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Abstract  
Background: 

Given the high global seroprevalence of SARS-CoV-2, understanding the risk of reinfection becomes 

increasingly important. Models developed to track trends in reinfection risk should be robust against 

possible biases arising from imperfect data observation processes.  

Objectives: 

We performed simulation-based validation of an existing catalytic model designed to detect changes 

in the risk of reinfection by SARS-CoV-2.  

Methods: 

The catalytic model assumes the risk of reinfection is proportional to observed infections. Validation 

involved using simulated primary infections, consistent with the number of observed infections in 

South Africa. We then simulated reinfection datasets that incorporated different processes that may 

bias inference, including imperfect observation and mortality, to assess the performance of the 

catalytic model. A Bayesian approach was used to fit the model to simulated data, assuming a negative 

binomial distribution around the expected number of reinfections, and model projections were 

compared to the simulated data generated using different magnitudes of change in reinfection risk. 

We assessed the approach’s ability to accurately detect changes in reinfection risk when included in 

the simulations, as well as the occurrence of false positives when reinfection risk remained constant. 

Key Findings: 

The model parameters converged in most scenarios leading to model outputs aligning with anticipated 

outcomes. The model successfully detected changes in the risk of reinfection when such a change was 

introduced to the data. Low observation probabilities (10%) of both primary- and re-infections 

resulted in low numbers of observed cases from the simulated data and poor convergence.  

Limitations: 

The model’s performance was assessed on simulated data representative of the South African SARS-

CoV-2 epidemic, reflecting its timing of waves and outbreak magnitude. Model performance under 

similar scenarios may be different in settings with smaller epidemics (and therefore smaller numbers 

of reinfections). 

Conclusions: 
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Ensuring model parameter convergence is essential to avoid false-positive detection of shifts in 

reinfection risk. While the model is robust in most scenarios of imperfect observation and mortality, 

further simulation-based validation for regions experiencing smaller outbreaks is recommended. 

Caution must be exercised in directly extrapolating results across different epidemiological contexts 

without additional validation efforts. 

Introduction 
The COVID-19 pandemic has had catastrophic health, economic, and social impact, directly affecting 

billions of lives. As of July 2023, the pandemic had resulted in at least 6.9 million deaths globally (1). 

Five major waves of infections were observed in South Africa. The first wave, driven by the original 

strain, peaked in mid-2020 and was followed by a second wave driven by the Beta variant towards the 

end of 2020. The Delta variant drove the third wave, in mid-2021, and the fourth and fifth waves were 

driven by the BA.1/ BA.2 and BA.4/ BA.5 Omicron sub-variants, at the end of 2021 and May 2022 (2). 

These waves, coupled with vaccination efforts, have resulted in high levels of seroprevalence and 

relatively low numbers of reported infections since mid-2022 (3). 

Reinfection with SARS-CoV-2 has emerged as a concern, due to waning immunity following infection 

and imperfect immunity, whereby prior infection does not provide full protection against reinfection 

(4). Viral evolution also leads to the emergence of new variants, which may increase risk of reinfection.  

Understanding the risk of reinfection by SARS-CoV-2 and potential future epidemics with other 

pathogens which does not result in lifelong immunity, has significance for both individual and public 

health. At the individual level, awareness of a high risk of reinfection might encourage individuals to 

take necessary precautions. In the public health context, understanding the risk of reinfection can help 

health officials make more informed decisions, potentially recommending increased practice of 

protective measures like hand sanitising and mask-wearing in public spaces, particularly if the 

reinfection risk is high.  

Modelling studies of SARS-CoV-2 reinfection 

Multiple studies, including several modelling studies, have been conducted to assess SARS-CoV-2 

reinfection patterns. A Susceptible-Exposed-Asymptomatic-Infectious-Recovered (SEAIR) epidemic 

model that includes reinfections has been developed and applied to SARS-CoV-2 data in Pakistan, 

highlighting the importance of understanding reinfections in controlling disease spread (5). A Brazilian 

study utilised a more complex compartmental disease model, incorporating hospitalisation and deaths 

to assess the force of reinfections by the P.1 variant confirming that the P.1 variant significantly 

contributed to a surge of reinfections (6). 

In addition to these modelling studies, a catalytic model was developed to monitor SARS-CoV-2 

reinfection trends in South Africa and identified population-level changes in the risk of reinfection (7). 

The catalytic model estimates the number of expected reinfections through time under the 

assumption of a constant reinfection risk. Using Monte-Carlo Markov Chains (MCMC), the model was 

fitted to data on observed reinfections during the first two waves of SARS-CoV-2 in South Africa. The 

estimated reinfection hazard coefficient was then used to project reinfection numbers during the two 

subsequent waves. Notably, the number of observed reinfections remained within the projection 

interval during the third (Delta) wave but diverged early in the fourth (Omicron BA.1/BA.2) wave, 

providing the first evidence of the variant’s ability to evade immunity from prior infections (7). 

Imperfect representation of the real-world in models 

Observed infection data is not always fully representative of the real world (8) due to factors such as 

undetected asymptomatic or mild cases, inaccessible testing centres, and variable testing behaviour 
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(9,10). Testing behaviour within a population may also vary in response to the number of reported 

infections (10). 

These factors, coupled with underreporting of SARS-CoV-2 infections and COVID-19 mortality, can 

skew the assumed number of people at risk of reinfection (11). Therefore, methods for assessing 

reinfection risk need to be evaluated to determine how these biases impact performance (12). 

Inaccurate models could lead to incorrect predictions and conclusions regarding changes in reinfection 

risk, which may have negative effects on public health and the economy (12,13).  

Simulation-based validation can be used to validate a model’s robustness to specific assumptions that 

are likely to be violated in the real world. To do this, simulated datasets are generated from a variety 

of processes that violate the assumptions to be tested. The model’s performance is then evaluated 

based on these data, which emulates a more real-world situation. Performance is assessed across a 

wide range of assumptions and parameter values. When these analyses reveal that certain parameters 

or assumptions affect the model’s performance, it is crucial to refine the modelling approach to 

account for these factors (14). 

In this study, we applied simulation-based validation and associated sensitivity analyses to evaluate 

the performance of the catalytic model presented in (7), by introducing different biases that represent 

real-world phenomena to simulated data and assessing whether the method can be used to correctly 

evaluate reinfection trends under these conditions. 

Materials and Methods 

The catalytic model 
The catalytic model was developed to assess changes in reinfection risk by SARS-CoV-2 accounting for 

both the changing underlying number of individuals who have already been infected and the changing 

infection risk through time (7).  In this model, a reinfection is defined as an individual having two 

positive tests for SARS-CoV-2 at least 90 days apart. This delay is introduced to align with the 

referenced paper, to ensure that successive positive tests result from reinfection rather than 

prolonged viral shedding. Consequently, the model sets the risk of reinfection at zero for the first 90 

days, and thereafter, it is proportional to the 7-day moving average of observed infections.  

The probability of a positive test for SARS-CoV-2 by day 𝑥 after 𝑡 is given by the equation: 

 𝑝(𝑡, 𝑥) = 1 − 𝑒− ∑ 𝜆Î𝑖
𝑖=𝑥
𝑖=𝑡+90  

where 𝜆 is the reinfection hazard coefficient and Î𝑖 is the 7-day moving average of the total number 

of infections (both primary infections and reinfections) on day 𝑖.  

The expected number of cases where the first positive test was on day 𝑡 with a detected reinfection 

by day 𝑥 is given by 𝐼𝑡𝑝(𝑡, 𝑥), where 𝐼𝑡 is the number of putative primary infections reported on day 

𝑡.  

Thus, the expected number of reinfections by day 𝑥 can be expressed as:  

𝑌𝑥 = ∑ 𝐼𝑡𝑝(𝑡, 𝑥)

𝑡=𝑥

𝑡=0
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Model fitting and projection 
The catalytic null model, which assumes a constant reinfection hazard coefficient, can be fitted to the 

number of observed reinfections up until a defined ‘fitting date’. The time before this fitting date is 

referred to as the ‘fitting period’. 

In this process, two parameters were fitted using Metropolis-Hastings Monte Carlo Markov Chains 

(MCMC): the reinfection hazard coefficient (𝜆) and the negative binomial dispersion parameter (𝜅), 

assuming that the number of reinfections follows a negative binomial distribution. In the simulation-

based validation conducted in this study, four Markov chains were run (each with a random starting 

value) with 10 000 iterations in each chain. The first 4000 iterations of each chain were discarded as 

burn-in. 

A joint posterior distribution of 1600 parameter sets were obtained from the Markov chains that we 

obtained in the fitting procedure, by selecting every 15th sample from the joint distribution. Each 

sample in the joint posterior distribution was used to simulate 100 stochastic realisations of expected 

daily reinfections. The stochastic realisations were used to obtain a 95% uncertainty interval for the 

fitting period, and a 95% credible interval for the ‘projection period’ (the time after the fitting date) 

under the null model.  

We used simulation-based validation to evaluate the robustness of using a metric of five consecutive 

data points that lie above the projection interval as an indicator of an increase in reinfection risk. We 

also assessed the effect of violating certain assumptions on the model’s convergence during the fitting 

period, and on the proportion of points that lie above the projection interval after a change in 

reinfection risk.  

Simulation-based validation 

The simulation-based validation started with the construction of a simulated dataset of primary 

infections representing a world in which all SARS-CoV-2 infections are observed, and no deaths occur, 

therefore every infected individual becomes eligible for reinfection after a 90-day period.  

Figure 1 shows the simulated dataset containing the number of primary infections per day. This 

dataset of primary infections is based on the number of observed infections in South Africa through 

July 2021. Specifically, we generated a simulated time series of primary infections by taking the seven-

day moving average of first infections from the previously published South African data (15). We 

increased the seven-day moving average by a factor of 5, then took a negative binomial sample around 

this mean with a shape parameter of 
1

𝜅
  , where 𝜅 ≈ 0.27 was the median of the posterior sample from 

(7). For dates at the beginning of the time series for which a seven-day moving average could not be 

calculated, the observed count was inflated by a factor of five and used as the mean for the negative 

binomial draw.  
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Figure 1 Simulated underlying daily infections that represents three waves of COVID-19 in South Africa. The 
simulated data is based on the observed cases in South Africa up to 15 June 2021 by scaling the number of 

cases and adding noise to the number of infections.  

The simulated scenarios 

We utilised five scenarios to assess the model's robustness and reliability of our chosen metric for 

detection of a change in reinfection risk. The first four scenarios depict an increasingly more realistic 

model world, with the fifth scenario considering a more complex description of varying observation 

probability as described in Table 1.  

Table 1 Summary of each scenario used in the simulation-based validation, illustrating a progression towards more 
realistic data generation processes from Scenario A to D and Scenario E covering a scenario of varying observation 

probability without mortality. 

Simulation Description 

Scenario A All primary infections and reinfections observed, zero mortality 

Scenario B Imperfect observation for reinfections, zero mortality 

Scenario C Imperfect observations of reinfections and primary infections, zero 
mortality 

Scenario D Imperfect observations of primary infections and reinfections with 
mortality 

Scenario E Imperfect observation, with observation probabilities that change as a 
function of the number of infections, zero mortality 

 

As part of the simulation-based validation, we sought to determine when a change in the hazard 

coefficient may be detected in the model, given the real-world evidence that certain variants carry 

higher risks of reinfection (7). When applying the model to the actual reinfection data in South Africa, 

the reinfection hazard coefficient during the Omicron wave was estimated to be higher than in the 
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previous waves (7). Given this, we generated ‘true’ datasets for each scenario where the reinfection 

hazard coefficient either remains the same or is higher after a specific date. These datasets allow us 

to test the catalytic model against both the situation where there is a wave driven by a variant with a 

higher risk of reinfection, and the situation where the reinfection risk remains constant.  This 

assessment provides insights into the model’s sensitivity and specificity of detecting a change in 

reinfection risk under different scenarios.  

For data generation, a scale parameter was introduced after a ‘scale date’ (which we used as 1 May 

2021) that is used to represent an Omicron-like wave, which varied from 1 (representing no change in 

reinfection risk) to 3 by steps of 0.1: 

ℎ𝑧𝑡 = 𝜆 .  𝜎𝑡  

where ℎ𝑧𝑡 is the modified hazard coefficient used to calculate reinfections on day t, 𝜆  is the reinfection 

hazard coefficient (obtained from the median of the posterior distribution of the fitted reinfection 

hazard coefficient in (7)) and 𝜎𝑡 is a modifier on the hazard defined as 

𝜎𝑡 = {
1  𝑖𝑓  𝑡 ≤ 31 𝐴𝑝𝑟𝑖𝑙 2021

𝜎 𝑖𝑓 𝑡 > 1 𝑀𝑎𝑦 2021
 

We used 𝜎 to represent an increase in reinfection risk to represent the Omicron wave and varied 𝜎 ≥

1  in the different scenarios.  

Detailed simulations for each scenario, including calculations and parameter adjustments, are 

described below. 

Scenario A: Perfect observation and no mortality 

The rationale for this approach is to establish a baseline, where we assess how our model performs 

when every infection of SARS-CoV-2 is observed, and no mortality occurs. This will determine the 

model’s ability to converge when all cases are observed and its ability to detect changes in the risk of 

reinfection with different magnitudes of these changes.  In the simulated data, infected individuals 

become eligible for reinfection 90 days after their first infection.  

The simulated primary infection dataset described above is used to calculate reinfections as follows:  

𝑟𝑡 = ℎ𝑧𝑡. 𝑖𝑡 . 𝑒𝑡  

where ℎ𝑧𝑡 is the modified reinfection hazard coefficient, 𝑖𝑡  is the number of underlying primary 

infections on day 𝑡 and  𝑒𝑡 represents the number of people that are eligible for reinfection on day 𝑡 

and is calculated as follows:  

𝑒𝑡 = ∑ 𝑖𝑡

𝑡−89

𝑡=0

− ∑ 𝑟𝑡

𝑡−1

𝑡=90

 

The number of people eligible for reinfection, 𝑒𝑡, is calculated by subtracting the number of people 

who have already been reinfected with SARS-CoV-2 from those who had a primary infection at least 

90 days ago, by that day.  

The only parameter that is varied in this scenario is the scaling of the reinfection hazard (𝜎), 

introduced at the start of the third wave. We varied this scale parameter from 1 to 3 in steps of 0.1 to 

determine the value of the scale parameter at which the observed data points no longer fit within the 

projection interval produced by the model.  

The data simulated for this scenario can be seen in Figure S1. 
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Scenario B: Imperfect observation of reinfections 

Scenario B introduces the first potential factor that may bias the detection of a change in reinfection 

hazard coefficient, namely the challenge where not every reinfection is observed, which mirrors actual 

epidemiological settings where not every case is reported or observed. By introducing this variable, 

we aim to evaluate the impact of imperfect observation of reinfections on the model’s robustness.  

The number of underlying reinfections is calculated as in Scenario A as follows:  

𝑟𝑡 = ℎ𝑧𝑡 . 𝑖𝑡 . 𝑒𝑡 

We then add an observation probability to calculate the number of observed reinfections, which is 

represented as:  

𝑟̃𝑡 = 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑟𝑡 , 𝑃2) 

where 𝑃2 is the varying observation probability and 𝑟̃𝒕 is the number of observed reinfections. We use 

the binomial distribution to calculate the number of observed cases for added noise which is present 

in a real-world scenario. The observed number of people eligible for reinfection is represented by ẽ 𝑡 

s and is based on the number of observed reinfections, instead of the underlying reinfections, and is 

calculated as: 

ẽ 𝑡 = ∑ 𝑖𝑡

𝑡−89

𝑡=0

− ∑ 𝑟̃𝒕

𝑡−1

𝑡=90

 

The underlying number of people eligible for reinfection, 𝑒𝑡, is calculated as in Scenario A and is used 

as the basis for determining the underlying number of reinfections, as shown above; however, when 

the catalytic model is applied to the simulated data, the observed number of eligible infections is used 

for fitting. 

Alongside the scale parameter (𝜎) like in Scenario A, we also vary the reinfection observation 

probability, 𝑃2, from 0.1 to 0.5 in increments of 0.1.  

The data simulated for this scenario can be seen in Figure S2. 

Scenario C: Imperfect observation of reinfections and primary infections 

In real-world settings, both primary infections and reinfections can go unnoticed, under-reported, or 

unrecorded. Thus, it is necessary for any model to handle the imperfect observation of both primary 

infections and reinfections, each with a specified observation probability. Scenario C introduces this 

added complexity, to determine the model’s performance when confronted with imperfect 

observation of primary infection and reinfections.  

Before calculating the number of reinfections, we must first adjust for the imperfect observation of 

primary infections:  

ĩ𝑡 = 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑖𝑡 , 𝑃1)  

Here, 𝑃1 denotes the observation probability for primary infections, which is varied in this scenario 

from 0.1 to 0.5 in increments of 0.1. We again utilised a binomial distribution draw to add noise to the 

number of reinfections consistent with the approach for primary infections. Because the dataset for 

analysis in the real world would be based only on first observed infections, detected reinfections 

would only be possible in the individual’s whose first infection was detected; we therefore use the 

observed primary infections in calculation of the simulated time series for reinfections. 
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Once the number of observed primary infections is determined, the number of underlying reinfections 

(within this open cohort) per day is calculated as follows:  

𝑟𝑡 = ℎ𝑧𝑡 . ĩ𝑡 . 𝑒𝑡 

where ĩ𝑡 is number of the observed reinfections on day t, and  𝑒𝑡 is calculated as: 

𝑒 𝑡 = ∑ ĩ𝑡

𝑡−89

𝑡=0

− ∑ 𝑟𝑡

𝑡−1

𝑡=90

 

Like Scenario B, an observation probability is added to the number of reinfections using the binomial 

distribution: 

𝑟�̃� = 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑟𝑡,𝑃2) 

Here, the observed number of people eligible for reinfection is determined as follows:  

ẽ 𝑡 = ∑ ĩ𝑡

𝑡−89

𝑡=0

− ∑ 𝑟̃𝑡

𝑡−1

𝑡=90

 

Three parameters are varied in this scenario: primary infections observation probability (𝑃1), 

reinfections observation probability (𝑃2) and the scale parameter (𝜎).  

The data simulated for this scenario can be seen in Figure S3. 

Scenario D: Imperfect observations of primary infections and reinfections with mortality 

Mortality from individuals with a primary infection significantly impacts the number of people eligible 

for reinfection, and if not factored into a model, it could result in overestimation. In the fourth 

scenario, we factor in those who have died from a primary infection, which influences the cohort of 

individuals susceptible to reinfection, giving a more refined perspective on SARS-CoV-2 transmission 

dynamics. The number of deaths resulting from observed primary infections is calculated as:  

𝑑𝑡 = 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(ĩ𝑡 , 𝑑1)  

In this equation, 𝑑1  is the probability of dying, a parameter that is being varied in this scenario. The 

number of observed primary infections, ĩ𝑡 is, is calculated in the same way as in Scenario C.  

The number of underlying reinfections per day is calculated as in Scenario C:  

𝑟𝑡 = ℎ𝑧𝑡 . ĩ𝑡 . 𝑒𝑡 

As in Scenario C, an observation probability is introduced to the number of underlying reinfections to 

calculate the number of observed reinfections, �̃�𝑡. 

In contrast to previous scenarios, however, the number of people deemed eligible for reinfection is 

adjusted by factoring in those who died from a primary infection and thus cannot be reinfected. This 

is calculated as follows:  

𝑒 𝑡 = ∑ ĩ𝑡

𝑡−89

𝑡=0

− ∑ 𝑟𝑡

𝑡−1

𝑡=90

− ∑ 𝑑𝑡

𝑡−89

𝑡=0

 

The number of observed people who remain susceptible for reinfection is then calculated as:  
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ẽ 𝑡 = ∑ ĩ𝑡

𝑡−89

𝑡=0

− ∑ �̃�𝑡

𝑡−1

𝑡=90

− ∑ 𝑑𝑡

𝑡−89

𝑡=0

 

The parameters that are being varied in this scenario are 𝑑1, the probability of dying of the primary 

infection (𝑑1 = 0.001, 0.01, 0.05), the scale for the last wave’s hazard coefficient 𝜎 (as with Scenario 

A), the observation probability for reinfections 𝑃2 (as per Scenario B) and the observation probability 

for primary infections 𝑃1 (consistent with Scenario C).   

Scenario E: Imperfect observation, with observation probabilities that change as a 

function of the number of infections  

The rationale for this scenario is to reflect a real-world setting, where potential changes in testing 

behaviour could be influenced by the perceived infection prevalence and/or the saturation of testing 

services during a surge. Our model would then be more adaptive and aligned with a more dynamic 

real-world scenario. 

In Scenario E, we introduce dynamic observation probabilities (𝑃1, and 𝑃2,) as a function of the number 

of underlying infections. At times where the incidence is high, the observation probabilities might be 

lower since individuals are less likely to test for infection or test availability may be limited. Thus, we 

incorporate this into the model by varying the observation probability with the inverse of the logistic 

function, making it a function of the number of underlying infections on day t. We calculate the 

observation probabilities on day t, 𝑓(ĩ𝑡), as:  

𝑓(𝑖𝑡) = 𝑚𝑖𝑛 +
𝑚𝑎𝑥 − 𝑚𝑖𝑛

1 + 𝑒𝑠∗(𝑖𝑡−𝑥𝑚)
 

In this equation, 𝑚𝑖𝑛 and 𝑚𝑎𝑥 are represented by the minimum and maximum observation 

probabilities respectively, 𝑠 is the steepness parameter and 𝑥𝑚 is the ‘mid-point’. Figure 2 visually 

depicts 𝑓.  

 

Figure 2 The function (a variation of the logistic function) plotted which illustrates changes in the 
observation probability with shifts in the number of underlying primary infections on that day. 

Using this function, the observation probabilities, and then the number of observed primary infections 

and reinfections are calculated. The only variables that are being changed between primary infections 

and reinfections are the minimum and maximum observation probabilities, since behaviour depends 
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on the number of underlying primary infections and not the number of underlying reinfections (in the 

case of reinfections).  

The maximum and minimum observation probabilities for reinfections (𝑃2
𝑚𝑎𝑥 and 𝑃2

𝑚𝑖𝑛) such that 

𝑃2
𝑚𝑎𝑥 ≥ 𝑃1

𝑚𝑎𝑥 and  

𝑃2
𝑚𝑖𝑛 ≥ 𝑃1

𝑚𝑖𝑛  

where 𝑃1
𝑚𝑎𝑥 and 𝑃1

𝑚𝑖𝑛 are the observation probabilities for primary infections, respectively.  

We hypothesise that people who are reinfected are more likely to get tested for SARS-CoV-2 since 

they tested for their primary infections.  

We excluded parameter sets where  𝑃1
𝑚𝑖𝑛 = 𝑃1

𝑚𝑎𝑥  and 𝑃2
𝑚𝑖𝑛 = 𝑃2

𝑚𝑎𝑥  as this would replicate Scenario 

C.  

Multiple parameters are varied in this scenario: the maximum and minimum observation probability 

for primary infections (𝑃1
𝑚𝑎𝑥 and 𝑃1

𝑚𝑖𝑛), the maximum and minimum observation probability for 

reinfections (𝑃2
𝑚𝑎𝑥 and 𝑃2

𝑚𝑖𝑛), the steepness of the function (𝑠), the midpoint of the function (𝑥𝑚), 

and the scale (𝜎). 

In Imperfect observation, with observation probabilities that change as a function of the number of 

infections , each of the parameters that are being varied in Scenario E are described and summarised 

with its corresponding values that are used in the simulation-based validation process.  

Table 2 Parameters varied in Scenario E with corresponding values. 

Parameter Values 

Scale (𝜎) {1; 1.2; 1.5} 

Maximum observation probability for primary infections 
(𝑃1

𝑚𝑎𝑥) 
{0.2;  0.3;  0.4;  0.5}  

Minimum observation probability for primary infections 

(𝑃1
𝑚𝑖𝑛) 

{0.1;  0.2;  0.3;  0.4;  0.5} such that 

𝑃1
𝑚𝑖𝑛 < 𝑃1

𝑚𝑎𝑥 

Maximum observation probability for reinfections (𝑃2
𝑚𝑎𝑥) {0.2;  0.3;  0.4;  0.5} such that 

𝑃2
𝑚𝑎𝑥 ≥ 𝑃1

𝑚𝑎𝑥 

Minimum observation probability for reinfections (𝑃2
𝑚𝑖𝑛) {0.1;  0.2;  0.3;  0.4;  0.5} such that 

𝑃2
𝑚𝑖𝑛 < 𝑃2

𝑚𝑎𝑥 and 𝑃2
𝑚𝑖𝑛 ≥ 𝑃1

𝑚𝑖𝑛 

Steepness (𝑠) {0.00005; 0.0001}  

Midpoint (𝑥𝑚) {30000; 40000; 50000} 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2023. ; https://doi.org/10.1101/2023.09.21.23295891doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.21.23295891
http://creativecommons.org/licenses/by/4.0/


11 
 

 

Evaluating model performance 

We assessed performance of the catalytic method for detecting increases in the reinfection risk across 

Scenarios A through E. For each scenario, data were simulated specific to the parameter set that 

characterises the scenario. We applied the fitting procedure and projection to each simulated dataset 

as described above to estimate a 95% projection interval for reinfections per day in each simulated 

dataset. 

The fitting and projection process was repeated 20 times for each scenario, each time using different 

seed values. These varied seeds generated different sets of random numbers which were used in three 

key processes:  

1. The data generation process where binomial processes were used to generate the number of 

observed cases and mortality.  

2. The MCMC fitting procedure when calculating the proposer value, which is drawn from a 

normal distribution and accepted or rejected by the MCMC sampler within the Markov chain.  

3. The model projection process when calculating the stochastic realisations.   

We assessed parameter convergence and model fit during the fitting period, then applied a set of 

metrics to measure the impact of different scenario definitions on the model performance. These 

metrics included: assessing the first cluster of reinfections above the projection interval during the 

projection period, determining the proportion of infections above the projection interval during the 

projection period, and evaluating the specificity of detecting simulated changes in reinfection risk.   

The model was implemented, and the simulation-based validation was conducted in the R Statistical 

Programming Language [version 4.3.1 (2023-06-16)] (16). The code is available on Github at 

https://github.com/SACEMA/reinfectionsBelinda. 

Parameter convergence 

In each scenario, the MCMC sampler of the catalytic model was used to fit the model parameters. 

These parameters include 𝜆, which is the reinfection hazard coefficient, and 𝜅, the binomial dispersion 

parameter. After the fitting procedure, the convergence of 𝜆 and 𝜅 was measured using Gelman-Rubin 

convergence diagnostics, which relies on a potential scale reduction factor (PSFR) commonly used to 

measure convergence in Markov chains (17). The Gelman-Rubin convergence diagnostic is a ratio that 

compares the between-chain and within-chain variances. When the difference between the 

respective variances is large, it indicates non-convergence (17,18). A value below 1.1 indicates that 

the parameter converged, and a value above 1.2 indicates non-convergence (17). To determine 

parameter convergence, we measured the proportion of runs where convergence was achieved (i.e., 

where PSRF ≤ 1.1 for both 𝜆 and 𝜅) when considering different scenario definitions involving 

observation probabilities and mortality.  

Exclusion of non-converging runs or poor model fit 

When 𝜅 does not converge, the projection bands are narrow which could lead to more observed 

reinfections falling outside the projection interval. Such an outcome could lead to incorrect 

conclusions regarding trends in the risk of reinfection. Similarly, it is crucial for 𝜆 to converge to ensure 

reliable predictions. We therefore excluded runs where either 𝜆 or 𝜅 did not converge from our 

analysis. 

Additionally, for each run of the scenario definitions, we tracked the presence of clusters of data points 

that fell outside the 95% projection interval for the 7-day moving average of reinfections during the 
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fitting period. Where such a cluster existed, it implied that the model inaccurately represents the 

patterns seen in the simulated data. In addition to excluding non-converging runs, we also excluded 

runs for which a cluster of either five consecutive observed values for the 7-day moving average of 

reinfections fell above the projection interval or ten consecutive values fell below the 95% 7-day 

moving average projection interval during the fitting period (before the fitting date, 28 February 

2021).  

First cluster of reinfections above the projection interval 

The first cluster of five consecutive points above the projection interval (𝐷𝑓𝑖𝑟𝑠𝑡) is a metric that can 

easily be used for real-time detection of a change in the hazard coefficient. Therefore, it is important 

to test how well this metric performs under different scenarios. 

For runs that were not excluded, we tracked the timing of the first occurrence of five data points (of 

the 7-day average of observed reinfections) above the 95% 7-day moving average projection interval 

during the projection period after introducing 𝜎 (i.e., after 1 May 2021), designated as 𝐷𝑓𝑖𝑟𝑠𝑡 (where 

𝐷𝑓𝑖𝑟𝑠𝑡 is the fifth day of such a cluster). The presence of 𝐷𝑓𝑖𝑟𝑠𝑡 indicates a possible increase in 

reinfection risk. In our simulated data, where we have introduced an increasing hazard coefficient 

(𝜎 > 1), we used 𝐷𝑓𝑖𝑟𝑠𝑡  to assess the magnitude of change required for our approach to detect it. 

Additionally, we evaluated how quickly the approach identifies the increase in reinfection risk for 

different scenarios, identifying any delays from introduction of the increase to its detection (𝐷𝑓𝑖𝑟𝑠𝑡). 

As a summary metric, we calculated the median of 𝐷𝑓𝑖𝑟𝑠𝑡 after excluding non-converging runs and 

runs with clusters of reinfections outside the projection interval in the fitting period, as described 

above. 

Proportion of infections above the projection interval 

The impact of the different processes, represented by different scenarios, on the model’s performance 

was also measured by determining the proportion of days when the 7-day moving average of observed 

reinfections fell above the 95% 7-day moving average projection interval after the introduction of 𝜎. 

In cases where there was no increase in the risk of reinfection, we expected that the number of 

“observed” (simulated) reinfections exceeding the 95% projection interval would be less than 2.5% of 

the days in the projection period. If more than 2.5% of the daily observed reinfections values fall above 

the projection interval, it indicated either a successfully detected (when  𝜎 > 1) or a false positive 

detection (when 𝜎 = 1). As a summary metric, we calculated the median of this proportion across 

runs that were not excluded by the criterion described above. 

Measuring the proportion of infections above the projection interval helped us in assessing the 

magnitude of change in reinfection risk likely to be detected by the method and the effect of the 

potential biases we examined. It is important to note that this measurement does not enable us to 

assess real-time performance of the method but is a general indicator of robustness. 

Specificity 

Specificity is a proportion used to measure the approach’s reliability when there is no change in the 

risk of reinfection. We measured the specificity for each scenario definition where 𝜎 = 1  by 

calculating it across the 20 runs as  

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 1 −
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑢𝑛𝑠 𝑤ℎ𝑒𝑟𝑒 𝐷𝑓𝑖𝑟𝑠𝑡 𝑒𝑥𝑖𝑠𝑡𝑠 & 𝑟𝑢𝑛 𝑛𝑜𝑡 𝑒𝑥𝑐𝑙𝑢𝑑𝑒𝑑

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑢𝑛𝑠 𝑛𝑜𝑡 𝑒𝑥𝑐𝑙𝑢𝑑𝑒𝑑
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The runs not excluded are those that converged and did not have a large cluster of observed 

reinfections outside the projection interval during the fitting period, as described above. High 

specificity indicates that false positive detections of a change in reinfection risk are unlikely.  

Results 

Parameter convergence 
In Scenarios A to D, observation probabilities (𝑃1 and 𝑃2 ) were varied but kept constant throughout 

each run (Figure S4, Figure S5). After running the data generation process, the MCMC fitting procedure 

and the model projection with 20 different seeds, the convergence diagnostics were below 1.1 for 𝜆 

(the reinfection hazard coefficient) and 𝜅 (the negative binomial dispersion parameter) across most 

scenario definitions.  However, when 𝑃1 and 𝑃2 were lower (for example, at 𝑃1 = 0.1 and 𝑃2 = 0.2), 

the proportion of runs that converged ranged between 0.65 and 0.85. At the lower extremes for 𝑃1 

and 𝑃2  (𝑃1 = 0.1 and 𝑃2 = 0.1), the proportion of runs that converged ranged between 0.05 and 0.3, 

with an increase observed as the probability of dying from a primary infection (𝑑𝑡) decreased (Figure 

S4, Figure S5).  

In Scenario E, the observation probabilities for primary and reinfections varied depending on the 

number of underlying primary infections for a given day. When 𝑃1
𝑚𝑖𝑛 = 𝑃2

𝑚𝑖𝑛 = 0.1  , 𝑃1
𝑚𝑎𝑥 = 𝑃2

𝑚𝑎𝑥 =

0.2 , and the steepness of the function (how quickly the observation probability declines with an 

increase of underlying primary infections) 𝑠 was low, along with a low midpoint (middle of the decline 

in observation probabilities) 𝑥𝑚, most of the runs did not converge (Figure S6, Figure S7). These 

scenarios corresponded to relatively few observed primary infections and consequently, few 

generated reinfections.  In other cases, i.e., at higher values of  𝑃1
𝑚𝑖𝑛,  𝑃1

𝑚𝑎𝑥,  𝑃2
𝑚𝑖𝑛 and  𝑃2

𝑚𝑎𝑥, more 

than 75% of runs converged (Figure S8 and Figure S9). 

Exclusion of non-converging runs or poor model fit 
In Scenario A, all runs were included in the analysis. In Scenario B, two runs were excluded due to a 

cluster of five consecutive points falling above the projection interval during the fitting period. These 

exclusions occurred in cases where 𝑃2 = 0.1 and 𝑃2 = 0.4, out of a total of twenty runs. In Scenarios 

C and D, when 𝑃1 = 0.1 and 𝑃2 = 0.1, the majority of runs were excluded due to non-convergence 

and/or a cluster of five consecutive points above the projection interval during the fitting period. The 

exceptions were with 𝑑1 = 0.01 where one out of the 20 runs were included. When 𝑃1 = 0.1 and 

𝑃2 = 0.2, between three and seven of 20 runs were excluded for each scenario definition. For the rest 

of the values of 𝑃1 and 𝑃2 (when 𝑃1 > 0.1 and 𝑃2 > 0.2), at most two of 20 was excluded due to non-

convergence.   

In Scenario D, there were 1500 runs (resulting from the combination of 20 stochastic repeats x three 

𝑑1 parameters x 25 combinations of 𝑃1 and 𝑃2) where  𝜎 = 1, and from these runs, 81 were excluded 

due to non-convergence, and an additional 107 runs were excluded because of a cluster of five 

consecutive points falling above the projection interval during the fitting period.  No clusters of ten 

consecutive points below the projection interval during the fitting period were observed in Scenario 

D.  

In Scenario E, there were 6000 runs (20 stochastic repeats x two midpoints parameters x three 

steepness parameters x 50 combinations of 𝑃2
𝑚𝑖𝑛, 𝑃2

𝑚𝑎𝑥, 𝑃1
𝑚𝑖𝑛, 𝑃1

𝑚𝑎𝑥) where 𝜎 = 1. Only 83 of these 

runs were excluded because of non-convergence, with an additional 1386 being excluded due to 

clusters of five consecutive points above the projection interval during the fitting period.  Additionally, 

1701 runs were excluded due to clusters of ten consecutive points falling below the projection interval 

during the fitting period. One such scenario definition can be seen in Figure S10, where a cluster of 10 
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consecutive observed reinfections was below the projection interval during the fitting period. In these 

excluded runs, the simulated data did not match observed trends in South African data, where peaks 

in primary infections and reinfections were temporally correlated. 

First cluster of reinfections above the projection interval  

The first cluster of reinfections above the projection interval, Figure 3 𝐷𝑓𝑖𝑟𝑠𝑡, is illustrated in Figure 3 

showing the median timing across the five scenarios based on their respective definitions. 

In Scenarios A through D, for most of the scenario definitions, the median of 𝐷𝑓𝑖𝑟𝑠𝑡 = 7 when 𝜎 ≥ 1.5, 

indicating the change in reinfection risk is detected very soon after it is introduced in the data. In 

Scenarios C and D, when 𝜎 = 1.2, the median of 𝐷𝑓𝑖𝑟𝑠𝑡 over the 20 runs was slightly higher for most 

scenario definitions, but the change in risk of reinfection was still detected (i.e., 𝐷𝑓𝑖𝑟𝑠𝑡 exists for all 

non-excluded runs). Generally, lower values of 𝑃1 and 𝑃2 were associated with slightly higher median 

values of 𝐷𝑓𝑖𝑟𝑠𝑡. In Scenario D, when the probability of mortality after experiencing an observed 

primary infection,  𝑑1, is lower, the median 𝐷𝑓𝑖𝑟𝑠𝑡 was also slightly higher. 

In Scenario E, when 𝜎 > 1.2, the change in reinfection risk was detected for all non-excluded runs. 

However, when the number of observed cases (primary infections and reinfections) was lower, the 

median 𝐷𝑓𝑖𝑟𝑠𝑡 was higher (extending to around 40 days) (as shown in Figure S11).  At 𝜎 = 1.2, 𝐷𝑓𝑖𝑟𝑠𝑡 

was absent for eight out of 2833 runs, all at low observation probabilities of primary infections and 

reinfections.  

 
Figure 3 Timing of the first five consecutive points outside the projection interval after an increase in reinfection 

risk has occurred. Panels A-E represents Scenario A-E respectively. In A, all cases are observed, and no 
mortality occurs; B represents imperfect observation of reinfections; C represents imperfect observation of 

primary infections and reinfections; D represents imperfect observation of primary infections and reinfections with 
added mortality; and E represents observation probabilities that vary with the number of underlying infections 
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without mortality. In E, σ=1.5 and 𝑃2
𝑚𝑖𝑛 and 𝑃2

𝑚𝑎𝑥 are 0.4 and 0.5 respectively. Plots for other Scenario E 
definitions are shown in Figure S11. The gaps in C and D represent scenario definitions where results of all runs 
were excluded because of non-convergence or a cluster outside the projection interval during the fitting period.  

Proportion of infections above projection interval 
In all the scenarios (A to E), the proportion of data points above the projection interval gradually 

increased as the scale parameter (proportional increase in risk of reinfection), 𝜎 increased up to a 

point after which the proportion stabilised around 0.973 (Figure 4 A-E). The value 0.973 was obtained 

when 73 out of the 75 days in the projection period fell above the 95% projection interval. In Scenarios 

A through D, the proportion increased from below 0.25 to close to 1 when increasing 𝜎 from 1 to 1.5, 

representing a 50% increase in the reinfection hazard coefficient.  

In Scenarios A and B, the median proportion of points above the projection interval was 0.973 when 

𝜎 ≥ 2.2 (Figure 4 A-B). There was a slight negative relationship between 𝑃2 and the proportion of 

points above the projection interval; the lower 𝑃2 values correlated with a higher proportion of points 

outside the projection interval) (Figure 4 B). 

In Scenario C, when there was no change in reinfection risk (𝜎 = 1) and the 𝑃1 values were low, there 

was a slightly higher proportion of points outside the projection interval compared to when 𝑃1 was 

higher (Figure 4 C). At 𝜎𝑡 = 1.5 (representing a 50% increase in the reinfection hazard coefficient), the 

proportion of points outside the projection interval was higher when more infections are observed. 

Even at a low observation probability, an increase in reinfection risk was still detected (𝐷𝑓𝑖𝑟𝑠𝑡 still 

existed). For instance, when 𝑃1 = 0.1 and 𝑃2 = 0.2, the median proportion of points above the 

projection interval was 0.67, whereas the proportion was closer to 0.8 in scenarios where 𝑃1 and 𝑃2 

was higher. For substantial increases in the reinfection hazard coefficient (𝜎 ≥ 1.7), the proportion of 

points above the projection interval was 0.973 (Figure S12).  

The values used for mortality in Scenario D had a minimal effect on the proportion of points outside 

the projection interval (Figure 4 D), although the median proportion was slightly higher with higher 𝑑1 

values.  

In Scenario E, the median proportion of points above the projection interval varied from 0.01 to 0.25 

when 𝜎 = 1 (indicating a 0% increase in the risk of reinfection), from 0.19 to 0.53 when 𝜎 = 1.2 and 

from 0.49 to 0.95 when 𝜎 = 1.5 (Figure 4 and Figure S13). The median proportion was lower at higher 

values of steepness for most scenario definitions, and at the higher value of midpoint values.   
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Figure 4 Median proportion of points above the projection interval after an increase in reinfection risk. Panels A-E 
represent Scenario A-E respectively, with scenario definitions as described in Figure 3. The gaps in C and D 
represent scenario definitions where results from all runs were excluded because of non-convergence or a 

cluster outside the projection interval during the fitting period. 

Specificity 
The specificity was 100% across all scenario definitions in Scenarios A and B. In Scenario C (Figure S14), 

where we considered fixed 𝑃1 and 𝑃2, and Scenario D (Figure S15), where we introduced mortality, 

the specificity was mostly above 0.95. However, in scenarios where 𝑃1 = 0.1 and the difference 

between 𝑃1 and 𝑃2 was substantial, such as 𝑃1 = 0.1 and 𝑃2 = 0.5, the specificity dropped to 0.75.  In 

both Scenarios C and D, the specificity remained above 0.75. 

In Scenario E, the specificity approached 1 when a larger number of cases were observed (i.e., higher 

values of 𝑃2
𝑚𝑖𝑛, 𝑃2

𝑚𝑎𝑥, 𝑃1
𝑚𝑖𝑛, 𝑃1

𝑚𝑎𝑥 , the midpoint, and steepness) (see Figure S17). Conversely, when 

fewer cases were observed, the specificity decreased. For instance, when  𝑃2
𝑚𝑖𝑛 and 𝑃2

𝑚𝑎𝑥 were 0.2 

and 0.3 respectively, the specificity ranged from 0.33 to 0.91. Higher specificity values were observed 

when 𝑃1
𝑚𝑖𝑛 and 𝑃1

𝑚𝑎𝑥 were higher, and the midpoint of the function was greater, indicating more 

cases were observed, as can been seen in Figure S17. When considering the runs where false positive 

increases in the reinfection risk were detected, most runs had a cluster of five consecutive observed 

reinfections below the interval during the fitting period, suggesting that the model did not align well 

with the trends in the data during the fitting period but did not match our exclusion criteria.  

Discussion 
In this study, we performed simulation-based validation on a method used for real-time monitoring 

of SARS-CoV-2 reinfections to detect changes in the risk of reinfection (7). The model parameters 
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converged well in most scenarios of observation process biases and the model is robust when dealing 

with changes in observation probability for reinfections. The robustness of the model’s parameter 

convergence indicates that the projection interval can be accurately simulated, particularly when the 

model aligns well with the patterns seen in the simulated data during the fitting procedure.   

When both the observation probabilities for primary and reinfections were exceptionally low (0.1), 

convergence for the negative binomial dispersion parameter failed, due to a lack of data to properly 

inform this parameter. This finding aligns with a previous study by Pulliam et al. where the dispersion 

parameter did not converge over the short timeframe when fitting South African data over the first 

wave (18). Our findings further reinforce the importance of having sufficient data over a long-enough 

period to ensure accurate estimation of parameters.  

In Scenario E, where we varied the observation probabilities based on the number of underlying 

primary infections using an adapted logistic function described, most runs converged successfully, 

except when the observed infections were low. In these cases, convergence of the dispersion 

parameter was sensitive to both the shape of the function and the number of runs that could 

converge. Convergence was lower when the observation probability decreased at a low number of 

underlying primary infections (midpoint of 30,000) and when the observation probability decreased 

gradually with increasing underlying primary infections (low steepness parameter). The non-

convergence in scenario definitions with low observation probabilities is likely due to insufficient data 

to properly inform the negative binomial dispersion parameter.   

We measured when the first cluster of five observed reinfections fell above the projection interval to 

understand how soon the approach detects changes in the reinfection risk and whether it detects 

changes when there were none (specificity). In all the data generation scenarios, there was a gradual 

decrease in the time it took to detect an increase in reinfection risk as the magnitude of the increase 

grew. In most scenarios, the increase in reinfection risk was detected even when the increase was as 

low as 20% and larger increases, above 50%, were detected soon after their introduction in the 

underlying data. However, when fewer infections and reinfections were observed, there was a slightly 

delayed detection in increase in reinfection risk which could be because of data availability during the 

fitting period, and even though the model parameters converged, the model parameters were not 

informed as well as when more cases were observed.  

In evaluating the robustness of the approach’s ability to detect changes in the risk of reinfection, we 

introduced a parameter (𝜎 ≥ 1) to scale the reinfection hazard coefficient used to generate 

reinfections after a certain date. The model-based detection approach was sensitive to changes in 

reinfection risk, detecting increases as low as 20% (𝜎 ≥ 1.2) when considering imperfect observation 

of both primary infections and reinfections. The detection of an increase in reinfection risk at a low 

magnitude highlights the method’s sensitivity.  

Furthermore, when the observation probabilities were varied as a function of underlying primary 

infections, the proportion of observed reinfections above the projection interval for a given magnitude 

of increase in the reinfection hazard coefficient remained consistent despite changes in the function’s 

parameters. For instance, when reinfection risk increased by 50%, more than half (above 0.5) the 

observed reinfections fell above the projection interval, indicating that the method is sensitive to 

increases in the reinfection risk.  

We also evaluated specificity, measuring the proportion of scenarios where no increase in reinfection 

risk was detected (i.e., there were no stretches of five consecutive points above the projection 

interval), given that no such increase was present in the simulated data (where 𝜎 =  1). In scenarios 
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where all primary infections were observed (Scenarios A and B), there were no false positive 

detections of changes in reinfection risk. However, when observation probabilities for primary 

infections were included alongside reinfections, there were some runs where false increases in the 

risk of reinfections were detected, particularly when the difference between observation probabilities 

for primary infections and reinfections was high (>0.3).  

When observation probabilities were calculated as a function of the number of underlying primary 

infections, few false positives were detected when the number of observed cases were high. However, 

when the infections and reinfections observed are lower, especially when the observed infections did 

not fall well within the projection interval during the fitting period (i.e., there are large clusters below 

or above the projection interval), we advise more careful interpretation of apparent changes in the 

risk of reinfection. In such cases, criteria to detect an increase in the risk of reinfection could, for 

example, be extended to having a cluster of ten consecutive days above the projection interval during 

the projection period instead of five.   

Notably, changes in mortality had negligible effects on all performance metrics, including 

convergence, the proportion of points above the projection interval, the first cluster of five observed 

reinfections above the projection interval and specificity. This indicates the method’s reliability even 

when mortality rates fluctuate. 

Overall, the simulation-based validation of this catalytic model for detecting SARS-CoV-2 reinfection 

risk provides useful insights on how the model should be used as a tool when monitoring reinfection 

risk to respond to increases in the reinfection risk.   

Strengths and limitations 
A major strength of this study is that we investigated the robustness of the model under different 

assumptions of observation probabilities that could occur in the real-world, enhancing the model’s 

practical applicability. Such robustness ensures that the model remains reliable when introduced to 

various complex scenarios in the real-world.  

Recognising that mortality may bias the number of people eligible for reinfection, we incorporated 

mortality and determined that the model outcome is not sensitive to changes in mortality rates which 

could be influenced in the real world by factors such as healthcare capacity, treatment effectiveness, 

and vaccination campaigns. 

A key limitation of this study is the timeframe on which the work has been conducted. Ideally, this 

type of simulation-based validation should be conducted before such a method is used for real-time 

monitoring during an outbreak response. While the method is intended for real-time detection in 

changes in the risk of reinfection by SARS-CoV-2; resources were not available to conduct the 

simulation-based validation to coincide with the SARS-CoV-2 outbreak response.  

Another limitation is that the simulated dataset used in the simulation-based validation is based on 

the situation in South Africa; thus, the findings may not be applicable to countries with significantly 

small populations, limited testing, or extensive vaccination coverage, resulting in low numbers of 

observed infections and reinfections.  

Lastly, the simulation-based validation did not consider waning natural immunity as a potential reason 

for an increase in the risk of reinfection. The method focuses on detecting a population-level increase 

in the reinfection risk but does not assign a mechanism to the detected increase; interpretation of the 

drivers of a change in reinfection risk requires triangulation with other data sources. That said, whilst 

there is evidence of waning natural immunity of SARS-CoV-2 (19), analysis of reinfection trends in 
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South Africa was conducted from January 2021 through November 2022, with the only detected 

change in reinfection risk being associated with the emergence of the Omicron variant. This finding 

suggests that the dynamics of waning immunity for SARS-CoV-2 may not produce population-level 

increases in reinfection risk that are detectable using this method. 

Directions for future work 

The data used to validate the model in this paper (7), is based on a population that represents South 

Africa. Since we have found that with a low number of cases, the model parameters may fail to 

converge, research is also needed to validate the model with data representative of different 

countries, population sizes, and vaccination histories to ensure its broader applicability.  

Vaccination against SARS-CoV-2 is increasing globally and may have an impact in reinfection risk. 

Future work should therefore study the impact of vaccination on the robustness of the model and may 

require modification of the method for use in contexts where vaccination levels are high and/or 

changing at a fast pace.  

Pulliam et al. used a second approach to detect changes in the risk of reinfection, which estimated 

time-varying infection and reinfection hazards (7). Like this study, simulation-based validation should 

be performed for this method.  

Since we did not consider waning immunity in the simulation-based validation, it remains to be seen 

whether and under what conditions waning immunity would produce a population-level shift in 

reinfection risk that would be detected by this method.  

Conclusions 
Simulation-based validation has been conducted on the method that uses a catalytic model to detect 

increases in the risk of reinfection by SARS-CoV-2. Although continued validation under different 

epidemiological contexts is necessary, the work done in this study demonstrates the method’s robust 

performance across most imperfect observation and mortality scenarios. Specifically, model 

parameter convergence and good fit during the fitting period should be prerequisites when using the 

model to detect real-time increases in population-level reinfection risk. The simulation-based 

validation done on the catalytic model enhances the model’s applicability when using the model to 

draw conclusions under different scenarios that might occur in real-world data. 
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Supplementary Material 

Simulated Data 

 

Figure S1 Simulated underlying primary infections with reinfections at different values of 𝜎. The plot represents 
Scenario A, with figure A showing the simulated primary infections with perfect observation and no mortality, and 

B showing the observed reinfections with different values of 𝜎 used as input in Scenario A.  

 

Figure S2 Observed reinfections for different observation probabilities for reinfections, 𝑃2, in Scenario B (no 

change in reinfection risk) and 𝜎 = 1. Scenario B has imperfect observation of reinfections.  
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Figure S3 The observed primary infections and reinfections for Scenario C. A shows the number of observed 
primary infections for different values of 𝑃1 and B shows the observed reinfections for different values of 𝑃2 

shown at the top of each grid. Each line depicts another value of 𝑃1.  

 

Parameter convergence 

  

 

Figure S4 Proportion of runs in Scenario C where both λ and κ converged. Here we introduced observation 
probabilities for primary infections and reinfections (𝑃1 and 𝑃2 respectively). 
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Figure S5 Proportion of runs in Scenario D where both λ and κ converged. Here we added observation 
probabilities for primary infections, reinfections and we included mortality (𝑃1, 𝑃2 and 𝑑1respectively). 

 

Figure S6 The proportion of runs that converged for Scenario E where 𝑃2
𝑚𝑖𝑛 = 0.1 and 𝑃2

𝑚𝑎𝑥 indicated at the top 

of each grid.  

. 
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Figure S7 The proportion of runs that converged for Scenario E where 𝑃2
𝑚𝑖𝑛 = 0.2 and 𝑃2

𝑚𝑎𝑥 indicated at the top 

of each grid.  

 

 

Figure S8 The proportion of runs that converged for Scenario E where 𝑃2
𝑚𝑖𝑛 = 0.3 and 𝑃2

𝑚𝑎𝑥 indicated at the top 

of each grid.  
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Figure S9 The proportion of runs that converged for Scenario E where 𝑃2
𝑚𝑖𝑛 = 0.4 and 𝑃2

𝑚𝑎𝑥 indicated at the top 

of each grid. 

Exclusion of non-converging runs or poor model fit 

 

Figure S10 An instance of an 'unrealistic' time series where the model faced challenges in fitting the simulated 
reinfection data. During the fitting period preceding the dotted red line, the observed reinfections (depicted by the 

solid red line) consistently fell below the projection interval in January. In this particular scenario, the function 
determining the observation probability had a low midpoint of 30,000, minimal observation probabilities for 

primary and re-infections set at 0.1 and 0.4, respectively, and a low steepness factor of 0.00005. 

First cluster of reinfections above the projection interval  
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Figure S11 Plot showing the median of the timing of the first cluster of five days where the reinfections fell above 
the projection interval after the introduction of the scale (𝜎) for Scenario E. In A, the minimum and maximum 

observation probabilities for reinfections are 0.1 and 0.2. In B, the minimum and maximum observation 
probabilities for reinfections are 0.2 and 0.3. In C, the minimum and maximum observation probabilities are 0.3 

and 0.4. The introduced scales (𝜎) are indicated at the top. 

Proportion of infections above projection interval 
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Figure S12 Plot showing the median of the proportion of points above the projection interval for Scenario C for 
different values 𝜎. 
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Figure S13 Plot showing the median of the proportion of points above the projection interval for Scenario E. In A, 
the minimum and maximum observation probabilities for reinfections are 0.1 and 0.2. In B, the minimum and 

maximum observation probabilities for reinfections are 0.2 and 0.3. In C, the minimum and maximum observation 
probabilities are 0.3 and 0.4. The introduced scales (𝜎) are indicated at the top. 
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Specificity 

 

 

Figure S14 Specificity (𝜎 = 1) of Scenario C, over 20 runs with different fixed values of primary infections and 

reinfections observation probabilities. The numbers in the grid are the number of runs where both 𝜆 and 𝜅 
converged and a cluster of five consecutive points above or 10 consecutive points below the projection interval 

during the fitting period does not exist. The specificity is measured as the number of those runs where 𝐷𝑓𝑖𝑟𝑠𝑡 does 

not exist, i.e., no false positive detection of a change in reinfection risk was observed. 

 

Figure S15 Specificity (𝜎 = 1)  of Scenario D over 20 runs with different fixed values of primary infections and 
reinfections observation probabilities where mortality is considered. The numbers in the grid are the number of 

runs where both 𝜆 and 𝜅 converged and a cluster of five consecutive points above or 10 consecutive points below 
the projection interval during the fitting period does not exist. The specificity is measured as the number of those 

runs where 𝐷𝑓𝑖𝑟𝑠𝑡 does not exist, i.e., no false positive detection of a change in reinfection risk was observed. 
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Figure S16 Specificity (𝜎 = 1)  of Scenario E over 20 runs when 𝑃2
𝑚𝑖𝑛 = 0.4 and 𝑃2

𝑚𝑎𝑥 = 0.5. The numbers in the 

grid are the number of runs where both 𝜆 and 𝜅 converged and a cluster of five consecutive points above or 10 
consecutive points below the projection interval during the fitting period does not exist. The specificity is 

measured as the number of those runs where 𝐷𝑓𝑖𝑟𝑠𝑡 does not exist, i.e., no false positive detection of a change in 

reinfection risk was observed. 

 

Figure S17 Specificity (𝜎 = 1) of Scenario E over 20 runs when 𝑃2
𝑚𝑖𝑛 = 0.2 and 𝑃2

𝑚𝑎𝑥 = 0.3. The numbers in the 

grid are the number of runs where both 𝜆 and 𝜅 converged and a cluster of five consecutive points above or 10 
consecutive points below the projection interval during the fitting period does not exist. The specificity is 

measured as the number of those runs where 𝐷𝑓𝑖𝑟𝑠𝑡 does not exist, i.e., no false positive detection of a change in 

reinfection risk was observed. 
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