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Abstract 7 
The SARS-CoV-2 pandemic has brought molecular biology and genomic sequencing into 8 

the public consciousness and lexicon. With an emphasis on rapid turnaround, genomic data has 9 

been used to inform both diagnostic and surveillance decisions for the current pandemic at a 10 

previously unheard-of scale. The surge in the submission of genomic data to publicly-available 11 

databases has proved essential as comparing different genome sequences offers a wealth of 12 

knowledge, including phylogenetic links, modes of transmission, rates of evolution, and the 13 

impact of mutations on infection and disease severity. However, the scale of the pandemic has 14 

meant that once sequencing runs are performed, they are rarely repeated due to limited sample 15 

material and/or the availability of  sequencing resources, resulting in some imperfect runs being 16 

uploaded to public repositories. As a result, it is crucial to investigate the data obtained from 17 

these imperfect runs to determine whether the results are reliable. Numerous studies have 18 

identified a variety of sources of contamination in public next-generation sequencing (NGS) data 19 

as the number of NGS studies increases along with the diversity of sequencing technologies and 20 

procedures [1–3]. For this study, we conducted an in silico experiment with known SARS-CoV-21 

2 sequences produced from Oxford Nanopore Technologies sequencing to investigate the effect 22 

of contamination on lineage calls and single nucleotide variations (SNVs). Through a series of 23 
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analyses, we identified a contamination threshold below which runs are expected to generate 24 

accurate lineage calls and maintain genomic sequence integrity. Together, these findings provide 25 

a benchmark below which imperfect runs may be considered robust for reporting results to both 26 

stakeholders and public repositories and reduce the need for repeat or wasted runs.  27 

 28 

Author Summary 29 

 Large-scale genomic comparisons provide a wealth of knowledge, including modes of 30 

transmission, rates of evolution, and the impact of mutations on infection, disease severity, and 31 

treatment effectiveness. As a result, the public release of genomic data has proven to be crucial. 32 

However, studies continue to show that some of the genomic data in public repositories are 33 

contaminated due to a variety of reasons. For instance, in the case of SARS-CoV-2 sequences, 34 

the pandemic prevented many sequencing runs from being repeated, resulting in some imperfect 35 

runs being uploaded to public repositories. It is of note that when genomic data is contaminated, 36 

both scientific decisions/studies and public health measures may be compromised. To identify 37 

genome contamination threshold(s) for SARS-CoV-2 sequences generated by Nanopore 38 

sequencing, computational biology techniques were utilized to generate artificially subsampled 39 

contaminated genomes. This is the first study of its kind and so our hope is that the results 40 

obtained provide a starting point for the investigation of reporting contamination of NGS data.    41 

 42 

 43 

 44 

 45 

 46 
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Introduction 47 

Genomics and whole genome sequencing of pathogens provide vital information for 48 

disease transmission, identification of novel outbreaks, and vaccine candidate selection [4]. 49 

Numerous investigations have shown that in the early days of the COVID-19 pandemic, results 50 

from genomic monitoring were not only equivalent to epidemiological contact tracing data, [4] 51 

but also capable of tracing previously unidentified linked transmissions [5]. It is noteworthy that  52 

public health decisions were guided by genomic investigations in some jurisdictions to stop the 53 

spread of SARS-CoV-2, including travel bans and stay-at-home orders[4,6,7]. Thus, it can be 54 

concluded that the rapid whole genome sequencing for SARS-CoV-2 is essential for public 55 

health intervention. 56 

Since the SARS-CoV outbreak in 2002–2003, genomic information has gained growing 57 

importance for addressing outbreaks brought on by pathogenic coronaviruses. Indeed, progress 58 

regarding the studies of this virus shifted dramatically as the complete viral genome was 59 

sequenced [8]. However, due to the technology available and the lag in data sharing, it took 60 

about 3 months to complete the sequencing of the first complete genome of the SARS-CoV virus 61 

[9,10]. Complete genomes were generated in 2002-2003 by first propagating the virus in cell 62 

lines, extracting viral RNA from these cell lines, and using a Sanger sequencing approach to 63 

produce complete and partial genomes [10]. It is worth noting that advances in genomics have 64 

significantly improved sequencing methodologies and timelines in less than two decades, owing 65 

to the development of third generation NGS and long-read sequencing technologies. Thus, in late 66 

December 2019, the first whole genome sequences of the novel beta coronaviruses, now known 67 

as SARS-CoV-2, was obtained using metagenomics and NGS approaches - supplemented with 68 

PCR and Sanger sequencing [11–13] and made available online within days. The availability of 69 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 26, 2023. ; https://doi.org/10.1101/2023.09.26.559465doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.26.559465
http://creativecommons.org/licenses/by/4.0/


4 
 

the SARS-CoV-2 reference whole genome sequences facilitated the development of real-time 70 

PCR-based diagnostic assays that helped to understand the transmission patterns and 71 

epidemiology of the virus [14]. Both partial and whole genome sequences of SARS-CoV-2 72 

genomes have been reported from many parts of the world and these data have proved useful in 73 

monitoring the global spread of the virus.  74 

Prior to the 2019-2020 SARS-CoV-2 pandemic, there were approximately 1200 complete 75 

betacoronavirus genomes deposited in GenBank. As of July 2023, however, there were over 76 

15.8million sequence submissions of the SARS-CoV-2 genomes available in the Global 77 

Initiative on Sharing Avian Influenza Data (GISAID) (https://www.gisaid.org) platform, 78 

reflecting a significant increase in the number of available genomes throughout the  pandemic. 79 

These genomic sequences are generated on different next-generation sequencing (NGS) devices, 80 

namely Illumina, Ion Torrent, Oxford Nanopore, and PacBio SMRT platforms. While 81 

sequencing technologies have error rates of varying degrees [15,16] genome sequence 82 

contamination may also occur during sample preparation and sample processing at both wet and 83 

dry lab steps of the workflow. Also, contamination in reference databases is more concerning 84 

than contamination in individual sequencing studies and, according to a few studies, human 85 

DNA contamination has been found in non-primate reference genomes [2,17]. GenBank has also 86 

been reported to contain millions of contaminated sequences, and human contamination in 87 

bacterial reference genomes has resulted in thousands of false protein sequences [18]. Therefore, 88 

even if researchers properly decontaminated or controlled for contaminants, contamination in 89 

reference databases runs the risk of tainting the results of many genomic studies. Further, 90 

numerous studies have identif ied a variety of sources of contamination in public NGS databases 91 
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and these studies have discovered widespread cross-contamination between samples as well as 92 

contamination in sequencing kits and laboratory reagents [18–21].  93 

While NGS has been used for the rapid detection and characterization of positive 94 

COVID-19 cases, one of the drawbacks is that NGS runs are rarely repeated for reasons 95 

including limited funds to repeat expensive library preparation reactions and NGS remains 96 

relatively expensive, even when samples are multiplexed. This has meant that in some cases, the 97 

results of some imperfect runs are used to drive public health decisions and are also uploaded to 98 

public repositories. Most studies, with few exceptions, do not clearly define the quality control 99 

metrics used to include or exclude genomic data from public repositories. Thus, contamination 100 

can seriously affect the results of genomic analyses of organisms leading to spurious alignments 101 

and incorrect downstream variant calls.  102 

 For this study, we conducted an in silico experiment using known SARS-CoV-2 103 

sequences produced from Nanopore sequencing. We assessed the effect of contamination on 104 

lineage calls and single nucleotide variations (as a measure of genome integrity) using sequences 105 

from the same variants and sequences from different variants. The effect of sequencing depth on 106 

contamination detection was further investigated using three different numbers of reads (12,500 107 

reads, 25,000 reads, and 50,000 reads) as a measure of sequencing depth. For each sequencing 108 

depth, 15 artificially subsampled genomes were generated. These samples were generated by 109 

mixing clinical SARS-CoV-2 samples in silico at different levels of contamination - low (1% to 110 

9% level) and high (10%, 20%, 30%, 40%, and 50%) contamination levels. Results obtained in 111 

this study should help establish internal quality controls and contamination thresholds for SARS-112 

CoV-2 sequences to improve the quality of sequences deposited in public repositories and to 113 
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offer researchers a standard by which results obtained from contaminated SARS-CoV-2 runs can 114 

be trusted for variant calling and other downstream reporting.  115 

 116 

Methods 117 

 118 

SARS-CoV-2 genome sequencing and generation of the in silico contaminated libraries.  119 

Amplicons generated using tiling PCR were prepared for Oxford Nanopore Technologies 120 

sequencing using the ONT Ligation Sequencing Kit (SQK-LSK109) as per the manufacturer’s 121 

guidelines. The resulting reads were basecalled using the Guppy high accuracy model (5.0.7) 122 

with default settings. The average number of reads generated for 60 SARS-CoV-2 samples 123 

sequenced on a MinION device and 752 samples sequenced on a GridION device were 124 

determined using NanoStat (https://github.com/wdecoster/nanostat). The results obtained were 125 

used as a guide for the selection of the read lengths as well as experimental design for the 126 

generation of the artificial genomes, where low (12,500 reads), medium (25,000 reads), and high 127 

(50,000 reads) read depths were explored.  Random subsampled artificial sequences were 128 

generated with seqtk (https://github.com/lh3/seqtk) for both the background and contaminate 129 

samples to represent the artificially contaminated libraries (Table 1). 15 different contamination 130 

levels (low levels: 1-9% and high levels: 10%, 20%, 30%, 40%, and 50%) were also studied at 131 

each of the three read lengths (Figure 1 and Table 1). It is of note that in this study, the number 132 

of reads was used as a measure of sequencing depth. 133 

 134 
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 135 

 136 

137 

Figure 1: Experimental design of the artificially subsampled genomes for the 15 levels of 138 

contamination (low and high levels) at three sequencing depths (low - 12,500 reads, medium -139 

25,000 reads, and high - 50,000 reads). The controlled datasets were generated from known 140 

clinical SARS-CoV-2 samples. Created with BioRender.com. 141 

 142 

 143 
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Table 1: Standardized terms and parameters of the artificially subsampled genomes.  144 

 145 

Artificially subsampled 

genomes. 

Standardized term Background genome Contaminant genome Sequencing depth 

Low sequencing depth sample 

with contaminants from similar 

variant 

LSD_SV Delta - AY.25.1 genome Delta – AY.27 genome Low – 12,500 reads 

Medium sequencing depth 

sample with contaminants 

from similar variant 

MSD_SV Delta - AY.25.1 genome Delta – AY.27 genome Medium – 25,000 reads 

High sequencing depth sample 

with contaminant from similar 

variant 

HSD_SV Delta - AY.25.1 genome Delta – AY.27 genome High – 50,000 reads 

Low sequencing depth sample 

with contaminants from different 

variant 

LSD_DV Omicron – BA. 1 genome Alpha – B.1.1.7 genome Low – 12,500 reads 

Medium sequencing depth 

sample with contaminants 

from different variant 

MSD_DV Omicron – BA. 1 genome Alpha – B.1.1.7 genome Medium – 25,000 reads 

High sequencing depth sample 

with contaminants from different 

variant 

HSD_DV Omicron – BA. 1 genome Alpha – B.1.1.7 genome High – 50,000 reads 

 146 

Data processing.  147 

 The artificially generated libraries were processed using a nextflow implementation of 148 

the ARTIC pipeline (https://github.com/connor-lab/ncov2019-artic-nf). Variant candidates were 149 

identified using Nanopolish (https://github.com/jts/nanopolish). Output files generated from the 150 
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ARTIC pipeline were further processed using ncov-tools to perform quality control on 151 

sequencing results (https://github.com/jts/ncov-tools). Reads were mapped to the reference 152 

SARS-CoV-2 genome NCBI GenBank accession (MN908947) and lineages were assigned using 153 

Pangolin (version 4.0.3, pangoLEARN) (version 1.2.333). The artificially generated datasets 154 

(raw reads) as well as their corresponding consensus sequences have been deposited to Zenodo: 155 

https://doi.org/10.5281/zenodo.8206455  156 

 157 

Genome pairwise comparison and heat map. 158 

Aligned nucleotide consensus genome sequences of both the clinical samples and the 159 

artificially generated genomes were imported to MEGA11 software to calculate pairwise 160 

distance. The p-distance option was chosen as input for the Model/Method setting while the 161 

default options were chosen for the other settings. The pairwise distance output table was 162 

imported as a text-delimited file into R v.4.1.1 and the ggplot2 v3.3.1 package was used to 163 

generate heat maps for data visualization. 164 

 165 

Results 166 
 167 

Global nucleotide comparison at different levels of contamination for different sequencing 168 

depths. 169 

To investigate the effect of both low and high levels of contamination on lineage calls and 170 

single nucleotide variations as a measure of genome integrity, a series of global nucleotide 171 

comparisons using pairwise p-distance analyses were performed. Since the average number of 172 

reads for the 768 SARS-CoV-2 clinical samples examined in this study was 46,317 reads and 173 

considering the difference in throughput of Nanopore devices (MinION, GridION, and 174 
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PromethION), three standardized read lengths or run depths were chosen as a measure of 175 

sequencing depth– low (12,500 reads), medium (25,000 reads), and high (50,000 reads). Samples 176 

were generated through in silico artificial mixtures of reads to simulate contaminated libraries of 177 

controlled datasets generated from clinical samples. The distance (proportion) of nucleotide sites 178 

was compared and plotted as a heat map for all artificially generated samples at the three 179 

sequencing depths – low (12,500 reads), medium (25,000 reads), and high (50,000 reads) (Figure 180 

2). This comparison was done for samples contaminated by reads generated from both similar 181 

(Figure 2A) and different SARS-CoV-2 viral strains (Figure 2B). The results obtained show that 182 

for global nucleotide comparison, regardless of the sequencing depth and the contamination types 183 

(i.e., similar (Figure 2A) or different variant contaminants (Figure 2B)), differences observed for 184 

global nucleotide composition among the samples were not substantial for contamination levels 185 

less than 20% (see Figure 2 for the low sequencing depth, supplementary Figures 1 and 2 for 186 

medium and high sequencing depths).  187 

 188 

 189 

 190 

 191 

 192 

 193 

 194 

 195 

 196 

 197 
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 A. 198 

 199 

B 200 

 201 
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Figure 2. Global nucleotide comparison of artificially generated contaminated samples and their 202 

corresponding background clinical samples at a low sequencing depth. A) A heatmap of the 203 

pairwise p-distance comparison of the LSD samples - a delta background sequence (AY.25.1) 204 

contaminated with a similar delta contaminant sequence (AY.27).  B) A heatmap of the pairwise 205 

p-distance comparison of the HSD samples – an omicron background sequence (BA.1) 206 

contaminated with an alpha contaminant sequence (B.1.1.7).  207 

 208 

The effect of contamination from similar variants on genome integrity and lineage calls. 209 

The impacts of contamination on single nucleotide variations (SNVs) and lineage call 210 

outputs for the SARS-CoV-2 genome were assessed by creating in silico artificial mixtures of 211 

reads to simulate contaminated genomes. By subsampling the sequences of a known clinical 212 

delta sample (AY.25.1) contaminated with reads from another known clinical delta sample 213 

(AY.27), 15 different contamination scenarios were simulated to quan tify the effect of 214 

contamination. Phylogenetic trees were constructed to examine the impact of single nucleotide 215 

variations (SNVs) found within each subsampled dataset and sequences from the clinical 216 

samples served as controls. The identified SNVs were plotted with an associated single 217 

nucleotide polymorphism (SNP) matrix (Figure 3 and Supplementary Figures 3 & 4). Seven 218 

quality control metrics (QC metrics) were highlighted as important metrics in determining 219 

contamination thresholds and the effect(s) of sequence contamination on genome completeness 220 

and integrity. These metrics include the number of consensus single nucleotide variations 221 

(SNVs), the number of consensus ‘n’, the number of variants SNVs, the number of variants 222 

indel, genome completeness, lineage, and Scorpio call.  223 
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We examined the 15 artificial samples generated from an AY.25.1 clinical delta sample 224 

(background sequence) and an AY.27 clinical delta sample (contaminate sample) for all samples, 225 

at a low sequencing depth (12,500 reads). Changes in both the numbers of consensus SNVs and 226 

consensus ‘N’ (number of missing data) were investigated as these two metrics are essential 227 

determinants of genome integrity and completeness. For the LSD_SV genomes (12,500 reads), 228 

differences in the two aforementioned metrics were observed for the genomes with 229 

contamination levels greater than 5% (625 reads) (Figure 3A, Table 2) – wherein as the levels of 230 

contamination increased, a decrease in the number of SNVs and an increase in the number of 231 

consensus ‘N’s compared to the clinical control samples (Figure 3A, Table 2).  Further, it was 232 

observed that the LSD_SV genomes were assigned incorrect lineage calls at contamination levels 233 

greater than 30% (3,750 reads). Thus, for LSD_SV genomes, the contamination threshold for 234 

preserving genome integrity is 5% while the identified threshold for lineage calls is 30% (Figure 235 

3A, Table 2). For the MSD_SV genomes a decrease in the number of SNVs (from 40 to 39) and 236 

an increase in the number of consensus ‘n’ (from 189 to 190) were observed at contamination 237 

levels greater than 4% (1,000 reads) while for lineage calls, the identified threshold for 238 

contamination was 30% (7,500 reads) (Supplementary Figure 3A and Supplementary Table 1A). 239 

Lastly, For the HSD_SV samples (50,000 reads), a contamination threshold of 10% (5,000 reads) 240 

was identified for SNVs and a threshold of 50% (25,000 reads), was identified for lineage calls 241 

(Supplementary Figure 3B and Supplementary Table 1B). In conclusion, for contamination by a 242 

similar SARS-CoV-2 variant, the contamination threshold identified for lineage call was 30% for 243 

both LSD_SV and MSD_SV and 50% for HSD_SV genomes. However, for genome integrity, 244 

the contamination threshold was 5% for low, 4% for medium, and 10 % for high sequencing 245 

depths (Figures 4 A & B). 246 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 26, 2023. ; https://doi.org/10.1101/2023.09.26.559465doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.26.559465
http://creativecommons.org/licenses/by/4.0/


14 
 

Table 2: Quality control metrics comparison for artificially subsampled genomes of contamination by similar variants at a low sequencing depth – 247 

all LSD_SV genomes. 248 

 249 

Genome Num of 

consensus 

snvs 

 

Number of 

consensus ‘n’ 

Number of 

variants 

SNVs 

Number of 

variants indel 

Number of 

variants 

indel 

triplet 

Mean 

sequencing 

depth 

Median 

sequence 

depth 

Scaled 

variants 

SNVs 

Genome 

completeness 

Linea

ge 

Lineage 

note 

Scorpio 

calls 

Watch 

mutations 

 

AY.25.1_low 40 190 45 2 2 472.1 452 45.29 0.9936 AY.25

.1 

alt/ref/am

b:13/0/0 

 

Delta 

(B.1.617.

2-like) 

S:G142D,S:L4

52R 

LSD_S -1 % 

contaminate 

40 190 45 2 2 472.1 454 45.29 0.9936 AY.25

.1 

alt/ref/am

b:13/0/0 

 

Delta 

(B.1.617.

2-like 

S:G142D,S:L4

52R 

LSD_SV-2% 

contaminate 

40 190 45 2 2 472.1 448 45.29 0.9936 AY.25

.1 

alt/ref/am

b:13/0/0 

 

Delta 

(B.1.617.

2-like 

S:G142D,S:L4

52R 

LSD_SV-3% 

contaminate 

40 190 45 2 2 472.1 450 45.29 0.9936 AY.25

.1 

alt/ref/am

b:13/0/0 

 

Delta 

(B.1.617.

2-like 

S:G142D,S:L4

52R 
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LSD_SV-4% 

contaminate 

40 190 45 2 2 472.1 446 45.29 0.9936 AY.25

.1 

alt/ref/am

b:13/0/0 

 

Delta 

(B.1.617.

2-like 

S:G142D,S:L4

52R 

LSD_SV-5% 

contaminate 

40 190 45 2 2 472.1 448 45.29 0.9936 AY.25

.1 

alt/ref/am

b:13/0/0 

 

Delta 

(B.1.617.

2-like 

S:G142D,S:L4

52R 

LSD_SV-6% 

contaminate 

39 190 44 3 2 472.1 442 44.28 0.9936 AY.25

.1 

alt/ref/am

b:13/0/0 

 

Delta 

(B.1.617.

2-like 

S:G142D,S:L4

52R 

LSD_SV-7% 

contaminate 

39 190 44 3 2 472.1 441 44.28 0.9936 AY.25

.1 

alt/ref/am

b:13/0/0 

 

Delta 

(B.1.617.

2-like 

S:G142D,S:L4

52R 

LSD_SV-8% 

contaminate 

38 191 43 3 2 472.1 444 43.28 0.9936 AY.25

.1 

alt/ref/am

b:13/0/0 

 

Delta 

(B.1.617.

2-like 

S:G142D,S:L4

52R 

LSD_SV-9% 

contaminate 

38 191 43 3 2 472.2 445 43.28 0.9935 AY.25

.1 

alt/ref/am

b:13/0/0 

 

Delta 

(B.1.617.

2-like 

S:G142D,S:L4

52R 

LSD_SV-

10% 

contaminate 

38 191 43 3 2 472.1 449 43.28 0.9934 AY.25

.1 

alt/ref/am

b:13/0/0 

 

Delta 

(B.1.617.

2-like 

S:G142D,S:L4

52R 
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LSD_SV-

20% 

contaminate 

36 194 41 2 2 472.2 444 41.27 0.9935 AY.25

.1 

alt/ref/am

b:13/0/0 

 

Delta 

(B.1.617.

2-like 

S:G142D,S:L4

52R 

LSD_SV-

30% 

contaminate 

33 196 38 3 2 472.4 438 38.25 0.9934 AY.25

.1 

alt/ref/am

b:13/0/0 

 

Delta 

(B.1.617.

2-like 

S:G142D,S:L4

52R 

LSD_SV-

40% 

contaminate 

29 202 34 2 2 472.3 433 34.23 0.9932 AY.93 alt/ref/am

b:13/0/0 

 

Delta 

(B.1.617.

2-like 

S:G142D,S:L4

52R 

LSD_SV-

50% 

contaminate 

28 203 32 2 2 472 439 32.22 0.9932 AY.93 alt/ref/am

b:13/0/0 

 

Delta 

(B.1.617.

2-like 

S:G142D,S:L4

52R 

AY.27_low 39 189 43 3 2 471.7 454 43.27 0.9937 AY.27 alt/ref/am

b:13/0/0 

 

Delta 

(B.1.617.

2-like 

S:G142D,S:L4

52R 

 250 
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The effect of contamination on genome integrity and lineage calls for SARS-CoV-2 251 

sequences for different variants. 252 

 The 15 in silico samples were also generated by artificially subsampling sequences from 253 

an omicron clinical sample (BA.1), contaminated with an alpha clinical sample (B.1.1.7). We 254 

investigated the effect of different levels of contamination on SARS-CoV-2 sequences 255 

contaminated by different strains. A contamination threshold was identified for changes in SNVs 256 

and the number of consensus ‘N’- a measure of genome integrity and lineage calls. Three 257 

sequencing depths – low (12,500 reads), medium (25,000 reads), and high (50,000 reads) were 258 

examined. 259 

It was observed that at a low sequencing depth (12,500 reads), the number of consensus 260 

SNVs for the clinical omicron BA.1 sample was 56, the number of consensus ‘N’ as a measure 261 

of missing nucleotide was 189 and the number of variants SNVs was 61 (Table 3). Therefore, 262 

differences in these QC metrics were investigated for each of the artificially generated genomes. 263 

For the LSD_DV at a contamination level of 7%, it was observed that the number of consensus 264 

SNVs changed from 56 to 55, the number of consensus ‘N’ changed to 190 while the number of 265 

variant SNVs remained at 60 and other QC metrics remained unchanged at this contamination 266 

level (Table 3). However, at 30%, the assigned lineage calls for the artificially generated genome 267 

(LSD_DV) changed from BA.1 to none (Table 3), and this held true for artificial genomes with 268 

40% and 50% contamination. Taken together, for low sequencing depth (LSD_DV), 6% level of 269 

contamination (750 reads) was identified as the contamination threshold for the  preservation of 270 

genome integrity while a 20% level of contamination (2,500 reads) was identified as the 271 

threshold for accurate lineage call (Figure 3B, Table 3). For the MSD_DV samples (25,000 272 

reads), a decrease in the number of consensus SNVs (from 56 to 55), an increase in the number 273 
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of consensus ‘N’ (189 to 190), and a decrease in the number of variant SNVs (61 to 60) were 274 

observed as the contaminant levels increased above 7% (Supplementary Figure 4A and 275 

Supplementary Table 2A). Also, at a 30% level of contamination for MSD_DV samples, the 276 

assigned lineage calls for samples changed from BA.1 to unassigned , and this was equally 277 

observed for samples with both 40% and 50% levels of contaminants. Therefore, at a medium 278 

sequencing depth (25,000 reads), the contamination threshold for preserving genome integrity 279 

was identified to be 7% while the contamination threshold for lineage call was 20%. For the 280 

HSD_DV samples (50,000 reads), the artificially generated genome with an 8% and above level 281 

of contamination, showed a decrease in the number of consensus SNVs (from 55 to 54), an 282 

increase in the number of consensus ‘N’ (from 189 to 190), and a decrease in the number of 283 

variants SNVs (from 61 to 60) (Supplementary Figure 4B). Also, changes in lineage call 284 

assignment were not observed until the contamination threshold reached 30% (lineage call 285 

assignment changed from BA.1 to an unassigned lineage) (Supplementary Table 2B). In 286 

conclusion, for artificial genomes generated by mixing different SARS-CoV-2 variants (an 287 

omicron sample contaminated by an alpha sample), the contamination threshold identified for 288 

lineage call was 20% at all sequencing depths while for genome integrity, the contamination 289 

threshold identified for LSD (12,500 reads) was 6% and 7% for both MSD (25,000 reads) and 290 

HSD (50,000 reads) depths (Figures 5 A & B).  291 

 292 

 293 
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294 

Table 3: Quality control metrics comparison for artificially subsampled genomes of contamination by different variants at a low 295 

sequencing depth – for all LSD_DV genomes. 296 

 297 

Genome Num. of 

consensus

_snvs 

 

Number of 

consensus ‘n’ 

Number of 

variants 

SNVs 

Number of 

variants 

indel 

Number of 

variants 

indel triplet 

Mean 

sequencing 

depth 

Median 

sequence 

depth 

Scaled 

variants 

SNVs 

Genome 

complet

eness 

Lineage Lineage 

note 

Scorpio 

calls 

Watch mutations 

 

BA.1_low 56 189 61 7 7 470.4 434 61.39 0.9937 

 

BA.1 

alt/ref/a

mb:55/0/

3 

Omicron 

(BA.1-like) 

S:del69-

70,S:K417N,S:Q4

93R,S:N501Y,S:P

681H,S:P681H11 

LSD_DV-

1% 

contaminate 

56 189 61 7 7 470.4 440 61.39 0.9937 

 

BA.1 

alt/ref/a

mb:55/0/

3 

Omicron 

(BA.1-like) 

S:del69-

70,S:K417N,S:Q4

93R,S:N501Y,S:P

681H,S:P681H 

LSD_DV-

2% 

contaminate 

56 189 61 7 7 470.4 442 61.39 0.9937 

 

BA.1 

alt/ref/a

mb:55/0/

3 

Omicron 

(BA.1-like) 

S:del69-

70,S:K417N,S:Q4

93R,S:N501Y,S:P

681H,S:P681H 
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LSD_DV-

3% 

contaminate 

56 189 61 7 7 470.4 452 61.39 0.9937 

 

BA.1 

alt/ref/a

mb:55/0/

3 

Omicron 

(BA.1-like) 

S:del69-

70,S:K417N,S:Q4

93R,S:N501Y,S:P

681H,S:P681H 

LSD_DV-

4% 

contaminate 

56 189 61 7 7 470.4 455 61.39 0.9937 

 

BA.1 

alt/ref/a

mb:55/0/

3 

Omicron 

(BA.1-like) 

S:del69-

70,S:K417N,S:Q4

93R,S:N501Y,S:P

681H,S:P681H 

LSD_DV-

5% 

contaminate 

56 189 61 7 7 470.4 449 61.39 0.9937 

 

BA.1 

alt/ref/a

mb:55/0/

3 

Omicron 

(BA.1-like) 

S:del69-

70,S:K417N,S:Q4

93R,S:N501Y,S:P

681H,S:P681H 

LSD_DV-

6% 

contaminate 

56 189 61 7 7 470.4 454 61.39 0.9937 

 

BA.1 

alt/ref/a

mb:55/0/

3 

Omicron 

(BA.1-like) 

S:del69-

70,S:K417N,S:Q4

93R,S:N501Y,S:P

681H,S:P681H 

LSD_DV-

7% 

contaminate 

55 190 60 7 7 470.4 454 60.39 0.9936 BA.1 

alt/ref/a

mb:54/0/

3 

Omicron 

(BA.1-like) 

S:del69-

70,S:K417N,S:Q4

93R,S:N501Y,S:P

681H,S:P681H 
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LSD_DV-

8% 

contaminate 

55 190 60 7 7 470.4 455 60.39 0.9936 BA.1 

alt/ref/a

mb:54/0/

3 

Omicron 

(BA.1-like) 

S:del69-

70,S:K417N,S:Q4

93R,S:N501Y,S:P

681H,S:P681H 

LSD_DV-

9% 

contaminate 

55 190 60 7 7 470.4 456 60.39 0.9935 

BA.1 

alt/ref/a

mb:54/0/

3 

Omicron 

(BA.1-like) 

S:del69-

70,S:K417N,S:Q4

93R,S:N501Y,S:P

681H,S:P681H 

LSD_DV-

10% 

contaminate 54 191 59 7 7 470.4 465 59.38 0.9936 BA.1 

alt/ref/a

mb:53/0/

3 

Omicron 

(BA.1-like) 

S:del69-

70,S:K417N,S:Q4

93R,S:N501Y,S:P

681H,S:P681H 

LSD_DV-

20% 

contaminate 46 210 51 6 6 470.6 452 51.36 0.993 BA.1 

alt/ref/a

mb:46/0/

3 

Omicron 

(BA.1-like) 

S:del69-

70,S:K417N,S:Q4

93R,S:N501Y,S:P

681H,S:P681H 

LSD_DV-

30% 

contaminate 34 214 38 5 5 470.7 453 38.28 0.9928 None 

alt/ref/a

mb:20/5/

BA.1.13 

Probable 

Omicron 

(Unassigned

) 

S:del69-

70,S:Q493R,S:N5

01Y,S:P681H,S:P

681H 
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LSD_DV-

40% 

contaminate 25 214 28 4 3 470.7 464 28.2 0.9928 B.1.1.298 none  

S:del69-

70,S:N501Y,S:P6

81H,S:P681H,S:T

716I,S:S982A 

LSD_DV-

50% 

contaminate 26 210 28 3 2 471 451 28.2 0.993 B.1.1 none  

S:del69-

70,S:N501Y,S:P6

81H,S:P681H,S:T

716I,S:S982A 

B.1.1.7 low 40 192 44 4 3 471.1 476 44.28 0.9936 B.1.1.7 

alt/ref/a

mb:21/1/

0 

Alpha 

(B.1.1.7-

like) 

S:del69-

70,S:del144,S:N5

01Y,S:A570D,S:P

681H,S:P681H,S:

T716I,S:S982A,S:

D1118H 

298 
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A 299 

 300 

B 301 

302 

Figure 3. Phylogenetic tree and heatmap showing single nucleotide variations (SNVs) at 303 

different positions of the SARS-CoV-2 genome for (A) AY.25.1 (delta variant) contaminated 304 

with an AY.27 (delta variant) sequence at contamination levels 1-10%, 20%, 30%, 40%, and 305 

50%. (B) BA.1 (omicron variant) low sequencing depth sequence (12,500 reads) contaminated 306 
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with a B.1.1.29 (alpha variant) sequence at contamination levels 1-10%, 20%, 30%, 40%, and 307 

50%. 308 

  309 

 A310 

 311 

 312 

 313 

 314 

 315 

 316 

 317 

 318 
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B 319 

 320 

Figure 4. Mutational profile comparison of SARS-CoV-2 genome for the clinical genomes to the 321 

artificially generated genomes for (A) LSD_SV (AY.25.1 contaminated with an AY.27 variant) 322 

sequence at contamination levels 1-10%, 20%, 30%, 40%, and 50%. (B) LSD_DV (BA.1 323 

contaminated with a B.1.1.29 variant at contamination levels 1-10%, 20%, 30%, 40%, and 50%. 324 

 325 

 326 

 327 

 328 

 329 

 330 

 331 

 332 
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A 333 

 334 

 335 

 336 

 337 

   338 

 339 

 340 

 341 
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B 342 

    343 

 344 

Figure 5. A model for sequence contamination threshold and summary of the findings of this 345 

study, depicting: A) the contamination threshold for maintaining genome integrity at low (12,500 346 

reads), medium (25,000 reads), and high (50,000 reads) sequencing depths for both similar and 347 

different sequences. B) the contamination threshold identified to maintain an accurate lineage 348 

call at low (12,500 reads), medium (25,000 reads), and high (50,000 reads) sequencing depths 349 

for different sequences. 350 

 351 
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Table 4: A summary of the identified threshold for the artificially subsampled genomes as well as the origin of 352 

both background and contaminant samples. 353 

Standardized term The identified threshold for genome integrity call The identified threshold for lineage call 

LSD_SV 5 percent 30 percent 

MSD_SV 4 percent 30 percent 

HSD_SV 10 percent 50 percent 

LSD_DV 6 percent 20 percent 

MSD_DV 7 percent 20 percent 

HSD_DV 7 percent 20 percent 

 354 

Discussion 355 

 356 

The scale of sequencing data available in public repositories over the course of the 357 

SARS-CoV-2 pandemic is unprecedented. Due to the rapidly evolving nature of the SARS-CoV-358 

2 genome, routine monitoring and public health warnings were crucial in controlling the 359 

pandemic. Continuous monitoring and genomic sequencing during the SARS-CoV-2 coronavirus 360 

pandemic also hastened the development of the most effective vaccines [22]. However, recurrent 361 

mutations in the SARS-CoV-2 genome have tested the efficacy of the vaccines and point to the 362 

need for routine updates to both the vaccine targets and vaccination schedules [22,23]. The 363 

importance of routine monitoring of SARS-CoV-2 mutations for public health applications 364 

cannot be overstated, therefore it is critical that we maintain confidence in the sequences both 365 

submitted and pulled from public repositories lest erroneous variants aff ect major public health 366 

decisions [24].  367 
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Contaminant-induced mutations have been found and documented in other large-scale 368 

genomic studies and it was concluded that these contaminated sequences can spread into and 369 

across databases over time [2]. This issue cannot be ignored since genome sequences are 370 

frequently obtained from these public repositories/databases, based on the types of sequences 371 

they contained. Therefore, researchers interested in a particular genome can collect hundreds of 372 

sequences for comparative genomic or phylogenomic investigations in this manner. Lupo et al. 373 

demonstrated the presence of mis-affiliated genomes in NCBI RefSeq [1]. While these genomes 374 

may not be contaminated in the strictest sense, the dominant organism was not what was 375 

expected in the study, leading to problems for downstream analyses and reporting  [1]. Despite 376 

the findings of these studies, sequences submitted to public repositories/databases are rarely 377 

checked for contamination  [1]. To further validate the effect of contamination on sequencing 378 

data and demonstrate the need for contaminant investigation before data are uploaded to p ublic 379 

repositories, this study aimed to identify a contamination threshold for which runs can be 380 

considered ideal for upload to public repositories while also offering practical guidelines.  381 

 Since there is no consensus within the scientific community on how to validate genome 382 

integrity, we investigated the amino acid mutational profile, genome completeness, number of 383 

SNVs, number of consensus n, number of variant SNVs, and indels for all samples as a measure 384 

of genome integrity for this study (Tables 1&2; Supplementary Tables 1&2). Further, to identify 385 

the differences between the clinical samples and the artificially subsampled genomes, we 386 

generated an amino acid mutation heatmap. As mutational profiles and other host-modulating 387 

factors have been reported as major contributors to disease severity in COVID-19 [25], there is a 388 

critical need to evaluate the effect of contamination on mutational profiles that may be of clinical 389 

importance. The mutational profile compared all defining mutations of the artificially 390 
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subsampled genomes to the clinical samples and also identified the type/nature of the mutations 391 

(conservative in-frame deletion, disruptive in-frame deletion, missense variant, stop gained, and 392 

synonymous variant) (Figure 4). We believe that by examining the mutational profile of the 393 

samples, the similarities, and differences present in each sample, compared to each other, may be 394 

determined. The amino acid mutation plots reveal the similarity in the mutation profile of each 395 

artificially subsampled and the clinical control samples. Samples that have similar genome 396 

composition (LSD_SV, MSD_SV, and HSD_SV) also had similar mutational profiles while 397 

samples with contaminants from different variants (LSD_DV, MSD_DV, and HSD_DV) had 398 

different mutational profiles (Table 1 and 4). It is noteworthy that the artificially subsampled 399 

genomes that contained less than 6% of contaminant from a substrain of the same variant had 400 

similar mutational profiles to the clinical samples at all levels of contaminations. While the 401 

artificially generated subsampled genomes that contained less than 7% of contaminant from a 402 

divergent variant had similar mutational profiles to the corresponding clinical samples at all 403 

levels of contamination.  404 

We further investigated the effect of contamination on the phylogenetic placement and 405 

sample relatedness of the artificially subsampled genomes (Figure 2; Supplementary Figures 406 

3&4). The results obtained from the phylogenetic analyses are in agreement with the identified 407 

contamination thresholds for mutation profile as a measure of genome integrity, wherein the 408 

artificially subsampled genomes with contaminants of less than 5% for LSD_SV and 6% for 409 

LSD_DV clustered in the same branch with the corresponding clinical samples. Similar results 410 

were also obtained for both MSD_SV and HSD_SV as well as for MSD_DV and HSD_DV. 411 

With this observation, we showed that at contamination levels of less than 6%, at all sequencing 412 

depths, the artificially subsampled genomes were closely related to the clinical samples. Thus, 413 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 26, 2023. ; https://doi.org/10.1101/2023.09.26.559465doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.26.559465
http://creativecommons.org/licenses/by/4.0/


31 
 

we concluded that contamination levels of 5% and below do not affect genome-relatedness and 414 

integrity.  415 

By performing a global nucleotide comparison, varying both the levels of simulated 416 

contamination and the sequencing depth, we investigated the effect of contamination on the 417 

artificially subsampled genomes. According to the results obtained from the p-distance pairwise 418 

comparison analysis, irrespective of the sequencing depth and the contamination types (i.e., 419 

contaminants from a substrain of the same variant or a different variant), differences observed 420 

for global nucleotide composition among the samples were not substantial for contamination 421 

levels less than 20% when the metric of interest is simply the lineage assignment. Since p-422 

distance is the proportion of nucleotide sites at which two sequences being compared are 423 

different, this result is expected. The analysis performed considers all nucleotides present in the 424 

samples compared without any regard for the origin of the nucleotide (i.e., contaminant or not). 425 

However, it is noteworthy that with contamination levels greater than 20%, differences were 426 

observed at the global nucleotide levels when compared to the original clinical samples at all 427 

sequencing depths for both types of contaminants (Figure 2 and Supplementary Figures 1&2).  428 

Some studies have identified the importance of lineage tracking and its role in providing 429 

answers to evolutionary questions about the SARS-CoV-2 genome [26,27]. The extensive 430 

recombination between SARS-CoV-2 strains, first identified by so-called “deltacron” lineages 431 

with diagnostic mutations associated with both the delta and omicron variants have become 432 

identified with increasing frequency since late 2021, and the emergence of the omicron variant 433 

[28,29]. Thus, the accurate assignment of lineage calls for SARS-CoV-2 lineages is important, 434 

coupled with the fact that these lineages also offer insights for clinicians and pub lic health 435 

personnel during an outbreak of infection. Based on the above notion, we investigated the effect 436 
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that the different levels and types of contaminations had on the accuracy of lineage calls (Tables 437 

1&2; Supplementary Tables 1&2). Our results showed that regardless of the type of contaminant 438 

(similar or different sequences), a 20% contamination threshold was the maximum amount of 439 

contaminant permissible for accurate linage calls (Tables 1&2; Supplementary Tables 1&2).  440 

It has been observed that foreign sequences can be introduced at many different stages of 441 

the sequencing process, from organism culture to data processing [2]. Here, we offer some 442 

practical guidelines on how to track contaminants during sequencing experiments. We 443 

recommend that researchers include a negative control in the following steps: (i) nucleic acid 444 

extraction, (ii) nucleic acid amplification (if applicable), and (iii) library preparation steps. By 445 

having multiple negative controls introduced at different stages of the sequencing experiment, 446 

the source of contamination may be identified. It is also recommended that these negative 447 

controls be carried forward to the data processing steps so that if contamination occurs, the 448 

amount of sequenced data present in the negative controls could be investigated and used to 449 

determine the appropriate contamination threshold based on the objective(s) of the sequencing 450 

experiment in question. 451 

In conclusion, given that this study is the first of its kind, we are aware that these 452 

identified thresholds may change as more sequence data become available and as more studies 453 

expand on and investigate the parameters required for genome integrity and lineage calls. 454 

However, we hope that having a standardized method for determining the integrity of genomes 455 

and lineage calls will provide a benchmark below which imperfect runs may be considered 456 

robust for reporting results to both stakeholders and public repositories thereby reducing the need 457 

for repeat or wasted runs. In this study, we investigated contamination thresholds for SARS-458 

CoV-2 samples generated by Nanopore sequencing by conducting in silico analyses. A 459 
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contamination threshold of 5% was identified wherein the integrity of the genome was not 460 

compromised and a contamination threshold of 20% for lineage calls. Our results suggest that a 461 

stricter threshold should be established if the preservation of genome integrity is of utmost 462 

importance. Future larger-scale studies are warranted to systematically investigate the effects of 463 

contamination on both SARS-CoV-2 reads and other viral and bacterial sequences to serve as a 464 

check step for sequencing upload. 465 
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 567 

Supporting information captions 568 
 569 

Figure 1:  Global nucleotide comparison of artificially generated genomes and their 570 

corresponding background clinical samples at a low sequencing depth. Heatmaps of the pairwise 571 

p-distance comparison of the delta background sequence (AY.25.1) contaminated with a delta 572 

contaminant sequence (AY.27). The different levels of contamination were shown for (A) 573 

medium (B) and high sequencing depths.   574 

Figure 2: Global nucleotide comparison of artificially generated genomes and their 575 

corresponding background clinical samples at a low sequencing depth. Heatmaps of the pairwise 576 

p-distance comparison of an omicron background sequence (BA.1) contaminated with an alpha 577 

contaminant sequence (B.1.1.7). The different levels of contamination were shown for medium 578 

(A) and high (B) sequencing depths. 579 

Figure 3: Phylogenetic tree and heatmaps showing single nucleotide variation at different 580 

positions of the SARS-CoV-2 genome for a delta variant (AY.25.1) contaminated with another 581 

delta variant (AY.27) sequence at contamination levels 1-10%, 20%, 30%, 40%, and 50% for 582 

(A) medium sequencing depth (25,000 reads) and (B) high sequencing depth sequence (50,000 583 

reads). 584 

Figure 4: Phylogenetic tree and heatmaps showing single nucleotide variation at different 585 

positions of the SARS-CoV-2 genome for an omicron variant (BA.1) contaminated with an alpha 586 

variant (B.1.1.7) sequence at contamination levels 1-10%, 20%, 30%, 40%, and 50% for (A) 587 

medium sequencing depth (25,000 reads) and (B) high sequencing depth sequence (50,000 588 

reads). 589 
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Figure 5. Mutational profile comparison of SARS-CoV-2 genome for the clinical genomes to the 590 

artificially generated genomes for (A) MSD_SV and (B) (AY.25.1 contaminated with an AY.27 591 

variant) sequence at contamination levels 1-10%, 20%, 30%, 40%, and 50%. (C) MSD_DV and 592 

(D) HSD_DV (BA.1 contaminated with a B.1.1.29 variant at contamination levels 1-10%, 20%, 593 

30%, 40%, and 50%. 594 

Table 1A: Quality control metrics comparison for artificially subsampled genomes of 595 

contamination by similar variants at a low sequencing depth – for all MSD_SV genomes. 596 

Table 1B: Quality control metrics comparison for artificially subsampled genomes of 597 

contamination by similar variants at a low sequencing depth – for all HSD_SV genomes. 598 

Table 2A: Quality control metrics comparison for artificially subsampled genomes of 599 

contamination by different variants at a low sequencing depth – for all MSD_DV genomes. 600 

Table 2B: Quality control metrics for comparison of different SARS-CoV-2 sequences with a 601 

high number of reads (50,000 reads) at different levels of contamination. 602 
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