
 

 

An extended catalytic model to assess changes in risk for multiple 

reinfections with SARS-CoV-2  

Authors:  

Belinda Lombard1; Cheryl Cohen2,3; Anne von Gottberg2,3; Jonathan Dushoff1,4; Cari van Schalkwyk1; 

Juliet R.C. Pulliam1 

Affiliations 

1 South African DSI-NRF Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA), 

Stellenbosch University, Stellenbosch, South Africa 

2 Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, a 

division of the National Health Laboratory Health Laboratory Service, Jhb, South Africa  

3 School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Jhb, South 

Africa 

4  McMaster University, Hamilton, Ontario, Canada 

Abstract 
Background: 

The SARS-CoV-2 pandemic has illustrated that monitoring trends in multiple infections can provide 

insight into the biological characteristics of new variants. Following several pandemic waves, many 

people have already been infected and reinfected by SARS-CoV-2 and therefore methods are needed 

to understand the risk of multiple reinfections.   

Objectives: 

In this paper, we extended an existing catalytic model designed to detect increases in the risk of 

reinfection by SARS-CoV-2 to detect increases in the population-level risk of multiple reinfections.  

Methods: 

The catalytic model assumes the risk of reinfection is proportional to observed infections and uses a 

Bayesian approach to fit model parameters to the number of 𝑛𝑡ℎ infections among individuals 

whose (𝑛 − 1)𝑡ℎ infection was observed at least 90 days before. Using a posterior draw from the 

fitted model parameters, a 95% projection interval of daily 𝑛𝑡ℎ infections is calculated under the 

assumption of a constant 𝑛𝑡ℎ infection hazard coefficient. An additional model parameter was 

introduced to consider the increased risk of reinfection detected during the Omicron wave. 

Validation was performed to assess the model’s ability to detect increases in the risk of third 

infections. 

Key Findings: 

The model parameters converged when applying the model’s fitting and projection procedure to the 

number of observed third SARS-COV-2 infections in South Africa. No additional increase in the risk of 

third infection was detected after the increase detected during the Omicron wave. The validation of 

the third infections method showed that the model can successfully detect increases in the risk of 

third infections under different scenarios. 

Limitations: 
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Even though the extended model is intended to detect the risk of 𝑛𝑡ℎ infections, the method was 

only validated for detecting increases in the risk of third infections and not for four or more 

infections. The method is very sensitive to low numbers of 𝑛𝑡ℎ infections, so it might not be usable 

in settings with small epidemics, low coverage of testing or early in an outbreak.  

Conclusions: 

The catalytic model to detect increases in the risk of reinfections was successfully extended to detect 

increases in the risk of 𝑛𝑡ℎ infections and could contribute to future detection of increases in the risk 

of 𝑛𝑡ℎ infections by SARS-CoV-2 or other similar pathogens.   

Introduction 

In March 2020, a global pandemic of Coronavirus-Disease-19 (COVID-19), caused by severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2), was declared by the World Health Organisation 
(WHO) (1). During the COVID-19 pandemic, numerous mathematical models were created to 
estimate the SARS-CoV-2 reproduction number, investigate the influence of implemented public 
health interventions on the transmission dynamics, and assess the global spread of the disease (2). It 
is becoming increasingly important to study the risk of multiple reinfections, especially in the context 
of waning immunity or the emergence of different viral variants. Recovered individuals could be a 
source of spread of SARS-CoV-2 and knowing the risk of getting reinfected by SARS-CoV-2 is 
therefore important.  

Prior research, such as the study by Wangari et al. examined reinfection transmission mechanisms 
using a compartmental model (3). Another model was developed to validate a test-negative study 
design to rapidly and rigorously estimate the protection conferred by prior infection (4); this design 
was applied to data in Qatar and found that protection against reinfection was higher when the 
primary infection was caused by the Alpha variant compared to the Beta variant (4).  

Another model used to study reinfection dynamics was a catalytic model by Pulliam et al. (5). In this 
study, the model parameters were fitted to reported reinfections of SARS-CoV-2 up to a specific 
date. Reinfection numbers were then projected under the assumption of constant reinfection risk 
and compared to observed data during a projection period to determine whether this assumption 
had been violated. The model assumed that the reinfection hazard was proportional to the seven-
day moving average of detected cases, with a constant hazard coefficient (5). The 95% credible 
interval of projected reinfections was compared to the observed reinfections during the projection 
period to assess whether a change in the reinfection hazard coefficient had occurred (5). The study 
identified a deviation from the projections during the Omicron wave in November 2021, providing 
the first evidence of higher risk of reinfection by the Omicron variant than previous variants (5).  

All these studies focused on monitoring the risk of second infection. During the Omicron wave in 
South Africa there was a noticeable increase in the number of third infections. Since multiple 
reinfections (three or more infections) are becoming more prevalent, our study extends the model 
developed in Pulliam et al. to detect increases in the risk of multiple reinfections in South Africa. The 
original model findings, complemented by the findings from the extended model have been applied 
to South African data and published in the National Institute for Communicable Diseases (NICD) 
monthly report on SARS-CoV-2 Reinfection Trends in South Africa (6). 

By providing insights into the risk of multiple reinfections, our study contributes vital information to 
the SARS-CoV-2 literature body to guide public health decisions, specifically relating to interventions 
used to prevent spread, such as vaccination (7). The extended model could be used to identify a new 
emerging immune-escaping variant of SARS-CoV-2, which would consequently guide policy 
surrounding an outbreak.      
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Methodology 

Data source 

The dataset used in this study is a time-series of the daily counts of primary infections, second 

infections, third infections and fourth infections of SARS-CoV-2 in South Africa from 4 March 2020 to 

29 November 2022. This dataset, as detailed in Pulliam et al. (5) is accessible on Zenodo (DOI: 

10.5281/zenodo.7426515). If the model is used for the risk of an 𝑛𝑡ℎ infection (where 𝑛 can be 3 or 

more), the column with the number of observed 𝑛𝑡ℎ infections must be included in the dataset.   

The observed infections in the dataset (5) were obtained from a national dataset containing all 

positive tests in South Africa, detected with either Polymerase Chain Reaction (PCR) or rapid antigen. 

Reporting of positive tests by laboratories was mandatory, although antigen detection tests are 

known to have been underreported.  In the dataset, deterministic and probabilistic linkage methods 

were used to identify repeated tests of the same person. To identify suspected reinfections (where 

reinfections can be second, third, or fourth infections), positive tests of an individual that were at 

least 90 days after the most recent positive test from the previously observed infection were 

identified. The specimen receipt date was used as the date of reference in the analysis.    

In this study, we focus on the number of third infections (𝑛 = 3). 

The extended model 

In the adapted model, the number of 𝑛𝑡ℎ infections expected on day 𝑥 is calculated from the 

number of (𝑛 − 1)𝑡ℎ  infections reported at least 90 days prior to day 𝑥 and have not led to a 

detected 𝑛𝑡ℎ infection. As in Pulliam et al., a reinfection is defined as an individual having two 

positive tests for SARS-CoV-2 at least 90 days apart. This delay is introduced to distinguish 

reinfection from prolonged viral shedding, the latter being where an individual actively releases the 

virus (8,9) and may lead to a positive test even though they are no longer symptomatic or infectious 

(8). 

Building on the original catalytic model, the equation to calculate the probability of an 𝑛𝑡ℎ infection 

by day 𝑥, given a previous (𝑛 − 1)𝑡ℎ reported infection on day 𝑡 is described as 

𝑝𝑛(𝑡, 𝑥) = 1 − 𝑒−∑ 𝜆𝑛−1
𝑖=𝑥
𝑖=𝑡+90 Î𝑖

′
 

where Î𝑖
′ is the 7-day moving average of total infections reported on day 𝑖, 𝑛 is the number of 

infections for which the risk is being studied and 𝜆𝑛−1 is 𝑛𝑡ℎ infection hazard coefficient being fitted 

to the data. The total reported infections on day 𝑖 can be described as:  

𝐼𝑖
′ = ∑ 𝐼𝑘,𝑖

𝑘=∞

𝑘=1

 

where 𝐼𝑘,𝑖  is the number of 𝑘𝑡ℎ infections reported on day 𝑖.  

The expected number of 𝑛𝑡ℎ infections, 𝑌𝑛,𝑥, reported by day 𝑥 can therefore calculated as:  

𝑌𝑛,𝑥 =∑𝐼𝑛−1,𝑡 𝑝𝑛(𝑡, 𝑥)

𝑡=𝑥

𝑡=0

 

The expected number of 𝑛𝑡ℎ infections on day 𝑥 can then be calculated as:  

𝐷𝑥 = 𝑌𝑛,𝑥 − 𝑌𝑛,𝑥−1. 

We used the extended model to assess third infection risk in South Africa from March 2020 to 

November 2022 and then subjected it to simulation-based validation to evaluate the performance of 
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the method under a broad range of scenarios. The model was implemented in the R Statistical 

Programming Language [version 4.3.1 (2023-06-16)] (10). The code for the extended model is 

available on Github at https://github.com/SACEMA/reinfectionsBelinda. 

Fitting the extended model to South African data on third infections (𝒏 = 𝟑) 

Two parameters, the hazard coefficient for 𝑛𝑡ℎ infections, 𝜆𝑛−1, and the negative binomial 

dispersion parameter, 𝜅𝑛−1 were fitted to the data using Monte Carlo Markov Chains (MCMC) with 

10,000 iterations and four chains, with 1,500 iterations discarded as burn-in for each chain. 

Convergence of the parameters was measured using Gelman-Rubin diagnostics with the 

`gelman.diag` function from the coda package in R (11). Gelman-Rubin compares the within-chain 

variance and the between-chain variance to evaluate the Monte Carlo Markov Chains, as this gives 

an indication of whether the initial value has been “forgotten”. A value of less than 1.1 indicates a 

low difference between the variances and, therefore, convergence (12,13). 

The projected 𝑛𝑡ℎ infections were calculated from a joint posterior distribution from the chains that 

were fitted during the MCMC procedure, so that 2,000 samples were drawn over the four chains 

equidistance apart (after discarding burn-in). For each model parameter combination from the 

posterior distribution, 100 stochastic simulations were run to calculate the number of expected third 

infections for each day for that parameter combination. From the realisations, two 95% projection 

intervals are calculated:  the middle 95% of the expected daily 𝑛𝑡ℎ  infections, and the middle 95% of 

the 7-day moving average of expected 𝑛𝑡ℎ infections.   

Fitting with an additional parameter to third infections data (𝒏 = 𝟑) 
An increase in the risk of a second infection was detected by Pulliam et al. during the Omicron wave. 

Model parameters did not converge when considering the risk of third infections (𝑛 =  3) due to 

low observation of third infections before the Omicron wave. To overcome this issue, the fitting 

period was extended beyond October 2021 and an additional parameter was introduced to account 

for the increased risk of a second infection with this variant (4).  

The fitting period for 𝜆2
′ , 𝜆2 and 𝜅2 to detect increases in the risk of third infections was extended to 

include the first Omicron wave, up to 31 January 2022. 

The probability of having a third reported infection by day 𝑥, given that the person had a positive 

test for a second infection on day 𝑡, can then be given by:  

𝑝(𝑡, 𝑥) = 1 − 𝑒−∑ 𝜆𝑡,2
𝑖=𝑥
𝑖=𝑡+90 Î𝑖

′
 

where   

𝜆𝑡,2 = {
𝜆2  𝑖𝑓 𝑖 ≤ 31 𝑂𝑐𝑡𝑜𝑏𝑒𝑟 2021

𝜆′2 𝑖𝑓 𝑖 > 31 𝑂𝑐𝑡𝑜𝑏𝑒𝑟 2021
 

Model validation 

In (14), we conducted simulation-based validation to assess the performance of the original catalytic 

model when introducing changes in the risk of second infections under different scenarios.  

We concluded that the model is robust to several important aspects of the observation process that 

are not directly accounted for in the model. Here, we assessed the model by performing sensitivity 

analyses on the model’s suitability for assessing third infections under different increases in the risk 

of second and third infections.  

To validate the 𝑛𝑡ℎ infection method proposed in this study, we considered a simulated dataset of 

primary infections that represents perfect observation (adapted from the data as in (14)), on which 

we added fixed primary infection, second infection, and third infection observation probabilities 
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(0.2, 0.5 and 0.35 respectively). The lower third infection observation probability was considered to 

account for pandemic fatigue (15). We tested the performance of the model on simulated data in 

different data-generation scenarios by varying the difference in reinfection risk (both the second 

infection and third infection risk) between a pre-Omicron-like period and from when an Omicron-like 

wave is introduced. This approach determined whether the model could accurately fit the model 

parameters for third infections (𝜆2, 𝜆2
′  and 𝜅2) and whether the model gives a false positive and 

detects increases in the risk of third infection where there is not such an increase.  

From the simulated primary infections, we generated a time-series for the number of observed 

primary infections by drawing a binomial random variable based on the observation probability, so 

that 

ĩ𝑡 = 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑖𝑡 , 0.2) 

where ĩ𝑡 is the observed primary infections on day 𝑡 and 𝑖𝑡 is the number of underlying primary 

infections on day 𝑡.  

From the number of observed primary infections, the number of underlying second infections per 

day was calculated as:  

𝑟1,𝑡 = ℎ𝑧1,𝑡. ĩ𝑡 . 𝑒1,𝑡 

where 𝑒1,𝑡 is the underlying number of people eligible for second infection and calculated as 

𝑒1,𝑡 = ∑ ĩ𝑡
𝑡−89
𝑡=0 − ∑ 𝑟1,𝑡

𝑡−1
𝑡=90 . 

The modified second infection hazard coefficient, ℎ𝑧1,𝑡, is calculated as: 

ℎ𝑧1,𝑡 = Λ  𝜎𝑡  

where Λ is the second infection hazard coefficient and 𝜎𝑡 is a multiplier on the coefficient (scale 

parameter) to represent the increase in second and third infection risk, and defined as  

𝜎𝑡 = {

1  𝑖𝑓  𝑡 ≤ 31 𝑂𝑐𝑡𝑜𝑏𝑒𝑟 2021
𝜎1 𝑖𝑓 𝑡 > 31 𝑂𝑐𝑡𝑜𝑏𝑒𝑟 2021 𝑎𝑛𝑑 𝑡 ≤ 31 𝑀𝑎𝑟𝑐ℎ 2022

𝜎1𝜎2 𝑖𝑓 𝑡 > 31 𝑀𝑎𝑟𝑐ℎ 2022
 

We used 𝜎1 to represent the first increase in second and third infection risk associated with the 

Omicron wave and introduced an additional parameter 𝜎2 to evaluate whether the method can 

detect additional simulated increases in the risk of a third infection. Table 1 shows how 𝜎1 and 𝜎2 

were varied. In the second scenario, we fixed 𝜎1 at 2.8, which was the median of the ratio of the 

posteriors of 𝜆2
′  and 𝜆2 obtained from fitting the parameters to the third infection data in South 

Africa.  

Table 1 The values of 𝜎1 and 𝜎2 considered in the data simulation process for the data that was used in the simulation-
based validation.  

Scenario Values of 𝝈𝟏 Values of 𝝈𝟐 

1 {1, 1.2, …, 3} {1} 

2 {2.8} {1, 1.2, 1.5, 2} 

 

We fixed Λ as the median of the fitted second infection hazard coefficient (𝜆) estimated in Pulliam et 

al (as the median of the posterior distribution of 𝜆  obtained).  

The number of observed second infections on day 𝑡 was calculated as 
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𝑟 1,𝑡 = 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑟1,𝑡, 0.5). 

This was further extended to calculate the number of underlying third infections on day 𝑡, 𝑟2,𝑡 as 

𝑟2,𝑡 = ℎ𝑧2,𝑡 ĩ𝑡 𝑒2,𝑡 

where ℎ𝑧2,𝑡  is the third infection hazard coefficient and 𝑒2,𝑡 is the number of people eligible for a 

third infection on day 𝑡, calculated as 

𝑒2,𝑡 = ∑ 𝑟 1,𝑡
𝑡−89
𝑡=0 − ∑ 𝑟2,𝑡

𝑡−1
𝑡=90 . 

We calculated ℎ𝑧2,𝑡 in a similar way as ℎ𝑧1,𝑡:  

ℎ𝑧2,𝑡  =  Λ2 𝜎𝑡 

where  Λ2 is the third infection hazard coefficient. We fixed  Λ2 at approximately 6.6 ∙ 10−8, which 

is obtained from the median of the posterior distribution of the third infection hazard coefficient 

(𝜆2
′ ) that were fitted with the observed third infections in South Africa during the Omicron wave.   

The number of observed third infections was calculated as  

𝑟 2,𝑡 = 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑟2,𝑡, 0.35). 

In the data generation process, we varied 𝜎𝑡 according to the scenarios described in Table 1 . For 

each of these values of 𝜎1 and 𝜎2, a time-series of second and third infections was generated using 

the process described and applied to the model fitting (fitting 𝜆2, 𝜆2
′  and 𝜅2) and projection process. 

The process was repeated 20 times with different seeds. We measured the Gelman-Rubin 

convergence diagnostics for 𝜅2, 𝜆2 and 𝜆2
′ . We also measured the proportion of observed third 

infections that were above the 95% 7-day moving average during the projection interval, as well as 

the timing of the first cluster of five consecutive days of observed third infections that fell above the 

projection interval, denoted as 𝐷𝑓𝑖𝑟𝑠𝑡, which can be used to detect increases in the risk of third 

infections.   

In the case of 𝜆2
′  for third infections when 𝜎2 = 1, we expect that around 2.5% of the observed third 

infections fall above the 95% projection interval, and we expect that a cluster of five consecutive 

days above the projection interval will not exist, since 𝜎2 = 1 indicates that we did not introduce a 

further increase in the risk of third infections in the simulated data after 31 October 2021. The 

existence of such a cluster may indicate a false positive detection of an increase in the risk of third 

infections. We therefore measured the specificity of the model for each value of the scale parameter  

𝜎1  (with 𝜎2 = 1) as  

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  1 −
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑢𝑛𝑠 𝑤ℎ𝑒𝑟𝑒 𝐷𝑓𝑖𝑟𝑠𝑡 𝑒𝑥𝑖𝑠𝑡𝑠 & 𝑎𝑙𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑢𝑛𝑠 𝑤ℎ𝑒𝑟𝑒 𝑎𝑙𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑
 

 

Results 

Data used in the third infections fitting procedure 

In Figure 1, the number of primary, second, and third infections reported in South Africa from 4 

March 2020 to 29 November 2022 is depicted. Figure 1A shows the number of observed primary 

infections, Figure 1B shows the number of people eligible for a second infection, Figure 1C shows the 

number of observed second infections, Figure 1D shows the number of people eligible for a third 

infection, and Figure 1E shows the number of observed third infections.  
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Model fitting 

With only the third infection hazard coefficient, 𝜆2, and the negative binomial dispersion parameter, 

𝜅2, fitted to third infections up to October 2021, 𝜆2 converged well (convergence diagnostic of 

~1.03), while 𝜅2 did not converge due to low numbers of third infections (convergence diagnostic of 

~1.3) (Figure S1Error! Reference source not found.). 

The fitting period was then extended through the Omicron period up to 31 January 2022, and the 

second third infection hazard coefficient, 𝜆2
′ , was introduced. When adding this third parameter to 

the fitting procedure, 𝜆2, 𝜆2
′  and 𝜅2 converged well, with the Gelman-Rubin diagnostic values falling 

below 1.1. The convergence diagnostic for 𝜆2
′  was slightly higher (around 1.05) than for 𝜆2 and 𝜅2  

(approximately 1.01 and 1.005 respectively, Figure 2).   

 

Figure 1 Infections reported to the NICD in South Africa and the number of people eligible for second and 
third infections (calculated from the reported infection data), from 4 March 2020 to 29 November 2022. 
Figure 1A shows the number of observed primary infections, Figure 1B shows the number of people eligible 
for a second infection, Figure 1C shows the number of observed second infections, Figure 1D shows the 
number of people eligible for a third infection, and Figure 1E shows the number of observed third infections. 
Source: https://zenodo.org/record/7426515.  
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Figure 2 Convergence diagnostics plot when fitting 𝜆2, 𝜆2
′  and 𝜅2 to the data in South Africa. The top left panels show the 

trace plots for each parameter. On the right is the Gelman-Rubin convergence diagnostics. The plots at the bottom are 
density plots of the fitted parameters.  

Model prediction 

Figure 3 and Figure S2 shows the 95% projection interval of expected third infections (both the 7-day 

moving average and the daily third infections) and the observed third infections when the model 

was fitted to South African data and used to project third infections. In Figure S2, the data were 

fitted with only 𝜆2 and 𝜅2, and the 7-day moving average of observed third infections (red solid line) 

did not stay in the 95% projection interval for most of the projection interval (the red band). The 

negative binomial dispersion parameter (𝜅2) did not converge in this scenario. In Figure 3, the 

additional third infection hazard coefficient parameter was also fitted (𝜆2
′ ), and the fitting period was 

extended to include the first Omicron wave. In this case, the observed third infections mostly stayed 

within the 95% projection interval. From May to November 2022, the number of observed third 

infections (red solid line) reaches the lower edge of the band of the 95% 7-day moving average 

projection interval of third infections (red band), showing a potential decreased risk of third 

infections, or a lower observation probability due to pandemic fatigue.  
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Figure 3 Simulation Plot published in the NICD reinfections report with the added third infection hazard coefficient to 
represent the Omicron wave (𝜆2

′ ) parameter and data fit through 31 January 2022. (https://www.nicd.ac.za/wp-
content/uploads/2022/12/SARSCoV2-Reinfection-Trends-in-South-Africa_2022-12-07.pdf). The left side represents the 
fitting period, and the right-hand side the projection period. The red band is the 95% projection interval for the 7-day 

moving average of simulated third infections for that day and the grey band is for the daily simulated third infections. The 
red solid line is the 7-day moving average of observed third infections and the grey dots are the daily values of observed 

third infections. 

Model validation 

After running the model fitting and model projection 20 times for each value of 𝜎1 and fixing 𝜎2 = 1, 

the negative binomial dispersion parameter (𝜅2) mostly converged when 𝜎1 > 1.6. The proportion 

of runs where 𝜅2 converged increased as 𝜎1 increased, due to increased numbers of third infections. 

For more than 0.75 of the runs for each value of 𝜎1 the third infection hazard coefficient before the 

first Omicron wave (𝜆2) converged, whereas the third infection hazard coefficient for after the first 

Omicron wave (𝜆2
′ ) converged in all the runs (Figure S3).  

The specificity (proportion of runs where an increase in the risk of third infection was not detected 

when there is no increase in third infection risk in the generated data, 𝜎2 = 1) was above 0.75 for all 

values of 𝜎1 and 1 when 𝜎1 < 1.5 (Table S1). 

After excluding the results from runs with nonconvergence, the proportion of observed third 

infections above the projection interval remained below 2.5%, except one run where 𝜎1 = 3 which 

resulted in 5% of third infections above the projection interval.  

When fixing 𝜎1 = 2.8 and varying 𝜎2 with values of 1, 1.2, 1.5 and 2, the median of 𝐷𝑓𝑖𝑟𝑠𝑡 from the 

runs where all the parameters (𝜅2, 𝜆2 and 𝜆2
′ ) converged decreased from 26 days to 7 days as 𝜎2 

increased from 𝜎2 = 1.2  to 𝜎2 = 2 (Figure S4), and 𝐷𝑓𝑖𝑟𝑠𝑡 did not exist in most cases where 𝜎2 = 1 

(specificity was 0.89). The proportion of points above the projection interval was 0.01 when 𝜎2 = 1 

and gradually increased to 0.45 when 𝜎2 = 2 (Figure S4).  

Discussion 

In this study, the method used to detect changes in the risk of reinfection was successfully extended 

to detect the risk of multiple reinfections. The output of the extended method for third infections 

was used by NICD in their monthly report to detect further changes in the risk of third infections (6) 

and will contribute to future monitoring of reinfection risk where there are concerns about potential 

emerging SARS-CoV-2 variants with immune escape and where multiple reinfections with SARS-CoV-

2 are relevant. With the extended method, we have demonstrated that we would have detected 

increases in the reinfection risk during the fifth wave if such an increase existed.  

We performed a simulation-based validation of the method, where simulated data on third 

infections with SARS-CoV-2 were fitted and projected. The model is robust to changes in the risk of 

third infections when we fitted an additional parameter that represents the second and third 
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infection hazard coefficient during waves where the reinfection risk is higher. When the increase in 

the second and third risk in the simulated data used for the validation was low, the negative 

binomial dispersion parameter did not converge in some runs. This is due to an insufficient number 

of simulated third infections to properly inform the parameter, whereas with the higher increase in 

the risk of second and third infection, more data were generated to properly inform the dispersion 

parameter. The specificity, which assesses the method's ability to avoid false positive detections of 

third infection risk increases during the projection period, was generally high for most scale values 

representing the initial rise in third infection risk (first Omicron wave). This suggests that the model 

effectively distinguished increases in the risk of reinfections from random fluctuations or noise in the 

data. When introducing an additional increase in the third infection risk after the additional hazard 

coefficient parameter is introduced), the method detects the simulated increase in the risk of third 

infection even for the smallest increase we investigated (𝜎2 = 1.2). The proportion of points above 

the projection interval after the introduction of the additional increase in third infection risk was 

only 45% when the increase was 100% (𝜎2 = 2), which could be due to the low number of observed 

third infections after the fifth wave. The low numbers of observed third infections are likely due to 

pandemic fatigue.      

Validation has been performed when considering third infections, however when the model is used 

to study the risk of more than three infections, it is advised to conduct further validation.  To ensure 

accuracy when using the model in future predictions about risk of reinfection, it is important to 

incorporate prior knowledge and additional parameters, such as introducing a third lambda 

parameter to account for changing reinfection risks, if necessary.  

A limitation of the method is its sensitivity to low counts of observed reinfections, as sufficient 

reinfection is required for the model parameter convergence. Pandemic fatigue, which leads to 

fewer testing and consequently lower numbers of observed reinfections (reinfections beyond the 

second infection), impacts the method’s applicability in a real-life situation. With low numbers of 

observed multiple reinfections, the model is less likely to detect increases in the risks of multiple 

reinfections.  

Conclusion 

The catalytic model used to detect increases in the risk of reinfection was successfully generalised to 

detect increases in the risk of 𝑛𝑡ℎ infections. The method was applied to the observed third 

infections in South Africa to detect increases in the risk of third infection, and simulation-based 

validation showed its robustness in detecting increases in the risk of third infections of different 

magnitudes. The extended method could contribute to future detection of increases in the risk of 

𝑛𝑡ℎ infections by SARS-CoV-2 or other similar pathogens.   
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Supplementary material 

 

Figure S1 Convergence diagnostics with 𝜆2 and 𝜅2 fitted to the data. The top left panels show the trace plots for each 
parameter. On the top right is the Gelman-Rubin convergence diagnostics. The plots at the bottom are density plots of the 

fitted parameters. The fitting period is up until 31 October 2021 (before the Omicron period). 

 

Figure S2 Simulation Plot for when only 𝜆2 and 𝜅2 were fitted up until 31 October 2021 and projected through the Omicron 
wave. The left side represents the fitting period, and the right-hand side the projection period. The red band is the 95% 

projection interval for the 7-day moving average of simulated third infections for that day and the grey band is for the daily 
simulated third infections. The red solid line is the 7-day moving average of observed third infections and the grey dots are 

the daily values of observed third infections. 
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Figure S3 The proportion of the 20 runs in which 𝜅2, 𝜆2 and 𝜆2
′  converged respectively. In this plot,  𝜎1 is varied and 𝜎2 is 

fixed at 2.8. The pink line is the proportion of runs where all three model parameters (𝜅2, 𝜆2 and 𝜆2
′ ) converged. 

Table S1 Specificity measured for each 𝜎1 over 20 runs, after excluding runs where convergence was not achieved. Here, 𝜎2 
is fixed at 2.8. 

Scale 
(𝝈𝟏)  

Number of runs where 𝜿𝟐, 𝝀𝟐 and 𝝀𝟐
′  

converged 
Specificity (conditional on 
convergence) 

1 14 1 

1.2 19 0.95 

1.4 16 0.75 

1.6 19 0.74 

1.8 19 0.84 

2 17 0.82 

2.2 14 0.86 

2.4 19 0.89 

2.6 17 0.82 

2.8 18 0.89 

3 17 0.88 
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Figure S4 Results of the validation of the scenario where 𝜎1 = 2.8 and 𝜎2 varied from 1.2, 1.5 and 2. A shows the median of 
the timing of the first cluster of five consecutive observed reinfections, 𝐷𝑓𝑖𝑟𝑠𝑡  above the projection interval for different 

values of 𝜎2. B shows the proportion points above the projection interval for different values of 𝜎2. Both metrics are for 
after the introduction of 𝜎2 to the data. Runs that did not converge was excluded. 
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