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——————————————————————————————————————————————-
The author stands by all analytical and statistical aspects of this preprint. However, subsequent to this analysis, further
details of the original study have been released- with major uncertainties in study design, reporting, choice of endpoints,
and most importantly, data integrity [1, 2]. Therefore, all results from the original study should be viewed with
considerable skepticism.

ABSTRACT

Human infections with a novel coronavirus (SARS-CoV-2) were first identified via syndromic
surveillance in December of 2019 in Wuhan China. Since identification, infections (coronavirus
disease-2019; COVID-19) caused by this novel pathogen have spread globally, with more than
250,000 confirmed cases as of March 21, 2020. An open-label clinical trial has just concluded,
suggesting improved resolution of viremia with use of two existing therapies: hydroxychloroquine
(HCQ) as monotherapy, and in combination with azithromycin (HCQ-AZ). [3, 4].

The results of this important trial have major implications for global policy in the rapid scale-up and
response to this pandemic. The authors present results with p-values for differences in proportions
between the study arms, but their analysis is not able to provide effect size estimates.

To address this gap, more modern analytical methods including survival models, have been applied to
these data, and show modest to no impact of HCQ treatment, with more significant effects from the
HCQ-AZ combination, potentially suggesting a role for co-infections in COVID-19 pathogenesis.

The trial of Gautret and colleagues, with consideration of the effect sizes, and p-values from multiple
models, does not provide sufficient evidence to support wide-scale rollout of HCQ monotherapy for
the treatment of COVID-19; larger randomized studies should be considered. These data also suggest
further randomized-controlled studies of HCQ-AZ combination therapy should be undertaken.
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1 Introduction

Evidence-based public health programming is essential for global pandemic planning, and optimization of resources.
However, unadjusted analyses may provide distorted estimates, or not full utilize scarce clinical data, especially in with
consideration of intention-to-treat analyses, where all persons enrolled are analysed [5, 6]. Finally, effect size estimates
allow for the magnitude of potential clinical impact to considered in policy adoption, as statistical significance may not
be biologically important [7].

2 Data and Analysis

All analyses was performed using Stata 16.1 (College Station, TX, USA). Standard 95% confidence interval were used;
model parsimony was assessed using Akaike and Bayesian information criteria (AIC/BIC). All models were adjusted
for age and sex. Assessing the predictive power of logistic models used Tjur’s R2̂. [8].

2.1 Data source

Data were obtained from [4], and the Supplemental Table 1 was digitized using Tabula software, with subsequent
hand-validation. Data for the six patients who were lost-to-follow-up (LTF) were manually entered into a database.

2.2 Primary outcome

The primary outcome as reported by the authors "The primary endpoint was virological clearance at day-6 post-
inclusion." An optimal analysis for this endpoints in a binary regression which avoids many of the potential biases in
logistic models when outcomes are common [9].

2.3 Secondary outcome

The stated "Secondary endpoint was virological clearance overtime during the study period...." and standard Cox
survival time models and Royston-Parmar flexible parameteric models [10] were used to capture the time-to-first
negative PCR (with a Ct threshold of >=35). The incorporation of the censored patients was as per standard methods.

3 Results

The sequence of confirmed viremia via PCR is shown in (Fig. 1), and the LFT patients are at the bottom of the figure.

The primary outcome was assessed using binary regressions to provide relative risks for clearance of viremia between
the study arms. The main effect of interest (that of all combined HCQ-treated patients versus control), shows a
marginally significant risk ratio of 3.84 (95 % CI 1.02 - 14.42, p= 0.047). Analysis of the separate HCQ and HCQ+AZ
outcome was not possible due to quasi-separation of the model.

variable RR 95% CI p-value

Study Arm
Control reference - -
HCQ 3.836 1.020 - 14.42 0.047

Age Years 1.009 0.996 - 1.022 0.176
Sex

Male reference - -
Female 0.585 0.335 - 0.963 0.176

Table 1: Risk ratios for clearance of virema, by day six, using binary regression (Primary outcome). (N=30).

To address the limitations of these models, Firth penalized-likelihood model were used, which deal well with separation
and quasi-separation. [11]
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Figure 1: Sequence plot of enrolled patients. (N= 42).

variable OR 95% CI p-value

Study Arm
Control reference - -
HCQ 5.216 0.797 - 34.143 0.085
HCQ+AZ 52.280 1.954 - 1,399.058 0.018

Age Years 0.981 0.939 - 1.025 0.399
Sex

Male reference - -
Female 0.971 0.168 - 5.622 0.974

Table 2: Odds ratios for clearance of viremia, by day six, from a Firth penalized likelihood regression (Primary outcome).
(N=30).

To assess the secondary outcome, Kaplan-Meier and Cox models were use initially to compare the time-to-event with
adjustment for covariates. Due severe proportional hazard violations in the HCQ-AZ group, flexible parametric models
were used to estimate effects.
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Figure 2: Unadjusted Kaplan-Meier plot of all enrolled patients (N= 42).

variable HR 95% CI p-value

Study Arm
Control reference - -
HCQ 3.026 0.925 - 9.895 0.067
HCQ+AZ 7.073 1.722 - 29.044 0.007

Age Years 0.982 0.955 - 1.010 0.213
Sex

Male reference - -
Female 1.016 0.365 - 2.825 0.976

Table 3: Hazard ratios for time-to-first negative PCR, using flexible parametric models. (N=36). (Secondary Outcome)

4 Discussion and Conclusions

Together these results, especially in consideration of the loss to followup of six patients, do not provide sufficient
evidence to support HCQ monotherapy for the treatment of COVID-19.

This analysis is not without limitations: interpretation of the presented dataset may be incorrect; the analysis models for
the primary and secondary outcome endpoints is inferred from the original authors’ description and power calcualtions
(case-control design); and not all covariates were available in the original data [12].

However, taken together, this analysis does suggest further studies of HCQ-AZ combination therapy should be prioritized
with great haste. The rapid increase in confirmed infections within the last few days suggests that the pandemic is
accelerating, and there are major opportunity costs associated with all choices [13]; and rapid science will be critical for
progress [14].
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