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Since the COVID-19 outbreak in Wuhan City in December of 2019, numerous model pre-
dictions on the COVID-19 epidemics in Wuhan and other parts of China have been re-
ported. These model predictions have shown a wide range of variations. In our study, we
demonstrate that nonidentifiability in model calibrations using the confirmed-case data is
the main reason for such wide variations. Using the Akaike Information Criterion (AIC) for
model selection, we show that an SIR model performs much better than an SEIR model in
representing the information contained in the confirmed-case data. This indicates that
predictions using more complex models may not be more reliable compared to using a
simpler model. We present our model predictions for the COVID-19 epidemic in Wuhan
after the lockdown and quarantine of the city on January 23, 2020. We also report our
results of modeling the impacts of the strict quarantine measures undertaken in the city
after February 7 on the time course of the epidemic, and modeling the potential of a
second outbreak after the return-to-work in the city.

© 2020 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi
Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In early December 2019, a novel coronavirus, later labelled as COVID-19, caused an outbreak in the city of Wuhan, Hubei
Province, China, and it has further spread to other parts of China and many other countries in the world. By January 31, the
global confirmed cases have reached 9,776 with a death toll of 213, and the WHO declared the outbreak as a public health
emergency of international concern (WHO, 2020). By February 9, the global death toll has climbed to 811, surpassing the total
death toll of the 2003 SARS epidemic, and the confirmed cases continued to climb globally. As governments and public
agencies in China and other impacted countries respond to the outbreaks, it is crucial for modelers to estimate the severity of
the epidemic in terms of the total number of infected, total number of confirmed cases, total deaths, and the basic repro-
duction number, and to predict the time course of the epidemic, the arrival of its peak time, and total duration. Such in-
formation can help the public health agencies make informed decisions.
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Since the start of the outbreak in Wuhan, several modeling groups around the world have reported estimations and
predictions for the COVID-19 (formerly called 2019-nCov) epidemic in journal publications or on websites, for an incomplete
list see (Bai et al., 2020; Imai, Dorigatti, Cori, Riley, & Ferguson, 2020; Read, Bridgen, Cummings, Ho, & Jewell, 2020; Shen,
Peng, Xiao, & Zhang, 2020; Tang et al., 2020b, a; Wu, Leung, & Leung, 2020; You et al., 2020; Yu, 2020; Zhao et al., 2020).
The modeling results have shown a wide range of variations (Cyranoski, 2020): estimated basic reproduction number varies
from 2 to 6, peak time estimated from mid-February to late March, and the total number of infected people ranges from
50,000 tomillions.Why is there such awide variation inmodel predictions, even among predictionsmade using transmission
models based on either the SIR or SEIR framework? We attempt to address this variability issue in our study.

A simple answer for the wide range of model predictions might be that there was too little information at the beginning of
the outbreak, especially before January 23 when Wuhan was quarantined and locked down, and that there was a lack of
reliable data, except for the confirmed case data that could be used for model calibration. Rigorous model calibration
methods, including maximum likelihood methods and the Bayesian inference based MCMC methods, already take into
consideration uncertainties in data by allowing the data at each time point to follow a probability distributionwith the mean
given by the assumed model and the variance t given by the assumed probability distribution, where the variance may
depend on the mean. The lack of data, as we will demonstrate, is a more serious concern for modellers. A key issue that can
explain the variability in model predictions is understanding how the available data (confirmed cases) compares with model
predictions. Confirmed cases are people with symptoms whomade contact with a hospital, got tested, and whose infection of
COVID-19was confirmed by DNA or imaging tests. The infected compartment in by transmissionmodels represents all people
who are infected. These include people who may or may not have symptoms and contacts with a hospital, as well as people
with confirmed laboratory tests and those who are misdiagnosed. In this sense, confirmed cases (data) are only a fraction of
the total infected population (model predictions). A metaphor of an iceberg best represents the difference between data and
model predictions. The entire iceberg represents the total infected population, and the tip of the iceberg above the sea surface
represents the case data. The part of the iceberg hidden under the water represents the infected people that are unknown to
public health surveillance and testing; often called the hidden epidemic. The difference between cases and infections can be
measured by the case-infection ratio r, between the newly confirmed cases and the number of infected people, or as a
surrogate, the ratio between the cumulative confirm cases and the cumulative number of infected people.

The case-infection ratio r can vary widely for different viral infections that spread through air droplets and close contacts.
For the SARS epidemic, the ratio rwas in the range of 1=5� 1=2 (Chowell et al., 2004; Gumel et al., 2004; Lipsitch et al., 2003;
Zhang et al., 2005). In contrast, for seasonal influenza in 2019e2020, the ratio r can be as small as 1=100, based on estimates
from the US CDC (US CDC, 2020). Why should this be a problem for the modellers? In model calibration, in order to estimate
key model parameters such as the transmission rate b, by fitting the model output to the confirmed cases data, it is necessary
to discount the total number of infectious people, IðtÞ, from the model prediction, by the case-infection ratio r to appro-
priately predict confirmed case data. For each value of the ratio r, a corresponding value for the transmission rate b can then
be estimated by fitting the model to data, which in turn determines the basic reproduction number R 0, the scale of the
epidemic, as well as the peak time. Given the potential wide range for the case-infection ratio r of the COVID-19, the esti-
mated transmission rate b has a wide range, and hence the wide range of reported model predictions.

In modeling terms, given the confirmed-case data, there is a linkage between themodel parameter r and the transmission
rate b, and potentially also with other model parameters. While many different combinations of r and b can show good fit to
the data, they can produce very different model predictions of the epidemic. This is known as nonidentifiability in the
modeling literature, see e.g. (Lintusaari, Gutmann, Kaski, & Corander, 2016; Raue et al., 2009; van der Vaart, 1998). It means
that a group of model parameters can not be uniquely determined from the given data during model calibration. Different
choices of parameter values with the same good fit to the data can lead to very different model predictions. Theways inwhich
nonidentifiability is addressed in the model calibration process greatly influences the reliability of model predictions.

The standard nonlinear least squares method is known to be ill suited to detect or address the nonidentifiability issue,
since it relies on a rudimentary optimization algorithm. These rudimentary optimization algorithms attempt to find a global
minimum of the given objective function, but there are infinitely many global minima given nonidentifiability. Standard
Markov chain Monte Carlo (MCMC) procedures based on Bayesian inference often fail to converge to the target posterior
distribution in the presence of nonidentifiability, and can produce best-fit parameter values with unreliable credible intervals,
since these often relies on elementary MCMC algorithms. Elementary MCMC algorithms converge very slowly given a very
skewed posterior distribution. In our study, we used an improved model calibration method using Bayesian inference and
affine invariant ensemble MCMC algorithm that can ensure fast convergence to the target posterior distribution when facing
nonidentifiability, and provide more reliable credible intervals and model predictions.

Another important factor that can significantly influence model predictions is the choice of a suitable model to describe
the epidemic under study: a more complex or simpler model. A complex model incorporates more biological and epide-
miological information about the epidemic and ismore biologically realistic. A drawback of a complexmodel is that it requires
more model parameters to be estimated compared to a simpler model. Given the dataset, such as the confirmed case data of
COVID-19, increased number of parameters in a complex model that are unknown and need to be estimated by model fitting
can lead to a greater degree of uncertainty in model predictions. In choosing an appropriate model, it is important to draw a
balance between biological realism and reducing uncertainty in model predictions, and this choice can significantly influence
the reliability of model predictions. The modeling procedure to determine the right balance is model selection using various
information criteria, for instance the Akaike Information Criteria (AIC) for nested models (Akaike, 1973; Sugiura, 1978).
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In our study, we considered both SEIR and SIR models for model predictions and applied model-selection analysis. For the
given dataset of confirmed cases, we determined that the SIR model is a better choice than the SEIR model, and more likely
than models that are more complex than an SEIR model (Section 3). Our study focused on the development of the outbreak in
Wuhan city after the quarantine and lockdown (January 23, 2020), given the reliability of confirmed case data and definition
during this period and the simplicity in our predictions and analysis. We briefly outline in Section 2 the methodology for
model calibration using an improved procedure based on Bayesian inference and model selection method using Akaike In-
formation Criteria. In Section 4, using the SIR model, we illustrate the linkage between the transmission rate and case-
infection ratio, and the presence of nonidentifiability when only the confirmed-case data is used for model calibration. In
Section 5, we present detailed results of the SIR model calibration and our model predictions, including the distribution of
peak time, prediction interval of future confirmed cases, as well as the total number of infected people. In Section 6, we
estimate the impact of further control measures recommended inWuhan after February 7 and predicted the changes in peak
time under different assumptions on the reduction of transmission achieved by these measures. In Section 7, we estimated
the impact of timing the return to work on the course of the epidemic, in terms of peak time, peak values, and the duration of
the epidemics. Our results are summarized in Section 8.

2. Model calibration and model selection

In this section, we give a brief description of a model calibration method based on Bayesian inference and the method of
model selection using Akaike Information Criterion (AIC). For more details the reader is referred to (Portet, 2020; Roda, 2020).
Other model calibration procedures using nonlinear squares or more general maximum likelihoodmethods are not described
here, and we refer the reader to (Rossi, 2018). Model selection methods using other information criteria can also be used, see
e.g. (Burnham & Anderson, 2002).

2.1. Affine invariant ensemble Markov chain Monte Carlo algorithm for model calibration

Mathematical Model. Consider a mathematical model given by a system of differential equations:

x’¼ f ðxÞ; (1)

where x ¼ ðx1;/; xkÞ denotes the vector of state variables, f ðxÞ ¼ ðf1ðxÞ;/fkðxÞÞ the vector field. We let u2 Rn1 be the vector
of all model parameters, which often include initial conditions x0 ¼ ðx01;/;x0kÞ. We assume that there exists a unique so-
lution x ¼ xðu; tÞ for each given u.

Data. Data is often given on the observable quantities, such as newly confirmed cases, which are linear or nonlinear
combinations of the solutions xðu; tÞ in the form:

y¼ yðw; tÞ¼ yðxðu; tÞ; vÞ;
where v2Rn2 are parameters in the observables y andw ¼ ðu;vÞ2Rn, n ¼ n1 þ n2, is the vector of all model parameters to be

estimated. Furthermore, the dataset is collected at N time points t1; t2;/; tN . We will fit the model outputs

yi ¼ yðw; tiÞ¼ yðxðu; tiÞ; vÞ; i¼1;2;/;N;

to the time series dataset
D¼fD1;D2;/;DNg:
Likelihood functions. In order to account for noise in the data, we let the probability of observing Di at time ti be given by
fiðDiÞ, withmean yi and variance qi ¼ s2i ¼ 1=ti, i ¼ 1;2;/;N. Commonprobability distributions used for this purpose include
the normal distribution, Poisson distribution, and negative binomial distribution. In our Bayesian inference, the variance qi ¼
1=ti in the noise distribution is also estimated from the data, giving us an accurate posterior distribution and accurate credible
intervals for the estimated parameters. The entire set of parameters to be estimated includes model parameters u, parameters
v in the observable function y, and the variances q ¼ ð1 =t1;1 =t2;/;1 =tNÞ, and is denoted by

q¼ðu; v; qÞ:
We consider the likelihood function

LðqÞ¼CPðDjqÞ¼C f1ðD1Þ f2ðD2Þ/ fNðDNÞ;

where C is a constant independent of q used to simplify the likelihood function (Kalbfleisch, 1979).
Bayesian framework. The Bayesian framework assumes that a probability model for the observed data D given unknown

parameters q is PðDjqÞ, and that q is randomly distributed from the prior distribution PðqÞ. Statistical inference for q is based on
the posterior distribution PðqjDÞ. Using Bayes Theorem we obtain
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PðqjDÞ ¼ PðDjqÞPðqÞ
PðDÞ ¼ PðDjqÞPðqÞZ

U

PðDjqÞPðqÞdq
f LðqÞPðqÞ ¼ pðqjDÞ;

where U is the parameter space of q and LðqÞ is the likelihood function. Constant PðDÞ ¼ R
UPðDjqÞPðqÞdq is used to normalize

the posterior distribution PðqjDÞ (Chen, Shao, & Ibrahim, 2000). The unnormalized posterior distribution is given by pðqjDÞ ¼
LðqÞPðqÞ: The Bayesian framework is very useful for statistical inference that occurs in mathematical modeling since it allows
utilization of the prior information about the unknown parameters in the literature. Epidemiological information about the
infectious disease can often inform a general range for the parameters to be estimated, and the uniform distribution is
typically chosen as the prior distribution in such a case.

Markov chain Monte Carlo algorithms. Markov chain Monte Carlo (MCMC) algorithms are used to approximate a
posterior distribution of parameters by randomly sampling the parameter space (Lynch, 2007). In MCMC algorithms, a new
vector of parameter values qðtÞ is sampled iteratively from the posterior distribution, based on the previous vector qðt�1Þ, until
a sample path (also called a chain or walker) has arrived at a stationary process and produces the target unnormalized
posterior distribution. Commonly used MCMC algorithms include the Metropolis-Hastings algorithm and Random-Walk
Metropolis-Hastings algorithms (Chen et al., 2000).

In our study, we used an improved MCMC algorithm, the affine invariant ensemble Markov chain Monte Carlo algorithm,
which has been shown to perform better than Metropolis-Hastings and other MCMC algorithms, especially in the presence of
nonidentifiability. The algorithm uses a number of walkers and the positions of the walkers are updated based on the present
positions of all walkers. For details on this algorithm, we refer the reader to (Goodman &Weare, 2010; May, 2015) and recent
lecture notes on this topic (Roda, 2020).

2.2. Method of model selection using Akaike information criterion

When using mathematical models to explain data that has been formed by an underlying disease process, the principle of
parsimony should be used to select a suitable model. A parsimonious model is the simplest model with the least assumptions
and variables but with the greatest explanatory power for the disease process represented by the data (Johnson & Omland,
2015). This principle is also reflected in awell known quotation: “Models should be as simple as possible but not simpler.” This
quotation is often ascribed to A. Einstein. The model selection method using Akaike Information Criterion takes into account
both how well the model fits the data and the principle of parsimony.

Akaike Information Criterion (AIC). Let LðbqMLEÞ be the maximum likelihood value achieved at a best-fit parameter valuebqMLE . Let K be the number of parameters to be estimated in a model, and N be the number of time points where data are
observed. The Akaike Information Criterion (AIC) is defined as (Akaike, 1973):

AIC¼ �2lnðLðbqMLEÞÞ þ 2K:
This definition should be used when K <N=40, namely when the number of time points N is large in comparison to the
number of parameters. When K >N=40; namelywhen the number of parameters is large in comparison to the number of time
points, the following corrected AIC should be used (Sugiura, 1978):

AICc ¼AIC þ 2KðK þ 1Þ
N � K � 1

:

We note that in the Bayesian inference based calibration, the unnormalized posterior distribution pðqjDÞ is equal to the
product of the likelihood function LðqÞ and the prior distribution PðqÞ. The Akaike information criterion can be applied if
uniform prior distributions are used for each parameter, since pðbqMLEÞ ¼ gLðbqMLEÞ, where g is a constant.

Model selection using AIC. When several nested models, each having a different level of complexity, are considered as
candidates for the most suitable model, AIC values can be computed for each model, and the model associated with the
smallest AIC value is considered the best model. The difference of AICi value of model i with the minimum miniAICi:

Di ¼AICi �min
i

AICi:
This measures the information lost when using model i instead of a model with the smallest AIC value. When Di is larger,
model i is less plausible.

Useful guidelines for interpreting Di for nested models are as follows (Burnham & Anderson, 2002):

� If 1 � Di � 2, model i has substantial support and should be considered.
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� If 4 � Di � 7, model i has less support.
� If Di >10, model i has no support and can be omitted.

When a large number of models are under consideration or the models are not nested, the model selection rules are
different. We refer the reader to recent lecture notes (Portet, 2020) for an introduction to model selection.

3. Model selection analysis for an SEIR and an SIR model

We used both SEIR and SIR frameworks to model the COVID-19 epidemic in Wuhan, and we applied model selection
analysis to decide which framework is more parsimonious.

3.1. The models

In our SIR and SEIR models, the compartment S denotes the susceptible population in Wuhan, compartment I denotes the
infectious population, and R denotes the confirmed cases. In the SEIR model, a latent compartment E is added to denote the
individuals who are infected but not infectious. The latency of COVID-19 infection is biologically realistic due to an incubation
period as long as 14 days; newly infected individuals may not be infectious while the virus is incubating in the body. Here we
note the difference between the latent period, which is the period from the time an individual is infected to the time the
individual is infectious, and the incubation period, which is the period between the time an individual is infected to the time
clinical symptoms appear, which include fever and coughing for COVID-19. For SARS, infected individuals become infectious
on average two days after the onset of symptoms WHO (2003); so, the SARS latent period is on average longer than the
incubation period. For COVID-19, evidence has shown that infected individuals can be infectious before the onset of symp-
toms (Bai et al., 2020), but the length of the latent period is largely unknown. In comparison to the SIR model, the SEIR model
has the strength of being more biologically realistic, but the SEIR model has the drawback of having two additional unknown
parameters: the latent period and the initial latent population.

The transfer diagrams for both models are shown in Fig. 1. The biological meaning of all model parameters are given in
Table 1 and Table 2. A key assumption in both models is that deaths occurring in the S, E, and I compartments are negligible
during the period of model predictions.

(4 months). Since we use the newly confirmed case data for model calibration, which is matched to the rI term in both
models, the death term in the R compartment has no effect on ourmodel fitting. The systems of differential equations for each
model is given below:

S’ ¼ �bIS
I’ ¼ bIS� ðrþ mÞI
R’ ¼ rI � dR

(2)

S’ ¼ �bIS

E’ ¼ bIS� εE
I’ ¼ εE � ðrþ mÞI
R’ ¼ rI � dR

(3)
3.2. Model calibration from the data

For data reliability, the data used for both models (2) and (3) is the newly confirmed cases in Wuhan city from the official
reports from January 21 to February 4, 2020 (National Health Commission of the People’s Republic of China, 2020). It is
common to use a Poisson or negative binomial probability model for observed count data. When the mean of a Poisson or
negative binomial distribution is large, it approximates a normal distribution. Since the newly confirmed cases are
approaching large values quickly, the distribution of the count data will be approximately normal and the probability model
for the observed count data in our studywas assumed to a normal distributionwithmean given by rI and variance given by 1=
t. There are four parameters to be estimated in the SIR model from data: transmission rate b, diagnosis rate r, the initial
population size I0 for the compartment I on January 21, 2019 (t ¼ 0), and the variance q ¼ 1=t for the noise distribution in the
Fig. 1. Transfer diagrams for an SIR and an SEIR model for COVID-19 in Wuhan.



Table 1
Parameters in the SIR model (2) and their estimations from the confirmed case data.

Epidemiological Meaning Best-fit Value 95% Credible Interval Prior

b Transmission rate 9:906e�8 ð7:02e�8, 2:09e-7Þ Uð1e-10;1e-5Þ
r Diagnosis rate 0.24 ð0:064;0:901Þ Uð0:01;1Þ
m Recovery rate 0.1 fixed value source (You et al., 2020)
I0 Size of I on 01/20/2020 245 ð65; 890Þ Uð1; 8400Þ
t 1=t is the variance of data noise 2:62e�5 ð1:43e-5;4:33e-5Þ Uð1e-8;100Þ

Table 2
Parameters in the SEIR models and their estimations from the confirmed case data.

Epidemiological Meaning Best-fit Value 95% Credible Interval Prior

b Transmission rate 8:68e�8 ð8:20e�8, 1:26e-7Þ Uð1e-10;1e-5Þ
r Diagnosis rate 0.018 ð0:016;0:024Þ Uð0:01;1Þ
m Recovery rate 0.1 fixed value source (You et al., 2020)
ε Transfer rate from E to I 0.631 ð0:263;0:78Þ Uð0:07;1Þ
E0 Size of E on 01/20/2020 1523 ð3444; 4682Þ Uð1; 1700Þ
I0 Size of I on 01/20/2020 3746 ð3278; 4171Þ Uð3200;6700Þ
t 1=t is the variance of data noise 2:61e�5 ð1:43e-5;4:13e-5Þ Uð1e-8;100Þ
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data. There are six parameters to be estimated for the SEIR model: transfer rate ε from E to I, the initial population size E0 for
the latent compartment E on January 21, 2019, and b, r, I0, and q ¼ 1=t. Since it was announced at a news conference by the
mayor of Wuhan on January 23 that 5 million people have left the city by that date, we set the total population N ¼ Sþ Iþ R in
Wuhan on January 21 to the conservative estimate of 6 million.

We used the same uniform distributions over the initial range of parameters as the priors for both models, as given in
Tables 1 and 2. The affine invariant ensemble Markov chain Monte Carlo algorithm was used to produce posterior distri-
butions for all estimated parameters. From these posterior distributions, we obtain the best-fit values and the 95% credible
intervals, as given in Table 1 for the SIR model (2) and in Table 2 for the SEIR model (3).

3.3. Comparing SIR and SEIR models

Using the calibration results for both the SIR and SEIR models in Section 3.3, their corrected Akaike Information Criterion
AICc are calculated as 174 and 186, respectively. The difference D ¼ 186� 174 ¼ 12 is sufficiently large and this implies that
using the SEIR model (3) will produce a significant loss of information in comparison to using the SIR model (2). Accordingly,
our further investigation will be carried out using the SIR model (2).

4. Nonidentifiability: linkage between transmission rate b and diagnosis rate r

Based on our calibration results of the SIR model in Section 3.3, we detected a linkage between the transmission rate b and
the diagnosis rate r. In Fig. 2 (a), we show the projection of the unnormalized posterior distribution in the b-r parameter
Fig. 2. Linkage between transmission rate b and diagnosis rate r.



Fig. 3. Model projections using two likely b-r combinations, corresponding to two endpoints on the curve in Fig. 2 (b). Day 0 is January 21, 2020.
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space. It shows that the largest probability are concentrated along a flat strip rather than on a single point. Correspondingly, as
shown in Fig. 2 (b), a curve in the b-r parameter space can be determined such that every point on the curve has approxi-
mately the same large probability. The linkage between two or more parameters implies the following: (1) the best-fit
parameter values are effectively not unique; and (2) there is a continuum of parameter values that cause the model to fit
the data approximately equally as well. This phenomenon is often referred to as nonidentifiability in the modeling literature.

To further illustrate the significant impact of nonidentifiability on model predictions, we choose two endpoints on the
curve in Fig. 2 (b), with respective values ðb; rÞ ¼ ð2:09e-7;0:909Þ and ðb; rÞ ¼ ð7:34e-8;0:084Þ, and we plotted the corre-
sponding projected new cases in Fig. 3(a) and (b), respectively. Fig. 3 shows that the peak height, as well as the duration and
scale of the epidemic are different in the two projections, even though both choices of parameter values are effectively equally
likely to produce the best fit between the model outcomes and the data.

A striking feature in Fig. 3 is that the peak time of the two different projections are almost identical. This illustrates that,
unlike the peak value, the peak time of the epidemic is insensitive to small parameter changes. This important property of the
peak time will also be observed in later sections.

We further note that the diagnosis rate r is the case-infection ratio that is used to discount of the number of infected
individuals IðtÞ to properly predict the newly confirmed cases. The linkage between b and r reflects the dependency of the
transmission rate and the case-infection ratio, and hence the scale of the epidemic. We believe that this nonidentifiability is
the reason for the wide variability in published model predictions of COVID-19 epidemic.

To reduce the impact of nonidentifiability in model calibration from data, one approach is to search for more independent
data, including clinical, surveillance, or administrative data, and from published literature, that can be used for model cali-
bration. This approach is often difficult when facing an outbreak of unknownpathogens that occur in real time such as SARS in
2003 and the current COVID-19. Another approach is to adopt better inference methods and model fitting algorithms to
narrow done the otherwise large confidence or credible intervals. Our fitting procedure using Bayesian inference and the
affine invariant ensemble Markov chain Monte Carlo algorithm was able to achieve this objective.
5. Baseline predictions for Wuhan and three scenarios

Our baseline predictions for Wuhan are prediction intervals produced by randomly sampling the posterior distribution.
The best-fit parameter values and credible intervals are shown in Table 1. The Bayesian inference used the newly confirmed
cases for Wuhan contained in the official reports from January 21 to February 4, 2020. This is the period during the lockdown
and travel restrictions in Wuhan, but before the further control measures that were undertaken in Wuhan after February 7,
2020, including the drastic increase in the available hospital beds and the door-to-door visits used to identify and quarantine
suspected cases. These projections show our estimation for the hypothetical epidemic in Wuhan if further control measures
after February 7 were not implemented.

In Fig. 4(a) and (b), we show the distributions of the projected peak time and the estimated values of the control
reproduction number R c. In Fig. 4 (c), we show the projected time course of newly confirmed cases in Wuhan together with
its 95% prediction interval. The fit of our model predictions and the newly-confirmed case data is shown for the period
between January 21 to February 4 in Fig. 4 (d). Based on these projections, if the more restrictive control measures after
February 7 in the city were not implemented, the most likely peak time would have occurred on February 27, 2020, with the
95% credible interval from February 23 - March 6. The median value of R c is 1.629 with the first quantile 1.414 and the third
quantile 1.979. By our projection, without the strict quarantine measures after February 7, the peak case total would reach
approximately 120;000, and the epidemic in Wuhan would not be over before mid-May of 2020.



Fig. 4. Distributions of estimated peak time (a) and control reproduction number R c (b) for COVID-19 epidemic in Wuhan after lockdown. The dashed lines
represent the 95% prediction intervals for the time course of COVID-19 epidemic in Wuhan after lockdown (c) and (d). Day 0 in simulations is set at January 21,
2020.
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At the time of this manuscript, the consensus among medical experts is that the basic reproduction number R 0 near the
beginning of the COVID-19 outbreak inWuhan is around 2. Our result in Fig. 4 (b) is comparable with earlier estimates and the
current consensus. It also shows that, even without the more restrictive control measures in Wuhan undertaken after
February 7, the lockdown and travel restrictions in the city had slowed down the transmission and reduced the basic
reproduction number to a control reproduction numberR c with amean value 1.629.Wewill estimate the impact of the more
restrictive control measures in Section 6.

The baseline prediction intervals are computed over a large credible interval of the diagnosis rate r, ð0:0637;0:909Þ, which
represents a wide range of assumptions on the case-infection ratio and the scale of the epidemic in Wuhan. We further
restricted the parameter r to three narrower ranges: ð0:02;0:03Þ, ð0:05;0:1Þ, and ð0:2;1Þ, and recalibrated the SIR model (2)
with each of the r ranges. The resulting predictions for newly confirmed cases are shown in Fig. 5.
Fig. 5. Model predictions of time courses of COVID-19 epidemic in Wuhan with three different ranges of diagnosis rate r: ð0:02;0:03Þ, ð0:05;0:1Þ, and ð0:2;1Þ. Day
0 in the simulations is set at January 21, 2020.



Fig. 6. Predictions of the COVID-19 epidemic in Wuhan with more strict quarantine measures after February 7, 2020. Impacts of reductions in transmission rate b
and increases in diagnosis rate r are shown in (a). Impacts of only reducing the transmission rate (b) or only increasing the diagnosis rate (c) are also shown for
comparison purposes.
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In Fig. 5, different r ranges have resulted in significant variations in the peak value of cases and the duration of the
epidemic. In contrast, the projected peak times are very similar in all three cases, which further demonstrates that the peak
time is insensitive to changes in parameters.

6. Impacts of more strict quarantine measures in Wuhan after February 7

After February 7, 2020, Wuhan implemented more strict quarantine measures that included the following: locking down
residential buildings and compounds, strict self quarantine for families, door-to-door inspection for suspected cases, quar-
antining suspected cases and close contacts in newly established hospitals and other quarantine spaces including vacated
hotels and university dormitories. The goal of these measures was to reduce transmissions within family clusters and resi-
dential compounds. These measures have a direct impact on two parameters in our SIR model (2): reducing the transmission
rate b and increasing the diagnosis rate r: It is difficult to estimate the exact impacts on these parameters by these measures.
We incorporated several likely scenarios of the effects of thesemeasures by adjusting our baseline estimates of b and r andwe
plotted the resulting time courses in Fig. 6.

In Fig. 6 (a), we see that a combination of a 10% reduction in the transmission rate b and a 90% increase in the diagnosis rate
r can effectively stop the epidemic in its tracks, force the newly diagnosed cases to decline, and significantly shorten the
duration of the epidemic.

7. Potential of a second outbreak in Wuhan after the return-to-work

With newly diagnosed cases on the decline in Wuhan and other cities in China since February 14, an urgent task for the
authorities is to decide when to allow people to go back to work. Without lifting the ban on traffic in and out of the city, we
tested three hypotheses of allowing people to return to work in Wuhan at three different dates: February 24, March 2, and
March 31. As shown in Fig. 7, our results predict a significant second outbreak after the return-to-work day.

8. Conclusions

The COVID-19 epidemics have presented China and many other countries in the world with an unprecedented public
health challenge in the modern era, with a significant impact on health and public health systems, human lives and national
and world economies. Mathematical modeling is an important tool for estimating and predicting the scale and time course of
epidemics, evaluating the effectiveness of public health interventions, and informing public health policies. The focus of our
study is to demonstrate the challenges facing modelers in predicting outbreaks of this nature and to provide a partial
explanation for the wide variability in earlier model predictions of the COVID-19 epidemic.

Our study focused on the COVID-19 epidemic in Wuhan city, the epicentre of the epidemic, during a less volatile period of
the epidemic, after the lock down and quarantine of the city. By comparing standard SIR and SEIR models in predicting the
epidemic using the Akaike Information Criterion, we showed that, given the same dataset of confirmed cases, more complex
models may not necessarily be more reliable in making predictions due to the larger number of model parameters to be
estimated.

Using a simple SIR model and the dataset of newly diagnosed cases inWuhan for model calibration, we demonstrated that
there is a linkage between the transmission rate b and the case-infection ratio r, which resulted in a continuum of best-fit
parameter values, which can produce significantly different model predictions of the epidemic. This is a hallmark of non-
identifiability, and the root cause for variabilities in model predictions. The nonidentifiability should not be interpreted as a
shortcoming of transmission models; neither is it caused by the limited number of time points in data. Rather, it is caused by



Fig. 7. Model predictions of time courses of COVID-19 epidemic in Wuhan with return to work on (a) February 24, (b) March 2, and (c) March 31, 2020.
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the lack of datasets that are independent of the conirmed cases to allowmodelers to produce independent estimates of b and
r. The reliability in model predictions depends on how rigorously the nonidentifiability is addressed in model calibration and
on the choice of parameter values.

We demonstrated that Bayesian inference and an improved Markov chain Monte Carlo algorithm, the affine invariant
ensemble Markov chain Monte Carlo algorithm, can significantly reduce the wide parameter ranges in the uniform prior and
produce workable credible intervals, even in the presence of nonidentifiability. We showed that the estimated credible in-
tervals for the parameters are sufficiently small to allow our credible interval for the peak time to fall within a week. We have
further demonstrated that the peak time of the epidemic is much less sensitive to parameter variations than the peak values
and the scale of the epidemic. This was also observed in our previous work on predicting seasonal influenza for the Province
of Alberta.

We estimated the impact of theWuhan lockdown and traffic restrictions in the city after January 23 and before February 6,
2020. We show that if the more restrictive control and prevention measures were not implemented in the city, the epidemic
would peak between the end of February and first week of March of 2020. Our results can be used to inform public health
authorities on what may happen if the more strict quarantine measures after February 7 were not taken.

When themore restrictive measures are incorporated into our model, including the lock down of residential buildings and
compounds, the door-to-door search of suspected cases, and the quarantine of suspected cases and their close contacts in
newly established hospitals and quarantine spaces, we showed that thesemeasures can effectively stop the otherwise surging
epidemic in its tracks and significantly reduce the duration of the epidemic. These findings provide a theoretical verification
of the effectiveness of these measures.

We further considered the impact of the return-to-work order on different dates in February and March on the course of
the outbreak. Our results show that a second peak inWuhan is very likely even if the return-to-work happens near the end of
March 2020. This may serve as a warning to the public health authorities.
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