue
PIPR 7.59 92.88 16.77 51.35 9.35
FSNN-LGBM 9.09 96.18 16.61 50.02 9.09
xCAPT5 9.21 97.19 16.83 50.73 9.44

HIV
PIPR 9.18 92.71 16.72 51.41 9.36
FSNN-LGBM 8.86 91.49 16.15 48.67 8.88
xCAPT5 9.21 94.34 16.78 50.41 9.16

Hepatitis
PIPR 9.12 93.03 16.62 51.84 9.49
FSNN-LGBM 9.10 96.71 16.63 50.03 9.09
xCAPT5 8.78 89.70 15.99 48.24 8.81

Herpes
PIPR 8.93 93.56 16.31 48.51 8.84
FSNN-LGBM 8.99 95.37 16.44 49.45 9.01
xCAPT5 9.21 95.83 16.81 50.68 9.32

Influenza
PIPR 9.12 97.01 16.67 50.62 9.20
FSNN-LGBM 8.97 94.13 16.38 49.32 8.98
xCAPT5 8.97 93.66 16.37 49.29 8.97

Papilloma
PIPR 9.06 94.84 16.54 47.49 8.64
FSNN-LGBM 9.09 96.74 16.62 50.01 9.09
xCAPT5 9.17 97.06 16.74 50.43 9.17

SARS-CoV-2
PIPR 8.99 96.13 16.44 50.76 9.25
FSNN-LGBM 9.14 97.57 16.71 49.29 9.14
xCAPT5 9.03 93.48 16.48 49.98 9.06

Zika
PIPR 9.01 95.35 16.46 48.94 8.89
FSNN-LGBM 9.23 91.05 16.75 50.72 9.21
xCAPT5 9.76 95.89 17.71 50.97 9.42

Report with mean.
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Supplementary Table. 6. Evaluation inference performance of methods on inter-species dataset trained on
Sledzieski dataset

Test datasets Methods Precision (%) Recall (%) F1-Score (%) AUROC (%) AUPRC (%)

Dengue

PIPR 24.68 6.87 10.62 62.31 15.32
FSNN-LGBM 18.31 33.82 24.02 59.67 12.33
D-SCRIPT 17.98 1.45 2.68 61.25 13.16
Topsy-Turvy 22.01 22.71 22.35 61.08 16.14
xCAPT5 23.36 35.66 28.22 54.90 14.71

HIV

PIPR 24.25 9.10 13.19 63.91 16.02
FSNN-LGBM 17.57 32.58 22.83 58.64 11.86
D-SCRIPT 19.46 4.63 7.47 50.11 10.96
Topsy-Turvy 16.87 7.19 10.08 53.44 11.04
xCAPT5 27.14 36.10 30.98 64.20 17.61

Hepatitis

PIPR 20.84 1.96 3.58 51.42 11.03
FSNN-LGBM 15.94 21.46 18.09 54.94 10.49
D-SCRIPT 32.68 0.97 1.89 59.43 12.92
Topsy-Turvy 20.61 7.87 11.39 50.99 10.24
xCAPT5 20.71 22.46 21.55 56.93 13.70

Herpes

PIPR 22.88 6.21 9.74 56.89 12.94
FSNN-LGBM 16.06 26.87 20.10 56.41 10.97
D-SCRIPT 27.54 0.90 1.75 58.96 12.74
Topsy-Turvy 18.51 8.39 11.53 50.36 10.55
xCAPT5 22.23 21.79 22.01 57.08 12.35

Influenza

PIPR 21.62 6.16 9.43 62.54 14.42
FSNN-LGBM 18.63 34.65 24.22 59.75 12.39
D-SCRIPT 14.06 1.19 2.19 56.17 11.49
Topsy-Turvy 19.82 13.01 15.66 55.91 11.55
xCAPT5 22.67 30.80 26.12 63.17 16.61

Papilloma

PIPR 16.62 2.92 4.94 55.61 11.37
FSNN-LGBM 16.43 26.33 20.23 56.47 11.02
D-SCRIPT 22.87 1.47 0.92 52.13 10.67
Topsy-Turvy 15.95 8.58 11.14 51.60 10.35
xCAPT5 20.12 24.12 21.93 58.32 13.04

SARS-CoV-2

PIPR 13.11 3.58 5.56 55.92 11.13
FSNN-LGBM 15.47 27.41 19.77 56.23 10.84
D-SCRIPT 21.48 1.21 2.33 59.02 13.08
Topsy-Turvy 15.79 7.52 10.19 55.56 10.59
xCAPT5 17.90 22.89 20.09 60.29 14.81

Zika

PIPR 13.59 6.96 8.77 57.21 12.57
FSNN-LGBM 15.56 30.84 20.67 57.09 11.15
D-SCRIPT 42.47 7.27 12.40 69.06 20.57
Topsy-Turvy 14.72 19.40 16.72 57.03 12.17
xCAPT5 16.59 25.39 20.07 51.90 13.56

Report with mean.
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