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Abstract

COVID-19 serological tests with a "positive", "intermediate" or "negative" result
according to predefined thresholds cannot be directly interpreted as a probability
of having been infected with SARS-CoV-2. Based on 81,797 continuous anti-spike
tests collected in France after the first wave, a Bayesian mixture model was devel-
oped to provide a tailored infection probability for each participant. Depending on
the serological value and the context (age and administrative region), a negative
or a positive test could correspond to a probability of infection as high as 61.9%
or as low as 68.0%, respectively. In infected individuals, the model estimated a
proportion of "non-responders" of 14.5% (95% CI, 11.2-18.1%), corresponding
to a sub-group of persons who exhibited a weaker serological response to SARS-
CoV-2. This model allows for an individual interpretation of serological results
as a probability of infection, depending on the context and without any notion
of threshold.

Keywords: SARS-CoV-2, COVID-19, Bayes’ theorem, Mixture model

1 Introduction

Provided with the result of a dichotomous diagnostic test ("positive" or "negative"),
estimating the probability that a disease of interest is present is not straightforward.
This post-test probability can be computed according to Bayes’ rule using estimates of
the disease’s frequency ("prior probability") and of the test’s sensitivity and specificity
("likelihood"), but complexity arises when modeling biological and epidemiological
features of the pair disease-test and estimating uncertainty (confidence intervals) to
correctly reflect the amount of information at hand.

In that sense, serosurveys that took place after the first wave of SARS-CoV-2 pandemic
to quantify its extent were facilitated by convenient kinetic properties of biological
response in an immunologically naive population [1]. Indeed, as symptoms can follow
infection by a week (on average) and hospitalization follows symptoms by another
week (if s0), anti-spike immunoglobulin G (IgG) rises within a month after the infec-
tion and remain stable during several months (contrary to other immunoglobulins
or to vaccine response) [2-7]. To summarise, in the summer of 2020, anti-spike IgG
of infected persons had already risen but had not yet decreased, which in particular
allowed for the use of cross-sectional methodologies in serosurveys. In France, several
studies were based on a test produced by Euroimmun that measured the presence of
IgG targeting the S1 domain of the SARS-CoV-2 spike protein [8-10]. Seroprevalence
(the proportion of samples above the 1.1 cut-off value recommended by the manufac-
turer) was estimated to be about 5% in the whole country and 10% in Ile-de-France
(Paris area). This 1.1 threshold (optical density ratio) was associated with a sensitiv-
ity of 91.4% (92.7% when excluding tests realized less than 14 days after symptoms
onset) and a specificity of 98.6% [11].

At the population scale, deducing cumulative incidence (the proportion of persons hav-
ing been infected since the beginning of the pandemic) from seroprevalence requires
to take sensitivity and specificity into account, possibly through Bayesian methods
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(as a mean to preserve uncertainty) [12]. This process usually involves three samples:
two of them include individuals of known infection status to estimate the test’s char-
acteristics (sensitivity from infected individuals and specificity from uninfected ones),
and the third sample includes individuals of unknown infection status (undetermined
sample) from which cumulative incidence is estimated. Methods like post-stratification
can be applied if this third sample does not correctly represent the target popula-
tion (selection bias). A spectrum bias occurs when the sample of known infected is
not representative of infected individuals in the population under study. This bias
is often suspected, as symptomatic individuals are more likely to be detected and
therefore recruited to study sensitivity, and are also more likely to have higher anti-
body levels [13-16]. In that case, a sensitivity parameter can be estimated in each
infected sub-group (symptomatic or asymptomatic). Cumulative incidence will then
be computed using the appropriate sensitivity parameter, according to the presence
of symptoms in the unknown status sample, necessitating to record the presence of
symptoms during data collection. Mixture models constitute an appealing solution in
the case where such variables are not available in the data, as continuous distribu-
tions of serological results can be estimated for both groups (infected and uninfected)
directly from the sample of undetermined infection status (hence not relying entirely
on biased validation samples) [17, 18|. Briefly, a mixture model can be described in
the present case as a weighted average of several continuous probability distributions
(one distribution for each sub-population, the weights being the proportions of these
sub-populations in the overall population). These models are however prone to identi-
fication issues, corresponding to situations where more than one tuple of parameters’
values are consistent with the data (this happens notably when one sub-population
can "explain" the whole data mixture) [19]. As a result, MCMC convergence issues
can occur due to several local maxima in the posterior distribution of parameters.
Finally, predictions at the individual scale (in the present case, retrodictions) should
take advantage of covariates that influence cumulative incidence, test’s characteristics,
as well as all the information contained in the test. Concretely, keeping the test con-
tinuous by the means of a mixture model has been shown to outperform cut-off-based
methods (which dichotomize the test) in terms of accuracy [18].

This study aimed at refining COVID-19 retrospective diagnostic at the individual
scale by applying a Bayesian mixture model to continuous serological data collected
in France after the first wave of the pandemic, taking age and geographic area into
account. Plus, the model was used to quantify a proportion of "non-responders" (an
imperfectly-defined group of persons whose antibody levels do not increase, or increase
only slightly, after a SARS-CoV-2 infection), which has been reported to lie between
5 and 24% depending on classification criteria and methodologies [20, 21].

2 Results

2.1 Participants

All samples were collected between May and November, 2020. Among the total cohort
of 82 467 individual with one serological test, 319 had a positive RT-PCR test and
constituted the sample with known infection (mean age of 52 years, 29% men, mean
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elapsed time between the RT-PCR and dried blood sampling of 100 days, with a
minimum of 12 days and a maximum of 190 days). After excluding 351 samples of
individuals with missing data on administrative region of residence, the sample of
undetermined status individuals included the remaining 81 797 individuals (mean
age 58 years, 35% men). No known uninfected group was available. The number of
observations for each region and each age group is provided in Supplementary Tables 1
and 2. Corsica was not considered in the illustrative example of infection retrodiction
below due to the low count of tests made in this region.

2.2 Cumulative incidence and infection-outcome rates

Cumulative incidence of COVID-19 among adults in metropolitan France after the
first wave was 7.6% (95% CI, 7.3 to 7.9%), with a peak at 11.7% (95% CI, 11.0 to
12.4%) in Ile-de-France (Paris area). Figure 1 features a map of metropolitan France

COVID-19
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incidence
10%

8%

6%

4%

Fig. 1 Regional cumulative incidence of COVID-19 after the first wave in metropolitan France

showing the heterogeneity in cumulative incidence associated with location (exhaustive
regional estimates are provided in Supplementary Table 3). IHR and IFR at the scale
of metropolitan France were 2.6% (95% CI, 2.5 to 2.7%) and 0.8% (95% CI, 0.8 to
0.9%), respectively.

Age-specific cumulative incidences, IHR and IFR are presented in Table 1. The two
groups with the highest cumulative incidences were 30-39 year-old persons (13.6%,
95% CI from 12.7 to 14.4%) and 40-49 year-old persons (13.5%, 95% CI from 12.8 to
14.1%). THR and IFR varied strongly with age, peaking respectively at 33.7% (95% CI


https://doi.org/10.1101/2023.09.15.23295603
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2023.09.15.23295603; this version posted September 15, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

Table 1 Cumulative incidence and infection-outcome rates depending on age (mean
estimates and 95% credible intervals)

Age Cumulative incidence (%) IHR (%) IFR (%)
20-29 7.1 (5.7 —8.7) 04  (03-05) 00l (0.00—0.01)
30-39 136  (12.7—14.4) 04  (0.4-04) 001 (0.01—0.01)
40-49 135 (128 14.1) 0.6  (06-06) 003 (0.02—0.03)
50-59 5.8 (5.3 — 6.2) 25  (23-27) 02  (0.2-0.2)
6069 3.4 3137 64  (5.8-7.0) 1.0  (0.9-11)

( )
70-79 3.1 (2.8 —3.3) 1.6 (10.6 —12.6) 3.2 (3.0 — 3.5)
>80 2.6 (2.0 — 3.2) 337  (26.2-43.3) 216  (16.8 —27.8)

THR: infection hospitalization rate.
IFR: infection fatality rate.

from 26.2 to 13.3%) and 21.6% (95% CI from 16.8 to 27.8%) in persons older than
80 years.

2.3 Distribution of ELISA and cut-off based test characteristics
Observed and inferred ELISA ODR distributions are displayed in Figure 2. Among
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Fig. 2 Observed and inferred ELISA distributions

infected individuals, the proportion of non-responders was estimated to be 14.5%
(95% CI, 11.2% to 18.1%). These distributions imply an AUC of 92.6% (95% CI, 90.0%
to 94.9%). Comparing the two manufacturer cut-offs (0.8 and 1.1 ODR) in terms of
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Younden’s J statistic favors the 0.8 cut-off, with a mean absolute difference of 5.0%
(95% CI, 3.9% to 6.2%). Estimated sensitivities, specificities and Younden’s J statistics
are displayed in Table 2.

Table 2 Characteristics of the serological test depending
on the cut-off

Cut-off: 0.8 Cut-off: 1.1

Sensitivity (%) 81.3 (77.0—85.7)  76.0 (71.4—80.7)
Specificity (%)  99.7 (99.7—99.7) 100 (100 — 100)
J statistic* 81.0 (76.7—85.4)  76.0 (71.4— 80.6)

*Younden’s J statistic

2.4 COVID-19 retrospective diagnosis: an illustrative example

Figure 3 illustrates how the probability of having been infected is related to the ODR
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Fig. 3 Influence of age, region and ELISA ODR on the probability of infection

in two regions and three age groups representing the range of contextual cumulative
incidences. Given a negative ELISA test, the infection probability could be as high as
61.9% (95% CI, 54.0 to 68.1%), corresponding to an ELISA result of 0.8 for a person
of 40-49 years living in Ile-de-France (region with the highest cumulative incidence).
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Conversely, a positive ELISA was compatible with a probability of infection as low as
68.0% (95% CI, 59.7 to 75.1%), corresponding to an ELISA result of 1.1 for a person
older than 80 years living in Bretagne (region with the lowest cumulative incidence,
excepting Corsica).

When considering a person of 60-69 years living in Nouvelle-Aquitaine (for example),
an intermediate ELISA value could lead to infection probabilities as diverse as 15.7%
(95% CI, 11.5 to 19.8%) if the ODR was 0.8 and 76.5% (95% CI, 71.8 to 80.6%) if the
ODR was 1.1.

An exhaustive interactive table returning infection probability given age, region and
ELISA is provided in Supplementary Table 4 (Supplementary media file).

3 Discussion

3.1 Interpretation

Implementing a mixture model allowed for the estimation of continuous distributions
of ELISA in infected individuals as well as in uninfected ones, even if no data of known
uninfected individuals were available. By showing how an ELISA result from a tri-
chotomous test (negative, intermediate or positive) could encompass various infection
predictions due to different contexts and ELISA ODR, this study helps to explain
surprising serological results during the first wave of COVID-19 (such as individuals
having had specific COVID-19 symptoms but negative ELISA results). These situa-
tions can in fact be compatible with a high probability of infection in areas and age
groups with high cumulative incidences if the ODR is not too low.

Another finding from this cohort and model is the size of the "non-responding" sub-
population, estimated to be about 14.5% of the infected group. However, like any
clustering method, this part of the mixture model provided no further characteriza-
tion of this population beyond the parameters of P(ELISANg), namely an expected
value and a standard deviation. In the current work, a major benefit of having mod-
eled this sub-group was the quality of the model’s fit to the data.

This study estimated COVID-19 cumulative incidence at 7.6% after the first wave in
France, close to the one estimated in seroprevalence studies (about 5% in the whole
country, and 10% in the most affected areas) with independent data or different meth-
ods [8-10, 22|. Likewise, the highest cumulative incidence between 30 and 49 years
was in line with the higher seroprevalence previously reported in these age groups [§].
Infection-hospitalization and infection-fatality rates rose at exponential paces with age
in adults, in a similar magnitude of those previously reported [22-26].

3.2 Limitations and assumptions

Several modeling hypotheses were made. First, the distribution of ELISA values in
infected individuals did not take age into account, whether directly or through the
proportion of non-responders. Similarly, the decrease of antibody levels with time was
not modeled, based on the slow waning of anti-spike 1 IgG reported after a natural
SARS-CoV-2 infection and since time between infection and testing could not exceed
nine months in the current study [5].
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The survey spread over 6 months (from early May to early November). Nevertheless,
serological tests were analyzed regardless of the sampling date. This strategy was jus-
tified by two assumptions: that anti-spike IgG would remain stable, and that new
infections were unlikely to occur over this time lapse. The weekly incidence between
the first and the second wave was indeed very low, as reflected by a low number of
hospitalizations. Supplementary Fig. 1 displays the timing of sampling in comparison
with the timing of hospitalizations in France during this period.

Another limitation was due to identification issues, which probably arose from a low
cumulative incidence (resulting in a unimodal observed distribution for the mixture, as
displayed in Figure 3), enforcing the fitting aside of infected individual’s ELISA distri-
bution (as described in section 4.6). As a consequence, the uncertainty in cumulative
incidence was under-estimated (only mean estimates of ELISA distribution in infected
persons having been used at this step). This uncertainty was however restored when
computing sensitivity, AUC and infection probability (except for its part of uncertainty
due to cumulative incidence). This sequential approach (known as the plug-in prin-
ciple) had a second drawback, as a potential spectrum bias (if present) could not be
taken into account (ELISA distribution being only estimated from the known infected
individuals).

Lastly, inevitably arbitrary choices for likelihood functions were made. A skew normal
distribution was specified for ELISA in the uninfected group, and a mixture of two
normal distributions handled the skewness of the overall ELISA distribution in the
infected group. These specifications are similar to those of other published mixture
models for SARS-CoV-2 serological data, yet adding some extra flexibility at the cost
of a few more parameters [17].

4 Methods

4.1 Serological data

The SAPRIS-SERO survey serological data, previously described, were used in the
present study [9, 10, 27]. Based on the SAPRIS cohort (including three general popula-
tion based adult cohorts), randomly selected participants over 18 year old with regular
access to the internet and living in France were invited to take a dried-blood spot by
themselves. Samples were sent to a virology laboratory (Unité des virus émergents,
Marseille, France) for serological analysis using a commercial ELISA test (Euroimmun,
Liibeck, Germany) detecting anti-SARS-CoV-2 IgG directed against the S1 domain of
the spike protein of the virus. The results of ELISA assays performed using dried-blood
spot samples demonstrated a 98.1 to 100% sensitivity and a 99.3 to 100% specificity
with conventional serum assays as a standard [28, 29]. A maximum of one test per
participant was performed. Participants reporting a positive RT-PCR test were con-
sidered infected. Ethical approval and written or electronic informed consent were
obtained from each participant before enrollment in the original cohort. The SAPRIS-
SERO study was approved by the Sud-Mediterranée III ethics committee (approval
20.04.22.74247) and electronic informed consent was obtained from all participants for
dried blood spot testing. The study was registered (#NCT04392388).
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4.2 Hospital and demographic data

The French population structure by 10-year age class and administrative region
came from the Insee 2020 census (Institut national de la statistique et des études
économiques) [30]. The data about COVID-19-related hospitalizations before the 1st
of July 2020, by 10-year age class or by region (not both simultaneously) were obtained
from SIVIC, the exhaustive national inpatient surveillance system used during the
pandemic [31]. The data about general population mortality attributed to COVID-19
before the 1st of July 2020 were obtained from the CépiDc (Centre d’épidémiologie
sur les causes médicales de déces) [32].

4.3 Model

The statistical analysis was carried out within a Bayesian framework, estimating a
posterior joint distribution of parameters and possibly including non-uniform prior
distributions. In the rest of this section, prior distributions are not always explicitly
written. If so, the distribution in question is uniform.

Serological results, originally expressed as optical density ratios (ODR), were mod-
eled after a logarithmic transformation to be compatible with the use of unbounded
probability functions. In the following, P(ELISA) refers to the distribution of the log-
ODR of serological assays, I refers to the set of age classes (10-year groups, from 20
to 90 years, with persons older than 90 included in the 80-89 years group) and J is
the set of French administrative regions. The distribution of ELISA in the undeter-
mined group (unknown infection status) in an age class i € I and a region j € J,
which is P(ELISAJi, j), was modeled as a mixture of the distributions P(ELISA)
and P(ELISA_) of ELISA in infected and uninfected individuals, respectively, with
a proportion p; ; of persons having been infected (which is the cumulative incidence
given i and j):

P(ELISA[i, j) = pi; x P(ELISA}) + (1 — p; ;) x P(ELISA_)

In uninfected individuals, ELISA results were modeled with a skew-normal distribu-
tion. The distribution of ELISA in infected individuals was itself a mixture of two
normal distributions, the one of responders (ELISAg) and the one of non-responders
(ELISAnR), with pyr as the proportion of non-responders (this two-component dis-
tribution allowing for some skewness). A prior beta distribution for png was specified
to imply a prior 95% credible interval (95% CI) ranging from 1 to 40% (and thus
covering the 5 to 24% estimates previously reported):

ELISA_ ~ Skew-normal(¢,w, @)
P(ELISA,) = (1 — pxr) % P(ELISAR) + pag x P(ELISAxR)
ELISAR ~ Normal(ug, or)
ELISAnxg ~ Normal(uxg, oONR)
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Cumulative incidence on the logit scale, for an age class i € I and a region j € J, was
the sum of a regional intercept and a log-odds ratio of age, without interaction:

eyi,j
Phi = T ems
Yij = 0 +

A weakly informative normal prior distribution was specified for age log-odds ratios
(6:), with mean 0 and standard deviation 1.

4.4 Post-stratification and infection-outcome rates

To correct for a selection bias consisting in differences in age and geographical struc-
tures between the French population and the SAPRIS-SERO cohort, age-specific
cumulative incidences were reconstructed by post-stratification from p;; terms,
considering the population sizes pop; ; of the different groups:

Pop; ;
bi = Z — x Pi,j

jes POPi

Similarly, metropolitan France’s cumulative incidence was obtained from p; terms:

POp;
DPFrance = X i
icl POPFrance

Overall and age-specific IHR (infection-hospitalization rates) and IFR (infection-
fatality rates) were then computed as ratios of the number of hospitalizations or deaths
to the number of infected persons.

4.5 Infection probability given serological results and context

The probability p,;; of having been infected given an ELISA value z, an age
group i and a region j was computed using Bayes’ rule. With P(zl|infected) and
P(z|uninfected) being the probability densities of the ELISA value z in the infected
and uninfected groups, respectively,

P(z|infected) X p; ;
P(z|infected) X p; ; + P(x|uninfected) x (1 — p; ;)

Pax,ij =

4.6 Algorithm and software

The data management used the R software version 4.2.3 and the modeling was done
with the Stan software (R package cmdstanr version 0.5.3), which implements Hamil-
tonian Monte Carlo [33, 34]. The Monte Carlo sampling consisted in 6 chains of 2 000
iterations each (including 1 000 warm up iterations). Trace plots, R statistics and
effective Monte Carlo sample sizes provided by Stan were used to assess convergence.
The model’s code (in Stan) is provided in Supplementary Code 1.

10
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Due to identification issues when fitting the mixture model, the distribution of ELISA
values in infected individuals was estimated aside (319 persons with positive RT-PCR,
see below). Mean parameters’ estimates of this distribution were then introduced as
data in the main model, following the plug-in principle [35, 36]. When computing the
quantities derived from this distribution in the main model, namely sensitivity, AUC
(area under the receiver operating characteristic curve) and infection probabilities,
uncertainty was restored by drawing from posterior distributions of the first model’s
parameters (more precisely, in normal approximations of these posterior distributions)
at each MCMC iteration.

Supplementary information. The Supplementary information file attached with
this article contains:

e Tables of the participants’ age and region (Supplementary tables 1 and 2)

e A table of exhaustive cumulative incidence estimates along with the number of
samples per region (Supplementary table 3)

o A figure of weekly COVID-19 related hospitalizations and serological tests in
SAPRIS-SERO (Supplementary figure 1)

e The Stan code for the model (Supplementary code 1)

e The list of the SAPRIS-SERO study groups’ members (Supplementary note 1)

® An interactive table returning the probability of infection given ELISA, age and
region (Supplementary table 4, in the Supplementary media file)
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