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Abstract1

Near-term forecasting of infectious disease incidence and consequent demand for2

acute healthcare services can support capacity planning and public health responses.3

Despite well-developed scenario modelling to support the Covid-19 response, Aotearoa4

New Zealand lacks advanced infectious disease forecasting capacity. We develop a5

model using Aotearoa New Zealand’s unique Covid-19 data streams to predict reported6

Covid-19 cases, hospital admissions and hospital occupancy. The method combines a7

semi-mechanistic model for disease transmission to predict cases with Gaussian process8

regression models to predict the fraction of reported cases that will require hospital9

treatment. We evaluate forecast performance against out-of-sample data over the pe-10

riod from 2 October 2022 to 23 July 2023. Our results show that forecast performance11

is reasonably good over a 1-3 week time horizon, although generally deteriorates as12

the time horizon is lengthened. The model has been operationalised to provide weekly13

national and regional forecasts in real-time. This study is an important step towards14

development of more sophisticated situational awareness and infectious disease fore-15

casting tools in Aotearoa New Zealand.16

Keywords: disease surveillance; epidemic forecast; renewal equation; semi-mechanistic model;17

SARS-CoV-2.18
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Author summary19

The emergency phase of the Covid-19 pandemic has ended, but Covid-19 continues to put20

significant additional load on stretched healthcare systems. Forecasting the number of hos-21

pital cases caused an infectious disease like Covid-19 over the next few weeks can help with22

effective planning and response. The ability to forecast reliably requires timely, high-quality23

data and accurate mathematical models. We have developed a model for forecasting the24

number of Covid-19 cases and hospitalisations in Aotearoa New Zealand. The model works25

in two stages: firstly predicting the number of new cases and secondly estimating the pro-26

portion of those cases that will need hospital treatment. The model produces a range of27

likely values, which is important because is impossible to predict with 100% accuracy. We28

show that the model does a reasonably good job of predicting hospitalisations up to 3 weeks29

ahead. The model has been used by public health agencies in Aotearoa New Zealand to help30

with healthcare capacity planning.31
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Introduction32

New Zealand used a combination of border controls and public health and social measures33

to suppress or eliminate transmission of SARS-CoV-2 in 2020 and 2021. By the end of 2021,34

high vaccine coverage had been achieved, with around 90% of those aged over 12 years having35

had at least two doses of the Pfizer/BioNTech BNT162b2 vaccine. Up to this time, there36

had been only around 3 confirmed cases of Covid-19 per 1,000 people and 0.01 Covid-1937

deaths per 1,000 people. In February 2022, the B.1.1.529 (Omicron) variant began to spread38

in the community and subsequently caused a series of large waves dominated by a series of39

subvariants [1, 2] .40

A range of epidemiological models have been used to provide situational awareness and41

policy advice to inform the New Zealand Government’s pandemic response. These have42

primarily consisted of increasingly complex mechanistic models of transmission dynamics,43

including factors such as age structure, vaccination status [3], social contact networks [4],44

waning immunity [5], reinfection [6], dynamic behavioural change, new variants [2]. This45

level of detail requires making relatively strong assumptions on the mechanisms underlying46

observed dynamics and is hence most appropriate for scenario analysis, which does not aim47

to make accurate long-term predictions but rather to deliver insights into key mechanisms48

affecting epidemic dynamics and a systematic approach to exploring the likely consequences49

of alternative strategies or policy decisions.50

Near-term forecasting is another use of epidemiological modelling, distinct from medium-51

term or long-term scenario analysis. Here the focus is on accurately predicting epidemic52

dynamics and consequent demand for acute healthcare services over a time horizon of a53

few weeks [7]. Assuming no dramatic changes in the mechanisms driving observed epidemic54

dynamics over the short term, higher-level models can be used, which summarise the com-55

bined effects of underlying transmission mechanisms in terms of coarse-grained parameters56

that can be empirically estimated. This class of model includes so-called ‘semi-mechanistic’57

models, typically based on the renewal equation [8–11]. These models require fewer detailed58

assumptions and are less sensitive to parameter uncertainty and model mis-specification.59

On the other hand, they aim to maintain sufficient mechanism and flexibility to respond60

realistically to changing trends in epidemiological data and be fitted, evaluated, interpreted61
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and updated in real-time. They also account for known lags affecting epidemiological data62

streams, such as delays from infection to symptom onset, testing, hospital admission or death63

[12, 13].64

Some approaches to epidemic forecasting incorporate more mechanistic assumptions about65

transmission based on the standard susceptible-exposed-infectious-recovered (SEIR) epi-66

demiological modelling framework [14, 15]. This allows the effect of immunity in reducing67

transmission rates to be explicitly accounted for, which may improve forecast performance.68

However, the downside of this is that it typically requires additional data or assumptions69

about, for example, case ascertainment rates, effectiveness of vaccine-derived and infection-70

derived immunity, and waning immunity [16, 17]. An advantage of a simpler approach is that71

the combined effect of immunity and other factors affecting the time-varying reproduction72

number, such as contact patterns and population heterogeneity, is inferred empirically from73

the data in real-time.74

Some forecasting frameworks incorporate independent data, for example from behavioural75

surveys, about changes in the average number of contacts per person [17–19] or contact rates76

between different age groups [11, 20]. Such data can allow the effects of potential behavioural77

change and age structure to be built into forecasts and their associated uncertainty. However,78

this type of data is not available in Aotearoa New Zealand.79

Aotearoa New Zealand currently lacks dedicated forecasting tools for Covid-19 and other80

infectious diseases [21]. In this study, we present a method for forecasting Covid-19 cases,81

hospital admissions and hospital occupancy in Aotearoa New Zealand. The model has been82

developed specifically for New Zealand’s Covid-19 surveillance systems and data collection83

and reporting standards. The method is being used operationally by Te Whatu Ora (Health84

New Zealand) with support from Precision Driven Health to provide intelligence to health85

planners around the country. The model is a semi-mechanistic model for disease transmission86

based on the renewal equation [8, 10]. We use a Bayesian particle filter approach [12] to87

estimate the time-varying reproduction number and forecast the number of reported cases.88

This is coupled with Gaussian process regression models for the distribution of cases across89

age groups and the age-specific case hospitalisation ratio to forecast hospital admissions.90

Hospital occupancy is estimated using empirical data on age-specific length of hospital stay.91

We evaluate model performance by comparing forecasts generated from data supplied on a92
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specific date to subsequently reported data.93

Methods94

Data95

We used Ministry of Health data on reported cases of Covid-19 in New Zealand between96

25 January 2022 and 24 July 2023. The dataset contained unit record data on age, report97

date and, for a subset of cases, self-reported symptom onset date. For hospitalised cases,98

data was available on the admission date and the number of days for which the patient was99

receiving hospital treatment for Covid-19, referred to as length-of-stay. This dataset was100

generated by the Ministry of Health by linking self-reported positive test results (mostly101

from self-administered rapid antigen tests) with hospital data from the National Minimum102

Dataset (NMDS) and Inpatient Admissions (IP) database based on national health index103

(NHI) number. In this dataset, hospital admissions are categorised by the Ministry of Health104

as either Covid-19-related or incidental (i.e. those who had tested positive but were not being105

treated for Covid-19), using clinical codes (for NMDS) or health specialty (for IP). There106

are significant time lags in reporting this information and as a result the number of Covid-107

19-related admissions recorded on a given day can vary from one update to another, and is108

typically incomplete for the most recent 1-2 weeks of data (see Supplementary Figure S1).109

We also accessed Ministry of Health data on the total number of confirmed Covid-19 patients110

occupying an admitted bed (hospital occupancy). These data are from the Daily Hospital111

Capacity survey, which provides a count of the total number of Covid-19 patients in hospital112

each day and as such does not suffer from any significant reporting lag or revisions to113

historical data. These data are publicly available at https://github.com/minhealthnz/114

nz-covid-data/tree/main/cases and updated daily.115

From the unit record data, we calculated the number of daily reported cases and number of116

new daily hospital admissions in 10-year age bands (Supplementary Figure S1). Hospitalisa-117

tions that were classified as “not Covid-19-related” were excluded. We estimated the number118

of daily discharges from hospital by assigning each hospitalised case a pseudo-discharge date119
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using their admission date and Covid-19-related length-of-stay. This is an approximation120

because some patients may have been admitted for non-Covid-19-related treatment and were121

only treated for Covid-19 later during they stay. However, we only use discharge data for122

visual comparison of model outputs, not for model fitting or validation.123

We calculated the onset-to-report distribution for cases that were reported in the 70 days124

prior to the date the data was supplied and had an onset date recorded (Supplementary125

Figure S2a). Cases with report date more than 7 days prior or more than 14 days after onset126

date (< 0.2% of the cases that had onset date recorded) were excluded.127

We calculated the Covid-19-related length-of-stay distribution in each 10-year age band128

and the report-to-admission distribution for cases reported between 56 and 126 days prior129

to the date the data was supplied (Supplementary Figure S2b-c). We did not include cases130

reported less than 56 days prior to this date in these calculations because of lags in recording131

hospitalisation data and right-censoring of patients who had not yet been discharged. Cases132

with Covid-19-related length-of-stay longer than 56 days (approximately 0.5% of admissions)133

were excluded. Cases with admission date more than 7 days prior to report date were134

excluded. This was a significant proportion (approximately 7%) of admissions but it is likely135

that many of these were initially admitted for non-Covid-related treatment and were only136

later treated for Covid.137

Model138

We used a model consisting of two components. The first was a semi-mechanistic disease139

transmission model that was fitted to data on reported daily cases. We used this to produce140

simulated time series for cases, which can be projected forwards in time. The second com-141

ponent was a hospitalisation model that we used to estimate the time-varying, age-specific142

case hospitalisation ratio (CHR). We then applied this to the simulated time series for cases143

to produce simulated time series for admissions and hospital occupancy.144

Reported cases represent only a fraction of all infections due to the fact that the majority145

of cased are self-reported and intensive case finding and contact tracing programmes had146

been wound down by the time of the study period in 2022-23. It is likely that high rates147
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of mild and asymptomatic infection and high levels of population immunity during the148

study period further reduced case ascertainment. We did not attempt to estimate the total149

number of infections, which is difficult to do without serological data or regular testing of a150

representative cohort [22, 23]. Instead, we estimated the case hospitalisation ratio directly151

based on the proportion of cases in each age group that were hospitalised. This variable will152

be influenced both by disease severity and by case ascertainment rates. However, the key153

output of interest (near-term forecast hospitalisations) is insensitive to these factors once154

the number of cases and the case hospitalisation ratio are known.155

Transmission submodel156

We modelled the number of cases It infected on day t using a semi-mechanistic framework157

based on the renewal equation [8]158

It ∼ Poisson

(
Rt

n∑
s=1

It−sus

)
, (1)

where Rt is the time-varying instantaneous reproduction number and ut is the probability159

mass function for the generation time distribution, assumed to be a discretised Weibull160

distribution with mean 3.3 days and standard deviation 1.3 days [24, 25]. The reproduction161

number was modelled as a Gaussian random walk162

Rt ∼ N (Rt−1, σR) . (2)

Reporting lags were accounted for via a distribution vt of times from infection date to report163

date. This was the convolution of the incubation period distribution, assumed to be a164

discretised Weibull distribution with mean 3.2 days and standard deviation 2.2 days [26–165

28], and the empirical onset-to-report distribution (see Data section above). The expected166

number of cases reported on day t was therefore167

Zt =
n∑

s=1

It−svs. (3)

The number of observed cases on day t was modelled as168

Ct ∼ NegBin
(
µ = ωi[t]Zt, kc

)
, (4)
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where ωi[t] is an empirical day-of-the-week effect (i = t mod 7) and kc is a dispersion factor.169

The day-of-the week effect was estimated directly from the data as the relative difference170

between daily reported cases Ĉt and the seven-day rolling average over a 15 week period:171

ωi =
1

N

∑
t mod 7=i

Ĉt∑t+3
s=t−3 Ĉs

(5)

We fitted the model to the time series of reported daily cases Ĉt using a bootstrap filter172

as follows [29]. We simulated M realisations (or particles) of the stochastic model defined173

by Eqs. (1)–(3) (i.e. M particles), with each particle consisting of time series for It, Rt174

and Zt. At each time step, particle j was assigned a weight j using the likelihood of the175

observed value of Ĉt under the distribution in Eq. (4). The population of M particles was176

then resampled by drawing, with replacement, from the full set of particles with weights j.177

For time steps after the last available data point (i.e. the prediction period), each particle178

was simply simulated forwards in time according to Eqs. (1)–(3) with no filtering.179

We initialised the model over a period of tinit = 20 days by drawing It from a Poisson180

distribution with mean equal to the number of observed cases Ĉt+m, where m is the mean181

infection to report time. The value of Rt at the end of the initialisation period (t = tinit)182

was drawn from the estimated posterior for Rt based on the values of Is for s < t using the183

method of [8]. Model results were not sensitive to the initialisation period because all model184

simulations were initialised a minimum of 88 days prior to the forecast date.185

Hospitalisation submodel186

To estimate hospitalisations, we fitted models for the distribution of new cases by age and187

for the CHR in each 10-year age band. We fitted the log-transformed ratio rit = Ĉit/Ĉi′t of188

cases in age group i to cases in a reference age group i′ (arbitrarily set to be the 40-49-year189

group), and the logit-transformed CHR in age group i as independent Gaussian process over190

time:191

log (rit) ∼ GP (µ(t), K(t, t′)) , (6)

logit CHRit ∼ GP (µ(t), K(t, t′)) , (7)

8
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where CHRit was defined as the proportion of cases reported on day t that were hospitalised192

for Covid-19 using a 7-day centred rolling average. These models were trained using the fitrgp193

package in Matlab2022b with a squared exponential kernel K and default hyperparameter194

settings. We fitted the age distribution model to data in the 56 days prior to the most recent195

available data. To allow for reporting lags in hospitalisation data, we fitted the CHR model196

to data between 84 and 21 days prior to the most recent available data.197

We then used the fitted models to predict the overall CHR on day t as198

CHRt =

∑
i ritCHRit∑

i rit
(8)

We included model uncertainty in rit and CHRit by independently sampling different trajec-199

tories from the fitted Gaussian processes for each particle j.200

We then simulated the number of new admissions At on day t by applying the predicted201

CHR from Eq. (8) to the output It of the particle filter:202

At ∼ NegBin (µ = A∗
tCHRt, kh) , (9)

where kh is a dispersion factor, A∗
t =

∑
t It−sws and ws is the probability mass function203

for the distribution of time from infection to admission. This distribution was estimated as204

the convolution of the assumed distribution for the time from infection to report vt and the205

empirical distribution for the time from report to admission.206

In order to predict hospital occupancy, we also needed to model hospital discharges. We207

modelled the distribution of Covid-19-related length-of-stay for cases admitted on day t208

by combining the empirical age-specific length-of-stay distributions with the modelled age209

distribution of hospitalised cases. Specifically, the probability lst that an admission on day210

t will have length-of-stay s days was calculated as211

lst =

∑
i l

(age)
si ritCHRit∑
i ritCHRit

, (10)

where l
(age)
si is the probability that an admission in age group i will have length-of-stay s212

days.213

We calculated the number of discharges Dt on day t by summing over day of admission t′:214

Dt =
∑
t′

At′Nt−t′,t′ , (11)

9
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where Nst ∼ Multinomial(At, lst) is the number of admissions on day t that have Covid-19-215

related length-of-stay s. We calculated net change in hospital occupancy since day t0 as the216

cumulative number of admissions minus the cumulative number of discharges since day t0.217

Hospital occupancy at time t = t0 was set so that the mean and standard deviation of the218

particles’ hospital occupancy were equal to the observed hospital occupancy on day t0 and219

the standard deviation in observed hospital occupancy in the week prior to t0 respectively.220

Forecast generation and evaluation221

In order to test the performance of the model against out-of-sample data, we generated222

forecasts using data supplied on one of a series of dates spaced at one-week intervals from223

2 October 2022 to 23 July 2023. This ensured that forecasts were based only on the data224

that was available at a given time point, at which recent hospitalisation data was typically225

incomplete (see Supplementary Figure S1b). We then compared forecasts generated at time226

tf with subsequently observed data at times [tf − 6, tf ] (nowcast), [tf + 1, tf + 7] (7-day227

forecast), [tf + 8, tf + 14] (14-day forecast), and [tf + 15, tf + 21] (21-day forecast).228

We quantified forecast skill by calculating the continuous ranked probability score (CRPS)229

(see e.g. [30]) and bias. For a forecast specified by cumulative distribution function F (x)230

and data x̂, the CRPS is defined as231

CRPS(x̂) =

∫ ∞

−∞
(F (x)− I(x ≥ x̂))2 dx (12)

where I(.) is the indicator function. Bias is defined as bias(x̂) = 1− 2F (x̂). This metric lies232

between −1 and 1 and is equal to zero of the data coincides with the median of the forecast233

distribution.234

We calculated the CRPS on log transformed data using the transformation x̃ = ln(x + 1).235

This better reflects the exponential nature of epidemic growth and decay, and leads to CRPS236

values that are independent of the magnitude of the observed quantity [31], which will be237

very different for cases compared to admissions for example. It also means the CRPS values238

can be interpreted as a probabilistic measure of relative error [31]. For example, for a point239

forecast xf , it follows from Eq. (12) that240

exp(CRPS)− 1 =
|xf − x̂|

min(xf , x̂) + 1
(13)
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Parameter Value

Generation time mean (s.d.) 3.3 (1.3) days

Incubation mean (s.d.) 3.2 (2.2) days

Std. dev. in daily random walk step for Rt σR = 0.025

Dispersion factor for daily cases kc = 100

Dispersion factor for daily admissions kh = 100

Number of particles M = 104

Initialisation period for renewal equation model tinit = 20 days

Table 1: Parameter values used in the model.

which is an approximation to the relative difference between the forecast xf and the data x̂.241

Model parameters are shown in Table 1. Model results were not highly sensitive to the242

random walk standard deviation σR and dispersion factors kc and kh; the selected values were243

found to give good coverage properties and a reasonable balance between being responsive244

to changes in trends while avoiding overfitting. Data and documented code to reproduce245

the results are available at https://github.com/michaelplanknz/covid19_forecasting_246

public.247

Results248

Figure 1 shows the fitted Gaussian process regression models for the age distribution of249

reported cases and the age-specific case hospitalisation ratio (CHR). The models were fitted250

to data supplied on an example forecast date (16 April 2023) and then projected forwards251

in time and compared to subsequently available data up to 7 May 2023. Overall, the fitted252

models made good predictions for future, out-of-sample data, which generally fell within the253

95% prediction intervals and visually exhibited a similar level of temporal autocorrelation254

as simulated model trajectories. There were some notable exceptions. For example the255

proportion of cases in age bands in the under 20 years and 60 to 80 years range started to256

track outside the predicted intervals 2-3 weeks after the forecast date (Figure 1(a)). The257

CHR in the 0-10 years age group deviated outside the prediction interval for a period of time258

around 1-2 weeks after the forecast date (Figure 1(b)).259
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(a)

(b)

Figure 1: Fitted Gaussian process regression models for: (a) the proportion of cases in each

age group; (b) the case hospitalisation ratio (CHR) in each age group. Models fitted to data

supplied on 16 April 2023. Dotted vertical lines shown the fitting window (19 March to 16

April 2023 for proportion of cases in each age group, 22 January to 26 March 2023 for CHR).

Each panel shows the mean (solid red) and 95% prediction interval (dashed red) of the fitted

model, ten example simulated trajectories from the fitted model (grey), and comparison to

subsequently observed data up to 7 May 2023 (blue).
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Figure 2 shows the forecast for cases, new hospital admissions and hospital occupancy, gen-260

erated from data supplied on 16 April 2023. The forecast performed reasonably well when261

compared against subsequently available data up to 7 May 2023. Daily cases and daily ad-262

missions were almost entirely within the 90% prediction interval, although predominantly263

below the predicted median, indicating that epidemic growth slowed in the 3 weeks following264

the forecast date. Note that the historic modelled levels of hospital occupancy (to the left265

of the dotted vertical line in Figure 2(d)) may deviate from the data because the model266

occupancy was not produced by fitting directly to hospital occupancy data, but by calcu-267

lating net change in hospital occupancy relative to the forecast date from simulated daily268

admissions and discharges. Therefore, unlike cases and admissions, accuracy in modelled269

occupancy tends to decrease the further backwards in time you go relative to the forecast270

date. However, this is not important for the purposes of forecasting.271

In order to assess forecast performance over time, Figure 3 shows the full time series of data272

alongside the results of the forecast that was generated between 15 and 21 days previously273

(data available on the third Sunday prior). The accuracy of the forecast 15-21 days ahead274

was variable but the large majority of data points fell within the 90% prediction interval.275

The most notable deviation is that the forecast overestimated the height of the peak that276

occurred in December 2022. This may be partly explained by a drop-off in testing and277

reporting of cases during the Christmas summer holiday period, as indicated by wastewater278

surveillance [32], and other holiday-related effects on transmission rates. The forecast also279

overestimated hospitalisations during this period, but to a lesser extent than it overestimated280

cases. Accurately predicting the peak of a wave is known to be a difficult problem in epidemic281

forecasting [33], and other models have suffered from similar problems [15, 17].282

Forecast skill was generally higher for a shorter time horizon. For example, in the 7-day283

ahead forecast (see Supplementary Figures S3–S4), the prediction intervals were more tightly284

focused around the subsequent data in most cases compared to the 21-day ahead forecast.285

In general, the CRPS increased with time (Figure 4a), indicating that forecast accuracy286

deteriorated as the time horizon was extended. For a 3-week time horizon, the mean CRPS287

on log transformed data was approximately 0.25 for cases and admissions and around 0.17288

for occupancy. The admissions forecast was positively biased, particularly at short time289

horizons, whereas the occupancy forecast was negatively biased although less strongly (Figure290

4b). The cases forecast was close to unbiased.291
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Figure 2: Model fitted to data up to 16 April 2023 (vertical dotted line), projected forwards

in time for 21 days and compared to subsequently available data available up to 7 May 2023

for: (a) new daily cases; (b) smoothed daily cases (seven-day rolling average); (c) new daily

hospital admissions; (d) hospital occupancy. The day-of-the-week effect is visible in panel

(a) for reported daily cases. Blue curve is the median and grey curves are the 5th, 15th, . . .,

85th, 95th percentiles of M = 105 particles.
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Figure 3: 21-day ahead forecast performance. Model results generated from data supplied

at one of a series of weekly time points from 2 October 2022 to 23 July 2023, compared to

actual data for the period 15-21 days subsequent to the date the data was supplied for: (a)

new daily cases; (b) smoothed daily cases (seven-day rolling average); (c) new daily hospital

admissions; (d) hospital occupancy. Testing data was supplied on 20 August 2023 (i.e. 4

weeks subsequent to the last forecast). Weekly discontinuities in the forecasts are because

each 7-day block represents a forecast generated from data supplied on a different date. Blue

curve is the median and grey curves are the 5th, 15th, . . . , 85th, 95th percentiles of M = 105

particles. Data points outside the 5th–95th percentile range of the forecast are shown in red.
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Figure 4: Forecast performance quantified by (a) continuous ranked probability scores

(CRPS), and (b) bias, for forecasts up to 0, 1, 2 and 3 weeks ahead. Model results generated

from data supplied at one of a series of weekly time points from 2 October 2022 to 23 July

2023, and tested against data supplied on 20 August 2023. Smaller scores indicate more

accurate forecasts, and values of bias closer to zero indicated less biased forecasts.

Discussion292

Near-term forecasting of infectious disease activity and consequent demand for acute health-293

care can support situational awareness, planning and public health response [7]. We have294

developed a method for forecasting Covid-19 cases, hospital admissions and hospital oc-295

cupancy based on Aotearoa New Zealand’s unique disease surveillance and data collection296

systems. The method couples a semi-mechanistic model for disease transmission to forecast297

cases with Gaussian process regression models for the time-varying case hospitalisation ratio.298

We have demonstrated that the model provides useful forecasts by benchmarking against299

subsequently observed data up to 21 days ahead. The forecasting tool has been opera-300

tionalised by Te Whatu Ora Health New Zealand in 2023 to provide weekly national and301

regional level forecasts in real-time. Our method is a useful component of health system302

capacity planning and response to Covid-19. It is also an important step towards devel-303

opment of more sophisticated situational awareness and forecasting capability in Aotearoa304

New Zealand for other infectious diseases and future pandemic threats.305

Strengths of our model include that it is specifically designed to use New Zealand’s unique306
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Covid-19 data streams, including linked unit record data on date of symptom onset and case307

report and, where applicable, date of hospital admission and length of stay. This data allowed308

us to empirically estimate the distribution of onset-to-report time, report-to-admission time309

and age-specific length of hospital stay. The model accounts for known lags in the reporting310

of hospital admissions for Covid-19, but uses up-to-date data on reported cases in each age311

group to improve accuracy of hospitalisation forecasts. Forecasts performed reasonably well312

when benchmarked against subsequently observed, out-of-sample data.313

Numerous variables affect the age-specific case hospitalisation ratio (CHR), such as vaccine314

coverage, rates of prior infection, comorbidities and case ascertainment (which affects the315

denominator of the ratio) [16]. Our method avoids the need for assumptions about the316

effects of these variables by taking an empirical approach to estimating the age-specific case317

hospitalisation ratio from recent data. This is reasonable because, although the variables318

affecting CHR will vary over time, they will generally vary slowly relative to the typical319

forecasting time horizon of 1-3 weeks.320

The model has several important limitations. It assumes that, over the forecasting time321

horizon, the effective reproduction number follows a simple random walk. This ignores322

mechanisms that may systematically affect transmission dynamics (e.g. depletion of the323

susceptible population, changes in contact patterns) meaning it is not suitable for forecasting324

more than a few weeks ahead, and cannot provide any insight into the reasons for changes325

in transmission patterns or the effects of possible interventions.326

Abrupt changes in case ascertainment, for example as the result of a policy change or a327

change in access to testing, would invalidate the forecast for a period of time until the time328

window used for estimating the CHR falls inside the new case ascertainment regime. The329

same would apply if there was an abrupt change in clinical severity, for example due to rapid330

takeover of a new variant. Other than a temporary drop in case ascertainment during the331

2022-2023 holiday period [32], there is no evidence of these issues arising during the study332

period of October 2022 to July 2023. However, there was subsequently an abrupt drop in333

case ascertainment following the lifting of the government isolation mandate for confirmed334

cases of Covid-19 on 14 August 2023.335

We have applied and tested the model in Aotearoa New Zealand during a period in which336
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the Omicron variant of SARS-CoV-2 was dominant, there were limited non-pharmaceutical337

interventions, and increasing levels of hybrid immunity [1, 2, 34]. Application of the model338

in other contexts, such as in an immune naive population or during periods of intense non-339

pharmaceutical interventions or behavioural change, would likely require significant model340

adaptation and recalibration.341

Future improvements of the model could incorporate wastewater surveillance data as an342

independent measure of prevalence [32] and more mechanistic transmission assumptions, for343

example to account for the accumulation of population immunity during a wave or following344

a vaccine rollout.345
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