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Abstract: Environmental factors are well known to affect spatio-temporal patterns of infectious 1 

disease outbreaks, but whether the recent rapid spread of COVID-19 across the globe is related 2 

to local environmental conditions is highly debated. We assessed the impact of environmental 3 

factors (temperature, humidity and air pollution) on the global patterns of COVID-19 early 4 

outbreak dynamics during January-May 2020, controlling for several key socio-economic factors 5 

and airport connections. We showed that during the earliest phase of the global outbreak 6 

(January-March), COVID-19 growth rates were non-linearly related to climate, with fastest 7 

spread in regions with a mean temperature of ca. 5°C, and in the most polluted regions. 8 

However, environmental effects faded almost completely when considering later outbreaks, in 9 

keeping with the progressive enforcement of containment actions. Accordingly, COVID-19 10 

growth rates consistently decreased with stringent containment actions during both early and late 11 

outbreaks. Our findings indicate that environmental drivers may have played a role in explaining 12 

the early variation among regions in disease spread. With limited policy interventions, seasonal 13 

patterns of disease spread might emerge, with temperate regions of both hemispheres being most 14 

at risk of severe outbreaks during colder months. Nevertheless, containment measures play a 15 

much stronger role and overwhelm impacts of environmental variation, highlighting the key role 16 

for policy interventions in curbing COVID-19 diffusion within a given region. If the disease will 17 

become seasonal in the next years, information on environmental drivers of COVID-19 can be 18 

integrated with epidemiological models to inform forecasting of future outbreak risks and 19 

improve management plans. 20 

 21 
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1. Introduction 25 

 26 

Host-pathogen interaction dynamics can be significantly affected by environmental conditions, 27 

either directly, via e.g. improved pathogen transmission rates, or indirectly, by affecting host 28 

susceptibility to pathogen attacks (Altizer et al., 2013). In the case of directly transmitted 29 

diseases, such as human influenza and other viral diseases, multiple environmental parameters 30 

including local temperatures and humidity impact on virus viability and transmission, with 31 

significant consequences for the seasonal and geographic patterns of outbreaks (Shaman and 32 

Kohn, 2009; Fuhrmann, 2010; Shaman et al., 2010; Lowen and Steel, 2014; Kampf et al., 2020). 33 

The coronavirus SARS-CoV-2 is the aethiological agent of COVID-19, a pandemic zoonosis 34 

causing severe pneumonia outbreaks at a global scale (World Health Organization, 2020). 35 

During the initial months of 2020, this disease rapidly spread worldwide (Dong et al., 2020), 36 

though the early dynamics of COVID-19 outbreaks appeared highly variable. Some countries 37 

were experiencing slow growth and spread of COVID-19 cases, while others were suffering 38 

widespread community transmission and fast, nearly exponential growth of infections (Dong et 39 

al., 2020). Understanding the environmental drivers of early growth rates is pivotal to forecast 40 

the potential severity of disease outbreaks and their interactions with containment measures 41 

(Britton and Tomba, 2019; Baker et al., 2020; Jung et al., 2020). Given the importance of 42 

environmental conditions on the transmission of many pathogens, we tested the hypothesis that 43 

the severity of COVID-19 outbreaks across the globe was affected by spatial variation of key 44 

environmental factors, and investigated the relative role of environmental conditions and of 45 

containment measures adopted by governments on disease spread patterns. 46 
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A growing number of studies has been assessing the relationships between COVID-19 47 

growth rate and multiple environmental features, such as temperature, humidity (e.g. Tamerius et 48 

al., 2013; Islam et al., 2020a; Kampf et al., 2020; Runkle et al., 2020; Sajadi et al., 2020; Sobral 49 

et al., 2020; Wu et al., 2020c), and air pollution (e.g. Bianconi et al., 2020; Rahman et al., 2020; 50 

Wu et al., 2020b; Yao et al., 2020; Zhang et al., 2020), while accounting for major socio-51 

economic features of the affected regions (Coelho et al., 2020; Jaffe et al., 2020; Shammi et al., 52 

2020). However, results of these studies were sometimes controversial, casting doubts on the 53 

possibility of correctly identifying environmental signals on COVID-19 spread dynamics 54 

(Carlson et al., 2020a; Carlson et al., 2020b). Differences among studies can be caused by 55 

multiple factors, including lack of standardized methodological framework, differences in spatial 56 

extent and scale, and by complex interactions between human transmission, environmental 57 

features and containment measures (Baker et al., 2020; Carlson et al., 2020b). Furthermore, both 58 

environmental features and containment measures can show complex temporal trends in the 59 

course of an outbreak. Studies assessing whether relationships between environment and 60 

COVID-19 change are consistent across regions and time periods are pivotal to identify robust 61 

and generalizable patterns.  62 

We calculated the mean daily growth rate of confirmed COVID-19 cases during the 63 

exponential phase of the epidemic growth curve for the 586 countries/regions (hereafter, regions) 64 

(Supplement 1, Fig. S1) where at least 25 cases were reported before June, 2020. Variation at 65 

these early epidemic growth rates represents the local progression of the disease and should best 66 

reflect the impact of local environmental conditions on disease spread. However, environmental 67 

effects on local disease spread could be blurred by containment actions, as in most regions local 68 

authorities adopted unprecedented containment measures well in advance or immediately after 69 
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the detection of an outbreak to mitigate pathogen spread and community transmission (Hellewell 70 

et al., 2020; Maier and Brockmann, 2020; Manenti et al., 2020; Thu et al., 2020).  71 

In this study, we first assessed whether COVID-19 growth rate in different regions of the 72 

world was affected by major environmental features (temperature, humidity, fine particulate 73 

matter; see Methods), controlling for major socio-economic features of the affected regions. 74 

Second, we tested whether the stringency of containment measures limited COVID-19 growth 75 

rate at the onset of local outbreaks (Maier and Brockmann, 2020). Among the socio-economic 76 

factors potentially affecting SARS-CoV-2 transmission dynamics during early outbreaks, we 77 

considered human population size, population density, per capita government health expenditure 78 

(hereafter, health expenditure) and age structure (see Methods). The importance of a given 79 

region in the global air transportation network was expressed as its eigenvector centrality 80 

(Coelho et al., 2020) (hereafter, region centrality; see Methods) while containment measures 81 

were synthesized into a stringency index (Hale et al., 2020). Finally, to evaluate whether 82 

relationships between environment and COVID-19 change were consistent across regions and 83 

time periods, we considered regions experiencing outbreaks from January-March 2020 (when 84 

outbreaks mostly started before the implementation of strict containment measures) to late May 85 

2020, when lockdown-type containment actions were often adopted even before local outbreaks 86 

started. We predicted that late outbreaks, starting under strict containment measures, should be 87 

less severe than those starting under no or limited containment, and that environmental effects on 88 

COVID-19 growth rate would fade through time, in pace with a progressive increase of the effect 89 

of containment actions.  90 

 91 

2. Materials and methods 92 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 8, 2020. ; https://doi.org/10.1101/2020.03.23.20040501doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.23.20040501
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

 93 

2.1 COVID-19 dataset  94 

We downloaded time series of confirmed COVID-19 cases (cumulative growth curves) from the 95 

Johns Hopkins University Center For Systems Science and Engineering (JHU-CSSE) GitHub 96 

repository (https://github.com/CSSEGISandData/COVID-19/) (Dong et al., 2020). JHU-CSSE 97 

reports, for each day since January 22, 2020, confirmed COVID-19 cases at the country level or 98 

at the level of significant geographical units belonging to the same country, which we broadly 99 

defined here as ‘regions’ (e.g. US states, or China and Canada provinces; Supplement 1, 100 

Supplementary methods). Data referring to outbreaks occurring on cruise ships were not 101 

considered. The cumulative growth curves were carefully checked and obvious reporting errors 102 

(a few occurrences of temporary decreases in the cumulative number of cases) were corrected. 103 

Our dataset included confirmed COVID-19 cases up to June 15, 2020. From this dataset, we 104 

selected data for all those regions in which local outbreaks were detected up to May 31, 2020 105 

(see Local outbreaks and COVID-19 cases growth rates). 106 

Overall, we considered data from 159 countries. We considered sub-national level data 107 

for the all the countries of the world for which data were easily accessible from the original 108 

sources listed in the JHU-CSSE website (for a total of 17 countries; Table S6). Our final dataset 109 

included information on 586 regions (Supplement 1, Fig. S2 and Supplementary methods). 110 

 111 

2.2 Local outbreaks and COVID-19 cases growth rates 112 

To avoid the biases arising because of incomplete spread of the pathogen, our dataset included 113 

only those regions experiencing a local COVID-19 outbreak. Therefore, our results are 114 

unaffected by patterns occurring in regions where the pathogen showed a limited number of 115 
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records (e.g. because of distributional disequilibrium, limited connections with other affected 116 

areas, or lack of reporting). 117 

The onset of a local COVID-19 outbreak event was defined as the day when at least 25 118 

confirmed cases were reported in a given region. Visual inspection of growth curves showed 119 

that, in most cases, below this threshold the reporting of cases was irregular, or growth was 120 

extremely slow for prolonged periods. This approach also allowed us to exclude the first cases, 121 

often referring to individuals returning from foreign countries and not reflecting local 122 

transmission of the pathogen. We then calculated the daily growth rate r of confirmed COVID-123 

19 cases for each region after reaching the 25 confirmed cases threshold following the approach 124 

proposed by Hall et al. (2014). The method iteratively fits growth curves on successive intervals 125 

of a minimum of 5 data points to identify the exponential phase of a cumulative growth curve, 126 

and returns the lag phase, and the onset and end of the exponential growth phase. The lag phase, 127 

characterized by very slow growth, is followed by the exponential phase (Supplement 1, Fig. 128 

S1). Typically, cumulative growth curves of COVID-19 cases begin with exponential growth in 129 

the early phases, which begins to decelerate within ca. 10 days of its beginning (e.g. Supplement 130 

1, Fig. S3; see also Maier and Brockmann, 2020). This pattern is similar to what has been 131 

documented for earlier phases of other major infectious disease outbreaks (Viboud et al., 2016). 132 

We thus restricted the analyses to those regions for which at least 15 days of data after the 133 

outbreak onset were available up to June 15, 2020. 134 

Approaches assuming distributional equilibrium can be inappropriate to model the spread 135 

of recently emerged infectious diseases (Carlson et al., 2020a). To avoid this issue, we used a 136 

dynamic approach, whereby we modelled the dynamics of disease spread within populations 137 

(Hall et al., 2014; Carlson et al., 2020a; Coelho et al., 2020). To this end, we computed the mean 138 
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daily growth rate of confirmed COVID-19 cases during the exponential phase as r = [ln(n 139 

casesday end exp. phase) - ln(n casesday start exp. phase)] / (day end exp. phase – day end exp. phase). We 140 

also computed the maximum daily growth rate rmax during the exponential phase according to 141 

Hall et al. (2014). Lag and exponential phase duration, and rmax were computed through the R 142 

package growthrates (Hall et al., 2014). Mean and maximum daily growth rates were strongly 143 

positively correlated (Pearson’s correlation coefficient, r = 0.95, n = 586 regions), indicating that 144 

our growth rate estimates for a given region were highly consistent irrespective of the method 145 

used for calculations. By modelling the exponential phase, this approach allowed to focus on 146 

local transmission events occurring within the focal region. The average time interval between 147 

the first case and the onset of the exponential phase was 19.5 days (SD = 11.1 days), thus cases 148 

representing individuals returning from foreign countries likely have a negligible impact on our 149 

growth rate estimates. 150 

 151 

2.3 Environmental variables 152 

We considered two climatic variables that are known to affect the spread of viral diseases: mean 153 

air temperature and specific humidity (water vapor pressure), which is a measure of absolute 154 

humidity. Previous studies showed that, for coronaviruses and influenza viruses, survival is 155 

generally higher at low temperature and low values of absolute humidity (Lowen et al., 2007; 156 

Shaman and Kohn, 2009; Tamerius et al., 2013; Lowen and Steel, 2014; Kampf et al., 2020; Yap 157 

et al., 2020). For each region, we obtained the mean daily values for temperature (°C) and 158 

specific humidity (g/m3) from the ERA5 hourly database (Supplement 1, Supplementary 159 

methods). 160 
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The latency period of the infection, and the lag time between the onset of symptoms, 161 

PCR tests and publication of confirmed cases can be highly variable across patients and across 162 

areas of the world. For instance, Li et al. (2020a) suggested a mean incubation period of 4-7 163 

days, but also reported cases with shorter incubation, or with incubation > 14 days. Therefore, 164 

we measured the potential impact of temperature and humidity in two alternative time windows. 165 

First, we considered a broad time period (30 days) occurring before the end of exponential phase. 166 

For this 30-days time period, we computed mean climatic conditions (temperature and humidity 167 

during 30 days; including the day of the end of the exponential phase and the preceding 29 days; 168 

hereafter: 30-days period) (Supplement 1, Fig. S1). This 30-days period aims at covering all the 169 

climatic conditions encountered by the broadest range of confirmed cases. Second, we used a 170 

narrower time period, focusing on the most frequent time lags between infection and reporting. 171 

Following Jüni et al. (2020), we computed mean climatic values assuming an exposure period for 172 

infections starting 14 days before the onset of the follow-up period (in our case the start of the 173 

exponential phase) and ending 14 days before the end of the follow-up period (in our case the 174 

end of the exponential phase) (hereafter: Δ14 days period) (Supplement 1, Fig. S1). 175 

Besides climate, it has been proposed that other environmental parameters may affect 176 

variation of COVID-19 outbreak severity. Air pollution, especially fine atmospheric particulate, 177 

may enhance the environmental persistence, transmission and effects of coronaviruses (Bianconi 178 

et al., 2020; Zhang et al., 2020). We thus calculated the mean annual concentration of PM2.5 for 179 

each region (Supplement 1, Supplementary methods).  180 

 181 

2.4 Socio-economic variables and airport connections 182 
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Among socio-economic predictors, we considered mean human population density (Center for 183 

International Earth Science Information Network, 2018) (hereafter, population density, expressed 184 

in inhabitants/km2), total population size (Center for International Earth Science Information 185 

Network, 2018), per capita government health expenditure (in US$; average of 2015-2017 186 

values) (Supplement 1, Supplementary methods). Elderly people are more susceptible to develop 187 

severe COVID-19 symptoms (Wu et al., 2020a). We thus obtained for each country an estimate 188 

of the proportion of the population aged 65 or older (population 65+). 189 

 Human mobility is well known to affect pathogen circulation and spatial dynamics 190 

(Pybus et al., 2015), and such an effect has been highlighted also for early SARS-Cov-2 spread 191 

(Gatto et al., 2020; Kraemer et al., 2020). We thus considered the potential relationships between 192 

global airport connections and COVID-19 growth rate. Highly connected regions may 193 

experience a higher 'propagule pressure' that increase disease diffusion among hosts, ultimately 194 

influencing disease growth rates (Coelho et al., 2020). To investigate whether airport 195 

connections affected early COVID-19 growth rates, we computed the eigenvector centrality 196 

score for each region (region centrality). Highly connected regions have a higher region 197 

centrality score (Bonacich, 1987) (Supplement 1, Supplementary methods). 198 

 199 

2.5 Stringency of containment measures 200 

For each region, we obtained an index of the overall stringency of COVID-19 containment 201 

measures adopted by local authorities in the corresponding country at the onset of a local 202 

outbreak (hereafter, stringency index). The stringency index was obtained by combining 203 

information for each country from two separate data sources (Supplement 1, Supplementary 204 

methods). This index simply record the number and strictness of government response measures, 205 
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hence a higher stringency score does not necessarily imply that a country's response is more 206 

effective than that of other countries with lower scores (Hale et al., 2020). Nevertheless, the 207 

stringency index may be helpful to illustrate the timeline of interventions and to assess whether 208 

local governments’ policy responses at outbreak onset had any impact on COVID-19 spread 209 

within a given region. 210 

 211 

2.6 Statistical analyses 212 

We relied on linear mixed models (LMMs) to relate variation of COVID-19 growth rate across 213 

regions to environmental and socio-economic/management predictors (temperature, humidity, 214 

PM2.5, population density, population size, health expenditure, population 65+, region 215 

centrality, stringency index). LMMs are an extension of linear models that allow to take into 216 

account non-independence of data (Zuur et al., 2009). In our study case, multiple regions within 217 

a given country were considered as non-independent as they share multiple features (e.g. health 218 

policy, monitoring protocols, economic features other than those considered in the analyses). 219 

Country identity was thus included as a random factor to account for non-independence of 220 

growth rates from regions belonging to the same country. Non-linear relationships between 221 

climatic factors and ecological variables are frequent (Legendre and Legendre, 2012), and have 222 

also been suggested for relationships between SARS-CoV-2 occurrence and climate (e.g. Runkle 223 

et al., 2020). As in exploratory plots we detected a clear non-linear relationship between r-values 224 

and climate variables, we included in models both linear and quadratic terms. Humidity, PM2.5, 225 

population density, population size, health expenditure and region centrality were log10-226 

transformed to reduce skewness and improve normality of residuals. Regression models can be 227 

heavily affected by strong collinearity among predictors (|r| ~0.70 or above) (Dormann et al., 228 
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2013). In our dataset, temperature and humidity showed a very strong positive correlation 229 

(Supplement 1, Fig. S7 and Table S1). We thus fitted separate models for temperature and 230 

humidity, and for different combinations of strongly correlated socio-economic predictors 231 

(Supplement 1, Supplementary methods and Table S2). 232 

To assess temporal variation in the importance of different predictors on COVID-19 233 

growth rates, we fitted LMMs considering regions experiencing outbreaks in different periods. 234 

Each LMM included data from regions experiencing outbreaks up to a given day. We started 235 

from regions experiencing local outbreaks up to February 27, the first day when local outbreaks 236 

occurred in at least 50 regions (n = 51 regions), and proceeded on a day-by-day basis until we 237 

included all regions experiencing outbreaks up to May 31, 2020 (n = 586 regions; see the 238 

cumulative curve in Supplement 1, Fig. S4). The partial R2 statistic (variance explained by each 239 

fixed effect, or semi-partial R2) was taken as a measure of the importance of each fixed effect in 240 

each of these models. Furthermore, we assessed temporal variation of standardized regression 241 

coefficients for models fitted at different time points. Airport connections are expected to affect 242 

the first phases of the epidemic events, and we therefore tested the effect of region centrality in a 243 

model including data up to March 15, 2020 (Supplement 1, Supplementary results). To confirm 244 

the time lag period used for the calculation of temperature and humidity (30-days period vs. Δ14 245 

days period) did not affect our results, we repeated analyses twice, first using the 30-days period 246 

data, and then using the Δ14 days period data. Climate variables calculated using the 30-days and 247 

the Δ14 days periods showed almost perfect correlation across regions (temperature, r = 0.99; 248 

humidity, r = 0.99; n = 586 regions). 249 

LMMs were fitted using the lmer function of the lme4 R package, while tests statistics 250 

were calculated using the lmerTest package. Partial R2 was computed using the r2glmm R 251 
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package. Finally, we used a generalized additive model (GAMs, fitted with the R mgcv package) 252 

to evaluate the temporal trend of the stringency index at the outbreak date across regions 253 

experiencing outbreaks in different periods. For this analysis we used GAMs as we expected a 254 

complex temporal pattern and we did not have a priori expectations on the shape of relationship 255 

between stringency index and time. 256 

 257 

3. Results 258 

 259 

COVID-19 growth rates showed high variability at the global scale (Supplement 1, Fig. S2). The 260 

observed daily growth rate during the exponential phase was on average 0.22 (SD = 0.11, N = 261 

586 regions), and ranged from < 0.01 (Argentina, Santiago del Estero and Canada, Prince 262 

Edward Island) to 0.72 (Denmark). The exponential growth phase lasted on average 9.0 d (SD = 263 

5.7) and was generally followed by a deceleration of growth, likely as a progressive effect of 264 

containment actions and/or increasing awareness by local communities (Supplement 1, Fig. S3) 265 

(Maier and Brockmann, 2020). The highest growth rates were observed in temperate regions of 266 

the Northern Hemisphere, although relatively fast growth also occurred in some tropical 267 

countries, notably Brazil, Indonesia and the Philippines (Supplement 1, Fig. S2). COVID-19 268 

growth rates tended to decrease markedly from March to May (Fig. 1a). At the same time, the 269 

stringency of containment measures strongly increased: since the end of March, most outbreaks 270 

occurred in regions already under strict containment regimes (Fig. 1b). 271 

Mixed models including environmental and socio-economic variables explained well 272 

variation of COVID-19 growth rate across regions (Supplement 1, Fig. S4). Due to collinearity 273 

among predictors (Supplement 1, Table S1), we explored different model formulations 274 
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(Supplement 1, Table S2 and Fig. S4). The model including temperature (either 30-days period 275 

or Δ14 days period), its squared term and PM2.5 as environmental variables, and population 276 

density, population size and health expenditure as socio-economic predictors showed the best fit 277 

during the early outbreaks, and had similar explanatory power to alternative model formulations 278 

when we considered later periods (Supplement 1, Fig. S4). We therefore rely on this model as 279 

the main basis for subsequent inference.  280 

Temperature was the strongest environmental predictor during early outbreaks, 281 

explaining as much as 20% of the variance in COVID-19 growth rates (Fig. 2). Its effect began 282 

to fade when we also included the outbreaks occurring in late March and became negligible from 283 

mid-April onward (Fig. 2). PM2.5 exhibited a similar pattern, but its effect size was weaker 284 

compared to temperature (Fig. 2). Higher PM2.5 levels were associated with fast growth rates 285 

when considering early outbreaks only (Fig. 3). Population size and health expenditure were the 286 

strongest socio-economic predictors of growth rates (Fig. 2), the highest growth rates being 287 

consistently associated with larger population size and greater health expenditure during both 288 

early and late outbreaks (Fig. 3). The stringency of containment measures at outbreak onset 289 

consistently negatively predicted COVID-19 growth rates (Fig. 3), becoming the predictor with 290 

the strongest effect on growth rates from mid-April onwards (Fig. 2). Results obtained using 291 

either the 30-days or the Δ14 days period were nearly identical (Table S3a-b), even though the 292 

model using the 30-days period showed slightly higher fit, and temperature effects during early 293 

outbreaks were somewhat stronger when considering the 30-days period compared to the Δ14 294 

days period (Fig. 2). 295 

To illustrate the relationships between COVID-19 growth rate and environmental 296 

variables, socio-economic variables, or stringency index, we produced partial regression plots 297 
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from models fitted on data up to three time points (March 15, to April 15 and May 15; Fig. 4, 298 

Supplement 1, Fig. S5; see Supplement 1, Table S3a for model details). For outbreaks occurring 299 

up to March 15, growth rates peaked in regions with mean temperature of ca. 5° C, decreasing in 300 

both warmer and colder climates (Fig. 4a). Furthermore, highly polluted regions experienced a 301 

faster disease spread (Fig. 4d). The effects of temperature and air pollution faded completely 302 

when including later outbreaks (Fig. 4c-4f). Higher stringency of containment measures 303 

consistently reduced growth rates at all three time points (Fig. 4g-i). Considering the effect of 304 

airport connections during early outbreaks or considering alternative environmental and socio-305 

economic variables (absolute humidity, age structure) did not qualitatively alter these 306 

conclusions (Supplement 1, Supplementary results and Tables S4-S5). 307 

 308 

4. Discussion 309 

 310 

The role of environmental drivers on COVID-19 spatial patterns and growth rate is controversial 311 

(Araújo et al., 2020; Carlson et al., 2020a; Carlson et al., 2020b; National Academies of Sciences 312 

Engineering and Medicine, 2020). Some authors suggested that this disease had a reduced impact 313 

and spread in warm climates, and in areas with low pollution and experiencing intense UV 314 

radiation (Merow and Urban, 2020; Rahman et al., 2020; Runkle et al., 2020; Sajadi et al., 2020; 315 

Sobral et al., 2020; Wu et al., 2020b; Wu et al., 2020c; Zhang et al., 2020), while others reported 316 

that socio-economic factors and airport connections have a much stronger impact than 317 

environmental drivers (Coelho et al., 2020; Jaffe et al., 2020).  318 

Our results considering the earliest COVID-19 data only (up to March, 2020) are in line 319 

with initial evidence reporting less COVID-19 daily new cases and mortality in warm climates 320 
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(Wu et al., 2020c; Zhang et al., 2020), but exploring a broader time window explained the 321 

inconsistency of results across studies. Many previous studies did not explicitly model non-linear 322 

effects of climate, and were mostly restricted to the early phase of the global outbreak (Jüni et 323 

al., 2020; Wu et al., 2020c). We instead included outbreaks occurring up to the end of May, 324 

when COVID-19 reached an almost global spread (Supplement 1, Fig. S2), and adopted an 325 

objective approach to identify the exponential phase of outbreaks (Hall et al., 2014). This 326 

allowed focusing on early phases of the outbreaks (Maier and Brockmann, 2020), and 327 

maximized the possibility of identifying environmental drivers before policy interventions 328 

became effective (Merow and Urban, 2020). Finally, we explicitly modeled the spread dynamics 329 

within regions (Carlson et al., 2020a; Coelho et al., 2020), thus avoiding the limitations of 330 

approaches assuming distributional equilibrium between the pathogen and the environment 331 

(Chipperfield et al., 2020).  332 

Multiple non-exclusive processes could explain temperature effects on COVID-19 early 333 

growth rate (Araújo et al., 2020; Sajadi et al., 2020). First, the persistence of SARS-Cov-2 and 334 

other coronaviruses outside the hosts decreases at high temperature, medium-high humidity, and 335 

under sunlight (Lowen et al., 2007; Chin et al., 2020; Kampf et al., 2020; Yap et al., 2020). 336 

Second, host susceptibility can be higher in cold and dry environments, for instance because of a 337 

slower mucociliary clearance, or a decreased host immune function under harsher conditions 338 

(Fares, 2013; Tamerius et al., 2013; Lowen and Steel, 2014). Although SARS-CoV-2 is largely 339 

transmitted indoor (Al Huraimel et al., 2020), climatic variation affects host immune response 340 

and disease susceptibility (Tamerius et al., 2013). Moreover, it modulates human host behavior, 341 

with cold temperatures leading to more time spent indoor and higher disease transmission risk 342 

(Tucker and Gilliland, 2007; Fares, 2013; but see also Azuma et al., 2020 for a pattern where 343 
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contact among people increase in warm days). Thus, climate allows predictions of outbreaks of 344 

respiratory illnesses (Shaman et al., 2010; Tamerius et al., 2013), acting both as direct and/or 345 

indirect effect. The non-linear relationships between COVID-19 growth rate and temperature 346 

detected for early outbreaks (Fig. 4a) might be explained by complex interplays between 347 

weather-related changes in human social behavior, changes in host susceptibility to the virus, or 348 

changes in virus survival and transmission patterns (Fares, 2013). Overall, with no or weak 349 

containment measures, seasonal climatic variation may affect the spatial spread and the risk of 350 

severe COVID-19 outbreaks (Merow and Urban, 2020; Wu et al., 2020c), as observed for other 351 

viral diseases (Shaman et al., 2010; Tamerius et al., 2013; Lowen and Steel, 2014; Baker et al., 352 

2020), for which seasonal oscillations might lead to the worse outcomes during the colder 353 

(autumn-winter) months. Nevertheless, containment measures are able to successfully limit 354 

COVID-19 outbreaks in all climatic conditions (Maier and Brockmann, 2020), and climate alone 355 

is unlikely to accurately predict transmission in future outbreaks. 356 

The effect of air pollution on COVID-19 spread during early outbreaks was weaker than 357 

the effect of local climate. In the early stages of the global outbreak, we observed more severe 358 

outbreaks in regions with poor air quality, as gauged by their higher PM2.5 levels, in line with 359 

studies suggesting that poor air quality may enhance local transmission and may increase 360 

COVID-19 related mortality, possibly not independently of local meteorological conditions 361 

(Azuma et al., 2020; Bianconi et al., 2020; Rahman et al., 2020; Wu et al., 2020b; Yao et al., 362 

2020; Zhang et al., 2020). Air pollution can influence COVID-19 spread through different 363 

pathways. First, several studies have shown a worsening of respiratory symptoms from viral 364 

diseases in populations exposed to poor air quality (Domingo and Rovira, 2020). For instance, 365 

chronic exposure to PM 2.5 correlates with overexpression of the alveolar ACE-2 receptor, 366 
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leading to more severe COVID-19 infection and increasing the likelihood of poor outcomes 367 

(Frontera et al., 2020; Wu et al., 2020b). Furthermore, the virus can remain viable in aerosols for 368 

some hours, thus high pollution levels might increase its transmission (Frontera et al., 2020). 369 

Nevertheless, more studies are required to clarify the actual impact of air pollution on COVID-370 

19 local spread patterns, as well as to identify the actual biological mechanisms (Wu et al., 371 

2020b). 372 

However, the environmental effects on COVID-19 spread during the 2020 global 373 

outbreak were not stable through time and disappeared when active containment actions were 374 

enforced. Air quality effects became negligible when including outbreaks starting after mid-375 

March, while climate effects lasted a bit longer (until mid-April), but eventually disappeared as 376 

well (Fig. 4a-b). From late March onward, most new outbreaks began under severe containment 377 

actions (Fig. 1b). A weakening of environmental effects when considering late outbreaks is 378 

consistent with the expectation that the enforcement of active containment policies limit the 379 

spread potential of the disease and fade associations between climate and disease dynamics 380 

(Baker et al., 2020; Maier and Brockmann, 2020). 381 

Analyses of environmental effects on COVID-19 spread have been criticized because 382 

SARS-CoV-2 shows a substantial rate of undocumented infections (Li et al., 2020b), and 383 

because a high frequency of undocumented cases in some regions (e.g. in Africa) could affect 384 

conclusions (Roche et al., 2018; Britton and Tomba, 2019). However, in the early phase of the 385 

global outbreak, reported positives largely referred to tested individuals showing COVID-19 386 

symptoms that require hospitalization. Therefore, even though our analyses cannot capture the 387 

(unknown) dynamics of asymptomatic infections, they provide information on environmental 388 

effects on the spread of symptomatic SARS-CoV-2 cases. Furthermore, our analyses took into 389 
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account health expenditure, which is strongly correlated to the daily testing rate across countries 390 

(Supplement 1, Supplementary methods and Fig. S6). The high COVID-19 growth rate in 391 

countries with higher health expenditure likely arose because of more efficient early reporting of 392 

cases, thus considering health expenditure in the analyses should at least partly account for 393 

differences in testing rate among regions. Finally, we focused on the few days of nearly 394 

exponential growth, which generally lasted < 10 days. This limits the possibility that 395 

'surveillance fatigue' (Romero-Alvarez et al., 2017) affected our results. 396 

Our analyses provide compelling evidence for the effectiveness of policy interventions in 397 

limiting disease spread within regions (Maier and Brockmann, 2020). Although our study was 398 

not designed to explicitly test the effect of containment actions, it clearly showed that outbreaks 399 

starting under strict containment actions were consistently less severe than those starting under 400 

no or weak containment actions. This was already evident for the early (up to end of March) 401 

outbreaks, and became the main factor explaining variation in COVID-19 growth rates among 402 

countries when considering later outbreaks. 403 

Containing COVID-19 outbreaks is undoubtedly one of the biggest societal challenges. 404 

The huge variation of COVID-19 growth rates among regions with similar climate and air 405 

quality levels highlights that diverse and complex social and demographic factors, as well as 406 

stochasticity, may strongly contribute to the severity of local outbreaks, irrespective of 407 

environmental effects. The potential socio-economic drivers of COVID-19 outbreak are many 408 

(Coelho et al., 2020; Jaffe et al., 2020). Even if we did not manage to model the spatial spread of 409 

the disease across regions, we integrated several variables reflecting potential socio-economic 410 

drivers. The positive relationship with human population size might be explained by multiple, 411 

non-exclusive processes including an easier control of early outbreaks in regions with small 412 
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populations, or the occurrence of more trade and people exchanges in the most populated 413 

regions, resulting in multiple infection routes and faster spread (Coelho et al., 2020; Jaffe et al., 414 

2020). However, different socio-economic factors were strongly correlated. For instance, areas 415 

with high health expenditure were also inhabited by more people older than 65 years 416 

(Supplement 1, Table S1), and a linear combination of human population and health expenditure 417 

predicts very well international trade of goods and services (Supplement 1, Supplementary 418 

methods). Assessing the specific impact of these factors was beyond the aim of this study, but we 419 

emphasize that environmental and containment actions effects were consistent irrespective of the 420 

specific combination of socio-economic variables being considering, suggesting that 421 

unaccounted socio-economic processes should not bias our findings. 422 

In conclusion, our results suggest that local environmental conditions might have affected 423 

COVID-19 spread in the early (but not the late) phase of the global outbreak, and that policy 424 

interventions can effectively curb disease spread irrespective of environmental conditions (Islam 425 

et al., 2020b; Maier and Brockmann, 2020; Thu et al., 2020). Stringent containment measures 426 

thus remain pivotal to mitigate the impacts of SARS-Cov-2 infections (Hellewell et al., 2020; 427 

Maier and Brockmann, 2020). Yet, information on environmental drivers of COVID-19 can 428 

improve the ability of epidemiological models to forecast the risk and time course of future 429 

outbreaks, and to suggest adequate preventive or containment actions (Baker et al., 2020). 430 

Studies testing the association between environmental features and COVID-19 spread are a 431 

rapidly expanding research area that has been attracting increasing attention (Franch-Pardo et al., 432 

2020; Wu et al., 2020b). The unprecedented nature of the pandemic has promoted a growing 433 

number of ecological regression analyses, that have identified multiple complex relationships 434 

between COVID-19 spread and transmission patterns and diverse environmental features, 435 
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providing a crucial stimulus to a rapidly evolving area of research (Franch-Pardo et al., 2020; 436 

Wu et al., 2020b). The correlative nature of these analyses should call for cautionary 437 

interpretations, as identifying the causal processes linking COVID-19 spread dynamics to 438 

environmental features remain challenging, still associations detected in ecological analyses can 439 

serve as a key starting point for future investigations during the future evolution of the 440 

pandemics (Baker et al., 2020; Wu et al., 2020b). 441 

 442 
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Fig. 1. COVID-19 growth rate (a) and stringency of containment measures (b) in regions 622 

experiencing COVID-19 outbreaks in different periods. The bold lines represent the fit of a 623 

generalized additive model, the shaded area its 95% confidence band. The figures report data for 624 

regions where outbreaks occurred between February 27 and May 31, 2020, as before that date 625 

data were sparse (< 50 regions experienced outbreaks between January 22 and February 26). 626 

 627 

Fig. 2. Temporal variation of the importance of variables in explaining COVID-19 growth rate. 628 

We fitted regression models starting from regions experiencing outbreaks up to February 27, 629 

until we included all regions experiencing outbreaks up to May 31, 2020 (n = 586 regions). The 630 

partial R2 statistic (variance explained by each fixed effect) was taken as a measure of the 631 

relative importance of variables. a) temperature calculated using the 30-days period; b) 632 

temperature calculated using the Δ14 days period (see Supplement 1, Fig. S1 for details). 633 

 634 

Fig. 3. Temporal variation of the relationships between independent variables and COVID-19 635 

growth rate (standardized coefficients). We fitted regression models starting from regions 636 

experiencing outbreaks up to February 27, until we included all regions experiencing outbreaks 637 

up to May 31, 2020 (n = 586 regions). The plot includes temperature calculated using the 30-638 

days period; the pattern was identical if a Δ14 days period was used (see Supplement 1, Fig. S1 639 

for details). Shaded areas represent 95% confidence bands. When confidence bands do not cross 640 

the horizontal broken line (0 threshold), the effect of a given variable is statistically significant 641 

(P < 0.05). 642 

 643 

Fig. 4. Variation of COVID-19 growth rate in relation to local mean temperature (30-days 644 

period), air pollution (PM 2.5) and stringency of containment measures. Partial regression plots 645 

from mixed models of COVID-19 mean daily growth rates fitted for local outbreaks occurring up 646 

to March 15 (n = 195 regions), April 15 (n = 529 regions) and May 15 (n = 577 regions) are 647 

shown. The shaded areas are 95% confidence bands. 648 

 649 

 650 
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