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Abstract 

Motivation: T lymphocytes (T-cells) major role in adaptive immunity drives efforts 

to elucidate the mechanisms behind T- cell epitope recognition.  

Results: We analyzed solved structures of  T-cell receptors (TCRs) and their cognate 

epitopes and used the data to train a set of machine learning models, POP-UP TCR, 

that predict the binding of any peptide to any TCR, including peptide and TCR 

sequences that were not included in the training set. We address biological issues that 

should be considered in the design of machine learning models for TCR-peptide 

binding and suggest that models trained only on beta chains give satisfactory 

predictions. Finally, we apply our models to large data set of TCR repertoires from 

COVID-19 patients and find that TCRs from patients in severe/critical condition have 

significantly lower scores for binding SARS-coV-2 epitopes compared to TCRs from 

moderate patients (p-value <0.001).  

Availability and Implementation: POP-Up TCR is available at: 

https://github.com/NiliTicko/POP-UP-TCR 

Contact: nilibrac@bgu.ac.il  
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Introduction 

Adaptive immune response requires that a T lymphocyte (T- cell) specifically 

recognizes, through its receptor (TCR), peptides presented on major 

histocompatibility complex (pMHC).  Successful recognition leads to binding, that 

prompts conformational changes of the T- cell (Xu et al., 2020; Krogsgaard et al., 

2003; Krogsgaard and Davis, 2005) followed by clonal expansion and acquisition of 

effector properties (Xu et al., 2020). 

Successful prediction of bindings between TCRs and a specific peptide will enable the 

design of tumor-targeting T-cells, of peptides for vaccination and also the detection of 

autoimmune T cell clones. 

The binding of a TCR to a pMHC is a pairing problem (Springer et al., 2021), 

where the goal is to predict whether a given pair of inputs X (a peptide) and Y (a 

TCR) would bind. Machine-learning solutions for this question vary according to the 

complexity level of the different pairing situations: 

While at the more simple levels, the peptides are already seen in the training phase 

(Ostmeyer et al., 2019; Neuter et al., 2017; Meysman et al., 2018; Jokinen et al., 

2020; Gielis et al., 2019; Fischer et al., 2020; Moris et al., 2020), the main challenge 

of TCR-peptide prediction models is the de-novo prediction of pairs in which neither 

TCR nor peptide has been in the train set (Moris et al., 2020).  Current methods that 

deal with this situation report a higher than random, but generally less than 

satisfactory performance (Moris et al., 2020). 

We hypothesized that a computational method that can perform de-novo 

prediction has to be based on general principles of TCR-peptide recognition that 

differentiate cognate pairs from pairs that do not functionally bind each other.  
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Our approach contains two stages: First we trained a machine-learning model based 

exclusively on structurally characterized TCR-pMHC complexes to predict, for each 

residue in complementary-determining region 3 (CDR3) of the beta chain of the TCR, 

whether it is likely to be in a physical contact with any peptide residue. The output of 

this structure-based model is a score for every pair of residues from CDR3 beta and 

the peptide. We then trained a second machine learning model on the scores given by 

the first model to thousands of sequences of TCR-peptide pairs. This model predicts 

whether the TCR as a whole is likely to actually bind the specific epitope peptide as a 

whole.  

 

Materials and Methods 

We analyzed the structure of known 89 non-redundant complexes of TCRs bound to 

peptide-MHCs. This allowed the generalization of previous findings from a small 

number of TCR-complex structures(Xu et al., 2020; Singh et al., 2017) and the 

discovery of new principles that guide binding. Structures that contain both TCR 

chains and epitope peptides were obtained from the Protein Data Bank at the RCSB 

PDB website (http://www.rcsb.org/) (Berman et al., 2000) filtering by molecule type 

on the advanced search options. We used IMGT-numbered structure files from the 

Structural T-Cell Receptor Database (STCRDab)(Leem et al., 2017) at 

http://opig.stats.ox.ac.uk/webapps/stcrdab/.  Using the coordinates in the ATOM line, 

TCR chains-peptide contacts were mapped defined as a distance of 6Å or less 

between respective c-beta atoms (c-alpha for glycine). BLOSUM62 sequence 

similarity matrix (R package 'biostrings')(Team, 2018) identified 89 non-redundant 

TCR alpha-beta-peptide structures. 
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We used these data (shown in the Supplementary material) to construct the features of 

the first, structure-based model (Figure 1). 

 

Figure 1 Prediction process workflow. A.The right side of the chart shows that all possible 

alpha-peptide and beta-peptide amino acid pairs serve as input to the first machine learning   

model that predicts whether they are likely to form a contact. Binding contacts are 

represented as blue lines, non-binding ones are in orange. For simplicity, not all non-binding 

pairs are shown. The output from the first model is a binding score for each pair of potential 

contact between the peptide and the CDR3. The predicted binding score of each beta-

peptide amino acid pair is represented in a matrix that serves as input to the second 

machine learning model, which predicts whether or not this TCR recognizes and binds this 

peptide when presented on MHC1.B. Structure of the vectors for the 1st model. 

 

 

Model for residue contact prediction 

Based on the structural data, a set of features was composed per each TCR alpha- 

peptide pair, and per each TCR beta- peptide pair (Figure 2B).  Each amino acid was 
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represented as a one-hot vector of 21 numbers (20 possible amino acids and an 

additional stop codon) where all values were set to zeros except one index of the 

corresponding amino acid which was set to 1. To include all amino acids of the 

peptide and the CDR3 as given in the PDB database, the amino acids sequence of 

each was represented by a 'sliding window' of five amino acids, containing two amino 

acids adjacent to it on its N terminal side and two amino acids adjacent to it on its C 

terminal side.  The one-hot vectors for all amino acids per 'sliding window' were 

joined. The use of the 'sliding window' is based on evidence that contact residues on 

the TCR are very specific both in the peptide residues they bind and those they allow 

in their vicinity. This specificity enables TCRs to discriminate between epitopes that 

differ even by a single oxygen atom (Mazza et al., 2007).  

Each vector contained a total of 28 features that described a pair of peptide- CDR3 

residues and was labeled: ‘TRUE’ or ‘FALSE’ for a binding or a non-binding pair, 

respectively (Shown in Figure 1B). The features included: 

1. A 'sliding window' for each CDR, five features per chain, ten in total. 

2. The position number of the amino acid residue in the CDR (position 1 for the 

residue on the N-terminal end of the CDR) (See Figure 1 left hand side). 

3. Two 'sliding windows' for the peptide: one for its contacts with CDR alpha and 

one for its contacts with CDR beta, five features per chain, ten in total. 

4. A feature of the identity and a feature of the position of the amino acid of the 

peptide in contact with the TCR (position 1 for the residue on the N-terminal end 

of the peptide) (See Figure 1 left hand side).  
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  5. A feature of the identity and a feature of the position of the amino acid of the TCR 

chain in contact with the peptide (position 1 for the residue on the N-terminal end of 

the peptide).  

 

Training and testing of residue contact prediction model  

We trained three separate machine learning models to predict whether or not a given 

residue on a peptide and given residue on the CDR3 bind each other: A model based 

on the alpha CDR3 alone, a model based on the beta CDR3 alone, and a model based 

on both chains. (See Figure 1 for prediction process scheme). We used a 300- tree 

Random Forest (RF) algorithm implemented in R (R package 'randomForest'). The 

performance of the models was assessed using a 5-folds cross-validation. Peptides in 

every fold were dissimilar to peptides in all other four folds. 

Performance analysis 

Prediction scores for the test set were compared with the observed classifications, 

where a score (between 0 and 1) was considered as positive (i.e., binding) if it was 

above a certain cutoff. Precision and recall, as defined in the supplemental material 

were calculated for different cutoff values, and a precision-recall curve was created 

for each model. 

 

TCR - peptide binding sequence-based prediction model 

Feature vector construction 
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The first model's output was a score for the binding of each pair of amino acids- one 

on the TCR and one on the peptide. Each score was represented as an integer. All 

integers were joined and a padding integer of less than the minimal score was then 

added to the peptide vectors when it was necessary to complete to the maximum 

lengths as follows: 

In the models with a single chain the number of possible pairs created by 15 peptide 

amino acids and 13 CDR amino acids is 15*13= 195. Models that use both the beta 

and alpha chains had twice that number, i.e., 290 features.  195 prediction scores per 

each position on the alpha and 195 prediction scores per each position on the beta 

chain- peptide contact from the first model were used as the set of features given to 

the second model (Figure 1). We expect that the distribution of predicted binding 

residues is different between TCR-peptide pairs that actually bind each other and pairs 

that do not and that these differences can be learned by the model. 

Our training set for the second model was composed of a positive data set of 4,370 

paired TCRαβ sequenced CDR3 segments with a cognate pMHC1 epitope retrieved 

from McPAS TCR database (http://friedmanlab.weizmann.ac.il/McPAS-TCR/), a 

manually curated database of T- cell receptor sequences (Tickotsky et al., 2017).  

Redundancy reduction of peptide sequence was performed within the dataset itself 

and against the training set using the parameters that were used in the dataset 

construction (detailed in Supplementary material). Thus, no TCR-epitope peptide pair 

in the training set was redundant with any sequence in the test set or with any 

sequence in the PDB dataset.  

Peptide sequences were divided into folds to accommodate for TCR cross-reactivity: 

This phenomenon, where a TCR may recognize multiple similar peptides (Krogsgaard 
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et al., 2003; Gee et al., 2018; Birnbaum et al., 2014; Sewell, 2012; Hellman et al., 

2019), can bias the performance of a machine learning model, if a peptide in the 

training set has a close homolog is in the test set. Indeed, the highest learning 

performance has been shown for epitopes that share some similarity with epitopes 

present in the training data(Moris et al., 2021). To address this issue we clustered the 

peptides in our dataset into folds by peptide similarity, where each fold contained all 

peptides that were similar to each other. Peptide inter-sequence similarity was 

measured by Levenshtein distance (LD)(Levenshtein VI, 1966), that sums the number 

of amino acid insertions/ deletions/substitutions . 232 unique peptide sequences were 

clustered into sixteen groups, each contained peptides that are similar by a total LD of 

four or less, which are equivalent to ~40% similarity, with each peptide present in a 

single cluster. We set this strict similarity threshold based on evidence that a TCR can 

bind to peptides that are distinct at five or six positions from each other (Hausmann et 

al., 1999). The clusters were then joined to form five folds for training, verifying that 

no TCR-peptide pair in the training set is similar to a pair in the test set.  

Negative dataset construction  

TCR- epitope interaction databases contain only positive examples(Tickotsky et al., 

2017; Shugay M, Bagaev DV, Zvyagin IV, Vroomans RM, Crawford JC, Dolton G, 

Komech EA, Sycheva AL, Koneva AE, Egorov ES, Eliseev AV, Van Dyk E, Dash P, 

Attaf M, Rius C, Ladell K, McLaren JE, Matthews KK, Clemens EB, Douek DC, 

Luciani F, van Baarle D, Kedzierska, 2017; Mahajan et al., 2018). We used the 

shuffling method (Moris et al., 2020), so our negative set was composed of the TCR 

alpha-beta chains from the training set randomly paired with a different peptide than 

that of the original pair. To reduce mislabeling of pairing TCRs with epitope-peptides 

to which they may cross-react, we clustered the epitope-peptides by sequence 
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similarity before pairing them with the TCRs. As in the positive training set, we 

clustered the 232 unique epitope-peptides in the dataset into sixty-eight clusters, each 

cluster contained all peptides that were similar by at least 40% (LD = < 4). We then 

generated the random TCR-peptide pairs for the negative training and testing sets: 

each TCR's alpha-beta CDR3 in the negative set was paired with epitope peptides 

from a different epitope cluster than that of the original pair in the train set, 

minimizing the chance for false negative results. Of the ~250,000 pairs generated, we 

sampled 60,000 for our negative dataset.  

Training and testing of binding protein prediction model  

Training was performed using RF with 300 trees and five-fold cross validation. 

Performance was assessed with precision-recall curves, as described above. The test 

set included only  peptides from clusters not found in the training set (termed "unseen 

epitopes" (Moris et al., 2021)). Again, we trained three separate machine learning 

models: A model based on data from the alpha CDR3 alone, a model based on the 

beta CDR3 alone, and a model based on both chains. 

 

Results 

We analyzed 89 non-redundant X-ray crystal structures with both alpha and beta 

TCRs bound to MHC class 1 (MHC1) and MHC class 2 (MHC2) molecules from the 

PDB. The results of the structural data analyses are in the supplementary material.  

 

First model: Predicting residue-residue pairing 
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As our structural data showed that almost all peptide positions contact MHC, with 

almost no amino acids residues preferences (see Figure S1.A); we did not construct a 

model for the prediction of MHC- peptide contacts. Also, the differences between 

peptide contact distribution on the MHC1 and MHC2 (shown in Figure S1.A) and the 

paucity of MHC2-peptide binding data compared with the MHC1 led us to 

concentrate on MHC1- bound complexes. 

Figure 2 shows the precision-recall curve (PRC) for predicting the bindings for each 

TCR chain. The model that was trained exclusively on the beta chain performed better 

than the other two.  

 

Figure 2 Precision-recall curves (PRC) of the performance of three machine learning 
models that learn from structural data. Each model predicts whether a given residue on a 
peptide and given residue on the CDR3 contact each other or not. A model based on the 
alpha CDR3 alone (dotted), a model based on the beta CDR3 alone (dashed), and a model 
that uses contacts from both chains without discriminating between them (solid).  

 

Second model: predicting peptide-TCR pairing 

The residue pairing predictions of the first models described above classify each 

residue on the peptide for its potential to contact CDR3. However, residues that 
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appear as putative CDR3 binding sites may sporadically occur also in peptides that do 

not actually bind CDR3. To predict whether the peptide and the CDR3, as wholes, 

actually bind each other we trained and tested another machine learning model, based 

on the prediction generated by the first classifier (scheme is shown in Figure 1). To 

train this machine, we relied on a positive set of 4370 TCR-peptide pairs that are 

known to bind each other and an assumed negative set of 60,000 pairs that are not 

known to bind each other (see Methods). We did not use, and did not have, any 

structural information for these pairs.  

Figure 3 shows the precision-recall (PR) and receiver operating characteristic (ROC) 

curves from the three models tested. PR curve shows that the beta CDR3 model 

reached precision of 85% for recall level of 43%. For recall 12%, precision is 99%. 

ROC curve shows that the performance of the alpha- based model was similar to 

random (Area Under the Curve (AUC) of 0.474). The beta-based model and the 

model that uses both chains had an AUC of 0.780 and 0.748, respectively. 

 

Figure 3 Precision-recall  (PR) and receiver operating characteristic (ROC) curves for three 

separate machine learning models that that learn from sequence data and aim to predict 

whether a given peptide sequence and given CDR3 sequence bind each other or not. A 

model based on the alpha CDR3 alone, a model based on the beta CDR3 alone, and a model 

that is trained on both chains. The input to the prediction models is the sequence of a 
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peptide and a sequence of a CDR3 beta. The output is a score for whether they bind each 

other or not. The test set is based on peptides new to the machine that were different by 

more than 40% from the peptides the machine had been trained on. For recall level of ~43% 

the model correctly predicts 85% of the interacting pairs (point marked by a star). For recall 

18%, precision is approximately 99% (point marked by a star).  

 

Benchmarking POP-Up TCR: 

For benchmarking, we tested the performance of POP-Up TCR prediction on the 

VDJdb dataset (Bagaev DV, Vroomans RMA, Samir J, Stervbo U, Rius C, Dolton G, 

Greenshields-Watson A, Attaf M, Egorov ES, Zvyagin IV, Babel N, Cole DK, 

Godkin AJ, Sewell AK, Kesmir C, Chudakov DM, Luciani F, 2019) as an 

independent test. We used a filtered dataset (Moris et al., 2020), as explained in the 

supplementary material.  

As shown in Figure 4, for both modes of data down sampling the overall areas under 

the receiver operating characteristic (AUROC) were 0.5. This is very similar to results 

of other tools that tackle the unseen epitope problem, when benchmarked on complete 

different datasets  (vs. on specific epitopes) (Moris et al., 2020). However, the 

precision-recall curves showed that only true binding CDR3beta- epitope pairs got the 

highest scores. This enables screening of true CDR3b-epitope pairs.  

Figure 4: Performance of POP-UP TCR on an independent dataset, VDJdb (Bagaev DV, 
Vroomans RMA, Samir J, Stervbo U, Rius C, Dolton G, Greenshields-Watson A, Attaf M, 
Egorov ES, Zvyagin IV, Babel N, Cole DK, Godkin AJ, Sewell AK, Kesmir C, Chudakov DM, 
Luciani F, 2019).  
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Prediction of cognate epitope- peptides for COVID-19 associated TCRs: 

We concluded that the best predictions on whether or not a given TCR will bind a 

given peptide can be obtained from the model trained only on beta chains, so we 

applied the exclusively beta chain-based models in both the first and second machine 

to TCRs retrieved from COVID-19 patients' bronchoalveolar lavage fluid. Three 

patients had moderate disease,  one had severe disease and five were defined critical 

cases(Liao et al., 2020). We tried to predict for the 40 most common SARS-Cov2 

TCR CDR3 sequences found in these patients (these TCRs do not have a known 

cognate epitope) (Liao et al., 2020) their potential binding to epitopes derived from 

SARA-Cov2 proteins. We obtained 545 SARS-Cov2 epitopes From the Adaptive 

database (https://doi.org/10.21417/ADPT2020COVID) (Nolan et al., 2020).  Of the 

40 TCRs listed, twenty CDR3 sequences were from patients with moderate disease 

and twenty sequences were from patients who were in severe or critical condition. 

Each TCR's beta CDR3 was submitted to the model with all 545 peptides, creating 

21,800 prediction scores. The results of these predictions are shown in Figure 4.  

TCRs from moderate COVID-19 patients have significantly stronger predictions for 

binding SARS-Cov2 peptide epitopes compared to TCRs from patients in 
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severe/critical condition (Figure 5, Student's t-test, p-value <0.001). Specifically, in 

the moderate group, 16 of the 20 TCRs had a least two peptides that got a prediction 

score above 0.3, with a total of 538 peptides that got this score. In the severe/critical 

group, only 9 of the TCR were predicted to bind five peptides with this score. In these 

patients, one of the TCRs got this score for 301 peptides. The difference between the 

TCRs in the two groups was their predicted ability to bind several epitopes, with 

TCRs in the moderate group displaying a greater cross reactivity than those in the 

severe/critical group.   

  

Figure 5 Model applications on the 40 most common SARS-Cov2 TCR beta CDR3 sequences 

that do not have a known cognate epitope(Liao et al., 2020). Twenty CDR3 sequences were 

from patients with moderate disease and twenty sequences were from patients who were in 

severe or critical condition. Each TCR's beta CDR3 was submitted to the model with all 

possible 545 peptides, creating 21,800 prediction scores. TCRs from moderate COVID-19 

patients have significantly stronger predictions for binding SARS-Cov2 peptide epitopes 

compared to TCRs from patients in severe/critical condition (Student's t-test, p-value 

<0.001) 
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Discussion 

We believe the strength of our machine-learning approach stems from the fact that it 

places TCR-peptide binding in the context of the structural principles governing it.  

Importantly, while the performance of the residue-residue contact prediction is far 

from perfect, it is significantly better than a random guess. Integrating the contact 

predictions into one score for the entire TCR and the entire peptide yielded strong 

predictions. We suggest this may mimic the nature of the binding process, where the 

affinity of the TCR to the peptide-MHC complex is a combination of much weaker 

residue-residue contacts. Some structural and chemical characteristics, such as 

specificity for a large hydrophobic residue, a charge, or a hydrogen bond donor, may 

induce conformational changes that lead to binding (Hausmann et al., 1999). Like us, 

recent studies have successfully used physicochemical (Moris et al., 2021; Ostmeyer 

et al., 2019; Karnaukhov et al., 2022) or biochemical (Beshnova et al., 2020) 

properties in both CDR and the peptide as features for machine learning models. 

Others have demonstrated that different TCRs that bind to the same target often share 

sequence and structural features (Lanzarotti et al., 2019; Lin et al., 2021; Karnaukhov 

et al., 2022).  

A major problem in TCR-peptide binding prediction is the absence of verified 

negative data (Moris et al., 2020). We suggest that pairing TCRs with peptides that 

belong to an entirely different cluster helped reduce the falsely labeled negative 

samples. We acknowledge, however, that with this design it is impossible to assess 

how well the method predicts the effect of small changes in a peptide.  We refrained 

from using unpaired TCRs from healthy subjects in our negative data as such data 

probably includes pathology-related sequences (Madi et al., 2014).  
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Analyzing the experimentally solved TCR-peptide complexes, we found 

that the alpha and beta chains differ in their peptide binding preferences. Beta chains 

favor hydrophobic and anion-pi interactions, which contribute to binding (Zhu et al., 

2021) and are relatively stable as they require less structural precision to obtain the 

same binding affinity of a peptide (Singh et al., 2017).  The models that we trained on 

beta chain dataset alone outperformed the ones trained on the alpha chain or on mixed 

data sets composed of both alpha and beta chains sequences. This was true for both 

our models. The fact that we got good generic learning (i.e., of the unseen-epitope 

problem) with beta chain CDR3 data alone may be helpful for future deep learning 

models, as data on this chain is abundant in TCR-epitope databases.  

A potential application of the model is to find the antigenic specificities of T cells of 

unknown specificity. We propose that using a computational model as the first step in 

such analyses may be a simpler and faster alternative that expands the available 

fitness landscape. We used our model to match TCRs from COVID-19 infected 

patients with potential cognate epitopes. Our prediction suggests that patients with 

severe disease may have fewer SARS-Cov2 TCRs than patients with mild disease. 

This may be consistent with studies that found in antibodies that the potency of the 

immune response to SARS-Cov2 is predictive of survival (Garcia-Beltran et al., 

2021). 
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