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Abstract

We present a robust data-driven machine learning analysis of the COVID-19 pandemic from its
early infection dynamics, specifically infection counts over time. The goal is to extract actionable
public health insights. These insights include the infectious force, the rate of a mild infection
becoming serious, estimates for asymtomatic infections and predictions of new infections over
time. We focus on USA data starting from the first confirmed infection on January 20 2020.
Our methods reveal significant asymptomatic (hidden) infection, a lag of about 10 days, and
we quantitatively confirm that the infectious force is strong with about a 0.14% transition from
mild to serious infection. Our methods are efficient, robust and general, being agnostic to the
specific virus and applicable to different populations or cohorts.

1 Introduction

As of March 1 2020, there was still much public debate on properties of the COVID-19 pandemic
(see the CNN article, Cohen (2020)). For example, is asymptomatic spread of COVID-19 a major
driver of the pandemic? There was no clear unimodal view, highlighting the need for robust tools to
generate actionable quantitative intelligence on the nature of a pandemic from early and minimal
data. One approach is scenario analysis. Recently, Chinazzi et al. (2020) used the Global Epidemic
and Mobility Model (GLEAM) to perform infection scenario analyses on China COVID-19 data,
using a networked meta-population model based on transportation hubs. A similar model for the
US was reported in Wilson (2020) where the web-app predicted from 150,000 to 1.4 million infected
cases by April 30, depending on the intervention level. Such scenario analysis requires user input
such as infection sites and contagion-properties. However, a majority of infection sites may be
hidden, especially if asymptomatic transmission is significant. Further, the contagion parameters
are unknown and must be deduced, perhaps using domain expertise.

Data driven approaches are powerful. A long range regression analysis of COVID-19 out to
2025 on US data using immunological, epidemiological and seasonal effects is given in Kissler et al.
(2020), which predicts recurrent outbreaks. We also follow a data-driven machine learning approach
to understand early dynamics of COVID-19 on the first 54 days of US confirmed infection reports
(downloadable from the European Center For Disease Control). We address the challenge of real-
time data-intelligence from early data. Our approach is simple, requires minimal data or human
input and generates actionable insights. For example, is asymptomatic spread significant? Our
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Figure 1: Training is the gray region and model predictions are the blue envelope. Observed infections
fall away from predicteds, indicating that social distancing is working in agreement with our lag of 10 days
(the two “kinks” in the curve). The figure emphasizes early data for learning about the pandemic, as later
data is “contaminated” by public health protocols whose effects are hard to quantify. (Note: Dates are the
time-stamps on the ECDC report (ECDC, 2020), which captures the previous day’s activity)

data-driven analysis says yes, emphatically. We even give quantitative estimates for the number of
asymptomatic infections.

Early data is both a curse and a blessing. The curse is that “early” implies not much information,
so quantitative models must be simple and robust to be identifiable from the data. The blessing is
that early data is a peek at the pandemic as it roams free, unchecked by public health protocols,
for to learn the true intentions of the lion, you must follow the beast on the savanna, not in the
zoo. As we will see, much can be learned from early data and these insights early in the game, can
be crucial to public health governance.

We analyzed daily confirmed COVID-19 cases from January 21 to March 14, the training or
model calibration phase, the gray region in Figure 1. A more detailed plot of the model fit to the
training data is in Figure 2. Qualitatively we see that the model captures the data, and it does so
by setting four parameters:

β, asymptomatic infectious force governing exponential spread
γ, virulence, the fraction of mild cases that become serious later
k, lag time for mild infection to become serious (an incubation time)

M0, Unconfirmed mild asymptomatic infections at time 0
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Calibrating the model to the training data, gives the following information.

parameter model range

asymptomatic infectious force β β∗ = 1.30 [1.3, 1.31]

virulence γ γ∗ = 0.14% [0.03%, 1.2%]

lag k k∗ = 10 days [1 day, 13 days]

initial infections M0 M∗
0 = 4 [1, 12]

asymptomatic on 03/14 5.3 million [1.3, 26] million

(1)

The asymptomatic infectious force if left unchecked is 30% new cases per day (doubling in about
2.6 days) and the virulence is γ = 0.14% (1 or 2 in a thousand conversions from mild infection to
serious). Not all serious cases are fatal. The model output about 5.3 million asymptomatic cases
as of 03/14 and a range from 1 to 26 million, a surprisingly high number. Such quantitative early
intelligence has significance for public health protocols.

Beyond 03/14 in Figure 1 are the model predictions (blue envelope) and the red circles are the
observed infection counts. How do we know the model predictions are honest, in that the red circles
were in no way influenced the predictions. We are in a unique position to test the model because
it is time stamped as version 1 of the preprint Magdon-Ismail (2020). The model has provably not
changed since 03/14, and we just added test data as it arrived. The predictions in Figure 1 are in no
way forward looking, data snooped or overfitted. We observe that the model and observed counts
agree, modulo two “kinks” around 03/24 and 03/30, when the observed infections start falling away
from the model. To understand the cause, the lag is important. Aggressive social distancing was
implemented on about 03/13 and lockdowns around 03/21. A lag of k = 10 means the effects of
these protocols will become apparent around 03/23 and 03/31 respectively.

The methods are general and can be applied to different cohorts. In Section 3.2 we do a
cross-sectional country-based study. Our contributions are

• A methodology for quickly and robustly machine learning simple epidemiological models given
coarse aggregated infection counts.

• Building a simple model with lag for learning from early pandemic dynamics.

• Application of the methodology within the context of COVID-19 to USA data. Our methods
reveal significant asymptomatic (hidden) infection, a lag of about 10 days, and we quantita-
tively confirm that the infectious force is strong with about a 0.14% transition from mild to
serious infection.

• Cross-sectional analysis of the pandemic dynamics across several countries.

• To our knowledge, the only tested predictions for COVID-19 due to our time-stamping of the
predictions. Our results demonstrate the effectiveness of simple robust models for predicting
pandemic dynamics from early data.

2 Model and Method

Our model is simple and robust. The majority of disease models aggregate individuals according
to disease status, such as SI, SIR, SIS, Kermack and McKendrick (1927); Bailey (1957); Anderson
and May (1992). We use a similar model by considering a mild infected state which can transition
to a serious state. Early data allows us to make simplifying assumptions. In the early phase, when
public health protocols have not kicked in, a confirmed infection is self-reported. That is, you
decide to get tested. Why? Because the condition became serious. This is important. A confirmed
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case is a transition from mild infection to serious. This is not true later when, for example, public
health protocols may institute randomized testing. At time t let there be C(t) confirmed cases and
correspondingly M(t) mild unreported asymptomatic infections. The new confirmed cases at time
t correspond to mild infections at some earlier time t − k which have now transitioned to serious
and hence got self-reported. Let a fraction γ of those mild cases transitioned to serious,

C(t) = C(t− 1) + γM(t− k).

Another advantage of early dynamics is that we may approximate the growth from each infection
as independent and exponential, according to the infectious force of the disease. So,

M(t) = βM(t− 1)− γM(t− k)− (1− γ)M(t− k − r) + αC(t− 1).

Here, the second term is the loss of mild cases that transitioned to serious, the third term is the
remaining cases that don’t transition to serious recovering at some later time r and the fourth
term accounts for new infections from confirmed cases. We will further simplify and assume that
confirmed cases are fully quarantined and so α = 0 and recovery to a non-infectious state occurs
late enough to not factor into early dynamics. Our simplified model is:

S(t) = S(t− 1) + γM(t− k) S(t) = S(1) for 1 ≤ t < k
M(t) = βM(t− 1)− γM(t− k) M(1) = M0.

(2)

We set t = 1 at the first confirmed infection (Jan 21 in USA). Given k,M0, we get an approximate
fit to the data by using a perturbation analysis to solve for γ, β that fit two points S(τ) and S(T ):

γ ≈ (φ− 1)((φr − 1)∆T + (φs − 1)∆τ )

(φr − 1)2 + (φs − 1)2
(3)

β ≈ φ

(
1 +

γ

φk + (k − 1)γ

)
, (4)

where,

φ ≈ κ1/(r−s)
(

1− (ρ/κ)(r − s)
(r − s)κs/(r−s) − (ρ/κ)s

)1/(r−s)
(5)

and r = T − k, s = τ − k, κ = (S(T ) − S(1))/(S(τ) − S(1)) and ρ = κ − 1 (for details see the
appendix). From this solution as a starting point, we can further optimize γ, β using a gradient
descent which minimizes an error-measure that captures how well the parameters β, γ, k,M0 re-
produce the observed dynamics in Figure 2, see for example Abu-Mostafa et al. (2012). We used a
combination of root-mean-squared-error and root-mean-squared-percentage-error between observed
dynamics and model predictions. By optimizing over k,M0, we obtain an optimal fit to the training
data (Figure 2) using model parameters:

β∗ = 1.30 γ∗ = 0.0014 k∗ = 10 days M∗
0 = 4 (6)

The asymptomatic infectious force, β, is very high, and corresponds to a doubling time of 2.6 days.
The virulence at 0.14% seems comparable to a standard flu, though the virus may be affecting
certain demographics much more severely than a flu. The incubation period of 10 days seems
in line with physician observations. The data analysis predicts that when the first confirmed
case appeared, there were 4 other infections in the USA. The parameters β∗, γ∗ and M∗

0 are new
knowledge, gained with relative ease by calibrating a simple robust model to the early dynamics.
But, these optimal parameters are not the whole story, especially when it comes to prediction.

The exhaustive search over k,M0, fixing β and γ to the optimal for that specific k,M0, produces
several equivalent models We show the quality of fit for various (k,M0) in Figure 3(a). The deep-
blue region contains essentially equivalent models within 0.5% of the optimal fit, our (user defined)
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Figure 2: Model calibration to the early dynamics (first 54 infection counts) of (USA) COVID-19. Dates
are the time-stamps on the ECDC report, which captures the previous day’s activity (e.g. the time stamp
1/21 is the infection on 1/20).

error tolerance. The deep-blue region shows the extent to which the model is ill-identified by the
data. Indeed, all these deep-blue models equally fit the data which results in a range of predictions.
For robustness, we pick the white square in the middle of the deep-blue region, but note here that
it is only one of the models which are consistent with the data. In making predictions, we should
consider all equivalent models to get a range for the predictions that are all equally consistent with
the data. Similarly, in Figure 3(b), we fix k∗ and M∗

0 to their optimal robust values and show the
uncertainty with respect to β and γ (the deep-blue region). Again, we pick the white square in the
middle of the deep-blue region of equivalent models with respect to the data. Hence we arrive at our
optimal parameters in Equation (6). By considering all models which are equally consistent with
the data, we get the estimates toghether with the ranges in Equation 1. We emphasize that these
error-ranges we report have nothing to do with the data, and are simply due to the ill-posedness
of the inverse problem to inifer the model from finite data. Several models essentially fit the data
equivalently. We do not include in our range the possible measurement errors in the data, although
the two are related through the error tolerence used in defining “equivalent” models. More noise
in the data would result in more models being treated as equivalent.

3 Results

As already mentioned, to get honest estimates, we must consider all models which are equally
consistent with the data (deep-blue regions in Figure 3).
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Figure 3: Uncertainty in model estimation. (a) Optimal fit-error over for different choices of M0 and k.
Blue is better fit, red is worse. The deep-blue region corresponds to comparable models, within 0.5% of
the optimal fit. The white square is the model chosen, (k∗,M∗

0 ) = (10, 4) which has optimal fit and also is
“robust” being in the middle of the deep-blue regions. (b) Model fit for the chosen k∗ and M∗

0 . Again, the
deep-blue is an equivalence class of optimal models. The “robust” model is the white square in the middle
of the deep-blue region, (β∗, γ∗) = (1.30, 0.0014). The deep-blue regions represent uncertainty.

3.1 COVID-19 in USA

The model in Equation (1) gives the prediction of new infections in the table below. The cumulative
predicted infections is the data plotted in Figure 1.

New Infections

Date Model Prediction Range Observed

March 15, 2020 665 [657,2861] 777

March 16, 2020 866 [856,3732] 823

March 17, 2020 1130 [1114,4867] 887

March 18, 2020 1475 [1450,6348] 1766

March 19, 2020 1924 [1888,8280] 2988

March 20, 2020 2510 [2459,10800] 4835

March 21, 2020 3275 [3201,14088] 5374

March 22, 2020 4272 [4168,18375] 7123

March 23, 2020 5574 [5427,23968] 8459

March 24, 2020 7271 [7067,31263] 11236

March 25, 2020 9487 [9201,40789] 8789

March 26, 2020 12376 [11980,53216] 13693

March 27, 2020 16146 [15198,69430] 16797

March 28, 2020 21065 [20309,90585] 18695

March 29, 2020 27482 [26443,118180] 19979

March 30, 2020 35854 [34430,154190] 18360

March 31, 2020 46777 [44829,201170] 21595

April 1, 2020 61026 [58369,262470] 24998

April 2, 2020 79617 [75999,343440] 27103
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Country β [min,max] γ [min,max] k [min,max] M0 [min,max]

Australia 1.143 [1.137,1.18] 0.0047 [0.0024,0.046] 2 [1,3] 10 [1,18]
Austria 1.411 [1.389,2.261] 0.045 [0.022,0.89] 1 [1,1] 20 [1,40]
Canada 1.182 [1.176,1.191] 0.0014 [0.00025,0.0099] 3 [1,3] 10 [1,40]
China 1.312 [1.297,1.332] 5.18 [3.75,8.26] 15 [14,16] 6 [5,9]
France 1.297 [1.293,1.301] 0.05 [0.0128,0.449] 19 [18,20] 7 [1,36]
Germany 1.289 [1.287,1.295] 0.011 [0.0039,0.044] 8 [1,8] 4 [1,10]
Iran 1.596 [1.563,1.709] 0.78 [0.71,0.79] 4 [3,4] 30 [29,40]
Ireland 1.401 [1.372,1.79] 0.083 [0.042,0.62] 2 [2,2] 20 [2,40]
Italy 1.242 [1.237,1.255] 3.88 [3.11,5.37] 19 [18,19] 6 [4,8]
Netherlands 1.387 [1.372,2.28] 0.34 [0.29,1.314] 4 [2,4] 35 [2,40]
Norway 1.461 [1.379,2.935] 0.164 [0.082,1.64] 1 [1,3] 20 [1,40]
Poland 1.476 [1.422,3.542] 0.109 [0.054,2.17] 1 [1,1] 20 [1,40]
Portugal 1.4 [1.356,3.077] 0.0886 [0.044,1.77] 1 [1,1] 20 [1,40]
South Africa 1.563 [1.513,2.65] 0.057 [0.031,1.15] 1 [1,2] 20 [1,37]
South Korea 1.238 [1.231,1.289] 0.98 [0.76,4.65] 20 [14,20] 7 [1,9]
Spain 1.411 [1.405,1.418] 0.127 [0.016,0.63] 20 [20,20] 5 [1,40]
Sweden 1.356 [1.343,1.372] 0.064 [0.0068,0.27] 19 [19,20] 3 [1,40]
Switzerland 1.527 [1.448,2.121] 0.4 [0.267,1.078] 3 [2,3] 12 [2,21]
UK 1.252 [1.248,1.257] 0.68 [0.412,0.878] 19 [17,20] 1 [1,1]
USA 1.306 [1.303,1.309] 0.0014 [0.0006,0.009] 10 [3,12] 4 [1,7]

Table 1: Fit parameters for 20 countries.

The predictions use the model in (1) and the ranges are obtained by using the space of models
equally consistent with the data. March 15 and 16 data arrived at the time of writing and March
17 onward arrived after the time of writing time-stamped version 1 (Magdon-Ismail, 2020). Blue
means in the range and red means outside the range.

3.2 Cross-Sectional Study By Countries

In the supplementary material we give details of our cross-sectional study across countries. The
different countries have different cultures, social networks, mobility, demographics, as well as dif-
ferent times at which the first infection was reported (the “delay”). We calibrated independent
models for each country and the resulting model parameters are in Table 1.

We primarily focused on the infectious force β, which has significant variability, and we studied
how β statistically depends on a number of country-specific parameters factors. In the supplemen-
tary material, we give details of the study and the quantitative results. Qualitatively, we find:

• A larger delay in the virus reaching a country indicates a larger β. The more that has been
witnessed, the faster the spread. That seems unusual, but is strongly indicated. We do not
have a good explanation for this effect. It could be an artefact of testing procedures not being
streamlined, so early adopters of the pandamic presenting as serious were not detected.

• Population density at the infection site has a strong positive effect but the country’s popula-
tion density does not.

• There is faster spread in countries with more people under the poverty level defined as the
percentage of people living on less than $5.50 per day.

• Median age has a strong effect. Spread is faster in younger populations. The youth are more
mobile and perhaps also more carefree.
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• Wealth and per-capita income have a slight negative effect. Spread is slower in richer coun-
tries, perhaps due to risk-aversion, higher levels of education and less reliance on public
transportation. Whatever the cause, it does have an impact, but relatively smaller than the
other effects.

4 Conclusion

Early dynamics allows us to learn useful properties of the pandemic. Later dynamics may be
contaminated by human intervention, which renders the data less useful without a more general
model. We learned a lot from the early dynamics of COVID-19. It’s infectious force, virulence,
incubation period, unseen infections and predictions of new confirmed cases. All this, albeit within
error tolerances, from a simple model and little data. Asymptomatic infection is strong, around
30%, converting to serious at a rate at most 1.2%. There is significant uncertainty in the lag, from
1 up to 13 days, and we estimate 5.3 million asymptomatic infections as of 03/14, the range being
from 1 to 26 million. Such information is useful for planning and health-system preparedness. Are
our parameters correct? We were in a unique position to test our predictions because our model
was time-stamped as version 1 of the preprint Magdon-Ismail (2020).

A side benefit of the model predictions is as a benchmark against which to evaluate public health
interventions. If moving forward, observed new infections are low compared to the data in, it means
the interventions are working by most likely reducing β. Starting on about March 25, the observed
infections starts falling off and we observe a flattening by March 28. The US instuted broad and
aggressive social distancing protocols starting on or before March 13 and even stronger lockdown
around March 21, which is consistent with the data and the model’s lag of k = 10. Without such
quantitative targets to compare with, it would be hard to evaluate intervention protocols.

Our approach is simple and works with coarse, aggregated data. But, there are limitations.

• The independent evolution of infection sites only applies to early dynamics. Hence, when
the model infections increase beyond some point, and the pandemic begins to saturate the
population, a more sophisticated network model that captures the dependence between infec-
tion sites would be needed Balcan et al. (2009); Hill et al. (2010); Salathé and Jones (2010);
Keeling and Eames (2005); Chinazzi et al. (2020).

• While we did present an optimal model, it should be taken with a grain of salt because many
models are nearly equivalent, resulting in prediction uncertainty.

• The model and the interpretation of its parameters will change once public health protocols
kick in. The model may have to be re-calibrated (for example if β decreases) and the pa-
rameters may have to be reinterpreted (for example γ is a virulence only in the self-reporting
setting, not for random testing). It is also possible to build a more general model with an
early phase β1 and a latter phase β2 (after social distancing). But, beware, for a more general
sophisticated model looks good a priori until it comes time to calibrate it to data, at which
point it becomes unidentifiable.

• The model was learned on USA data. The learned model parameters may not be appropriate
for another society. The virulence could be globally invariant, but it could also depend on
genetic and demographic factors like age, as well as what “serious” means for the culture -
that is when do you get yourself checked. In a high-strung society, you expect high virulence-
parameter since the threshold for serious is lower. One certainly expects the infectious force
to depend on the underlying social network and interaction patterns between people, which
can vary drastically from one society to another and depending on interventions. Hence, one
should calibrate the model to country specific data to gain more useful insights.

8

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 10, 2020. ; https://doi.org/10.1101/2020.03.17.20037309doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.17.20037309
http://creativecommons.org/licenses/by-nc-nd/4.0/


The Lag, k, and Public Policy. The lag k is important for public policy due to how public policy
can be driven by human psychology. The Human tendency is to associate any improvement in
outcome to recent actions. However, if there is a lag, one might prematurely reward those recent
actions instead of the earlier actions whose effects are actually being seen. Such lags are present
in traditional machine learning, for example the delayed reward in reinforcement learning settings.
Credit assignment to prior actions in the face of delayed reward is a notoriously difficult task, and
this remains so with humans in the loop. Knowledge of the lag helps to assign credit appropriately
to prior actions, and the public health setting is no exception.

Acknowledgments. We thank Abhijit Patel, Sibel Adali and Zainab Magdon-Ismail for provok-
ing discussions on this topic.
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A Fitting The Model

Recall the model,

S(t) = S(t− 1) + γM(t− k) S(t) = S(1) for 1 ≤ t < k
M(t) = βM(t− 1)− γM(t− k) M(1) = M0,M(t) = 0 for t ≤ 0.

(7)

For fixed k,M0, we must perform a gradient descent to optimize β, γ. Unfortunately, the dependence
on β is exponential and hence very sensitive. So if the starting point is not chosen carefully, the
optimization gets stuck in a very flat region, and many millions of iterations are needed to converge.
Hence it is prudent to choose the starting conditions carefully. To do so, we need to analyze the
recursion. First, we observe that the recursion for M(t) is a standalone k-th order recurrence. For
1 ≤ t ≤ k, M(t) = M0β

t−1, hence, we can guess a solution M(t) = M0β
k−1φt−k, for t > k, which

requires

φk − βφk−1 + γ = 0.

We do a perturbation analysis in γ → 0. At γ = 0, φ = β, so we set φ = β + ε, to get

(β + ε)k − β(β + ε)k−1 + γ = 0,

which to first order in ε is solved by ε ≈ −γ/βk−1 and so

M(t) ≈

{
M0β

t−1 1 ≤ t ≤ k,
M0β

k−1φt−k t > k,

where φ = β(1− γ/βk). Given this approximation, we can solve for S(t),

S(t) =


S(1) 1 ≤ t ≤ k;

S(1) +
γM0(β

t−k − 1)

β − 1
k < t ≤ 2k

S(1) +
γM0(β

k − 1)

β − 1
+
γM0β

k−1φ(φt−2k − 1)

φ− 1
2k < t.

Since φ = β +O(γ), for t > 2k, we can approximate S(t) as,

S(t) ≈ S(1) +
γM0(φ

t−k − 1)

φ− 1
.

We can independently control two parameters φ and γ. We use this to match the observed S(t) at
two time points. Since the growth is exponential, we match the end time, S(T ) and some time τ in
the middle, for example τ =

⌈
3T/4

⌉
. Let ∆T = (S(T ) − S(1))/M0 and ∆τ = (S(τ) − S(1))/M0.

Then,

∆T =
γ(φT−k − 1)

φ− 1
; (8)

∆τ =
γ(φτ−k − 1)

φ− 1
. (9)

Dividing gives ∆T /∆τ = (φT−k − 1)/(φτ−k − 1) ≈ φT−τ , because φ > 1. Let us consider the
equation κ = (φr−1)/(φs−1), which gives φr−κφs+κ−1 = 0, or more generally φr−κφs+ρ = 0,
where r > s > 1 and κ > ρ � 1. This means φ > 1. When ρ = 0, we have φr−s = κ, so we do a
perturbation analysis with φr−s = κ+ ε, and our perturbation parameter is ε. Then, φr = (κ+ ε)φs

and plugging into the equation gives

ε = − ρ

φs
= − ρ

(κ+ ε)s/(r−s)
≈ − ρ

κs/(r−s)

(
1− s

r − s
ε

κ

)
.
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Figure 4: Approximate fit to USA data is essentially on top of optimal fit.

Solving for ε gives ε ≈ −ρ(r − s)/((r − s)κs/(r−s) + s), which gives

φ ≈ κ1/(r−s)
(

1− (ρ/κ)(r − s)
(r − s)κs/(r−s) − (ρ/κ)s

)1/(r−s)
. (10)

For our setting, r = T −k, s = τ−k, κ = ∆T /∆τ and ρ = κ−1. Finally, since φ is approximate, we
may not be able to satisfy both equations in (9), hence we can instead minimize the mean squared
error, which gives

γ =
(φ− 1)((φr − 1)∆T + (φs − 1)∆τ )

(φr − 1)2 + (φs − 1)2
. (11)

We now need to get β which satisfies φ = β(1 − γ/βk). Again, we do a perturbation analysis,
omitting the details, to obtain

β ≈ φ
(

1 +
γ

φk + (k − 1)γ

)
. (12)

If one wishes, a fixed point iteration starting at the above will quickly approach a solution to
φ = β(1− γ/βk).

We show the approximate fit on the US data (Figure 4). We show the optimal fit, the initial
fit using the parameters constructed from (12) and (11). The parameters and fit error are

β γ fit error

optimal 1.306 0.0013282 1.6521
Equations (12) and (11) 1.3055 0.0013423 1.6619

The approximate fit works pretty well, and is certainly good enough to initialize an optimization.
Note that to get an even better starting point for the gradient descent optimization, assuming
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T, τ ≥ 2k, one could simultaneously solve the three equations

0 = φk − βφk−1 + γ (13)

∆T =
γM0(β

k − 1)

β − 1
+
γM0β

k−1φ(φT−2k − 1)

φ− 1
(14)

∆τ =
γM0(β

k − 1)

β − 1
+
γM0β

k−1φ(φτ−2k − 1)

φ− 1
. (15)

B Cross-Sectional Country Study

We perform our analysis on early dynamics data available from the ECDC giving infection numbers
starting from December 31, 2019 ECDC (2020). We use data for 20 countries selected qualitatively
because they appear to have reasonably efficient testing procedures for self-reported cases. We in-
iclude China data for completeness, even though China dynamics since December 31 are not early
dynamics. We show these countries below, together with some demographic data which might deter-
mine spread dynamics: Start City; Start and End dates; Delay to first infection in days; Population
Density; Median Age (Wikipedia, 2020); Wealth as defined by adjusted net national income per
capita (World-Bank, 2017); Average Income (World-Data-Info, 2015); Poverty Level (Wikipedia,
Source: World Bank, 2020) defined by living on less than $5.50 per day; Population Density around
the first infection site for the country.

Country Code Start City Start End Delay Den Age Wealth Income Pov. Den-Init

Australia AU Melb./Syd. 1/25 3/14 26 3 38.7 41489 53230 1.2 425
Austria AT Innsbr./Vien. 2/26 3/14 58 106 44 38748 49310 0.9 3000
Canada CA Toronto 1/26 3/14 27 4 42.2 36802 44940 1 4150
China CN Wuhan 12/31 2/5 1 145 37.4 6568 9460 27.2 1200
France FR Bordeaux 1/25 3/14 26 123 41.4 32672 41080 0.2 5000
Germany DE Coppingen 1/28 3/14 29 233 47.1 37791 47090 0.2 972
Iran IR Qom/Tehran 2/20 3/14 52 54 30.3 4238 5470 11.6 15500
Ireland IE Dublin 3/3 3/14 64 70 36.8 37988 61390 0.7 4588
Italy IT Rome 1/31 3/14 32 200 45.5 26537 33730 3.5 2232
Netherl. NL Tilburg 2/28 3/14 60 420 42.6 40545 51260 0.5 1852
Norway NO Tr. Finn/Oslo 2/27 3/14 59 17 39.2 61865 80610 0.2 1400
Poland PL Zielona Gora 3/6 3/14 67 123 40.7 11650 14100 2.1 504
Portugal PT Porto 3/3 3/14 64 112 42.2 17188 21990 3 6900
S. Africa ZA Gaut./Dur. 3/8 3/14 69 48 27.1 4942 5750 57.1 4000
S. Korea KR Daegu 1/20 3/4 21 517 41.8 24028 30600 1.2 2818
Spain ES La Gom/Ten. 2/1 3/14 33 93 42.7 23216 29340 2.9 250
Sweden SE Jonkoping 2/1 3/14 33 23 41.2 45149 55490 1 2100
Switzer. CH Tin./Bas./Zur. 2/26 3/14 58 208 42.4 64307 84410 0 6000
UK UK Newcas.Tyme 1/31 3/14 32 274 40.5 34171 41770 0.7 233
USA US Seat./Snohom. 1/21 3/14 22 34 38.1 51485 63080 2 3430

Table 2: Comparison of countries used in the study.

From the public health perspective, perhaps the most important parameter is β, since actions
can be taken to mitigate the spread by reducing β, whereas γ, k and M0 are somewhat givens for
the country. We show the fits in Table 3. As you can see, there is much variability in β.
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Country β [min,max] γ [min,max] k [min,max] M0 [min,max]

Australia 1.143 [1.137,1.18] 0.0047 [0.0024,0.046] 2 [1,3] 10 [1,18]
Austria 1.411 [1.389,2.261] 0.045 [0.022,0.89] 1 [1,1] 20 [1,40]
Canada 1.182 [1.176,1.191] 0.0014 [0.00025,0.0099] 3 [1,3] 10 [1,40]
China 1.312 [1.297,1.332] 5.18 [3.75,8.26] 15 [14,16] 6 [5,9]
France 1.297 [1.293,1.301] 0.05 [0.0128,0.449] 19 [18,20] 7 [1,36]
Germany 1.289 [1.287,1.295] 0.011 [0.0039,0.044] 8 [1,8] 4 [1,10]
Iran 1.596 [1.563,1.709] 0.78 [0.71,0.79] 4 [3,4] 30 [29,40]
Ireland 1.401 [1.372,1.79] 0.083 [0.042,0.62] 2 [2,2] 20 [2,40]
Italy 1.242 [1.237,1.255] 3.88 [3.11,5.37] 19 [18,19] 6 [4,8]
Netherlands 1.387 [1.372,2.28] 0.34 [0.29,1.314] 4 [2,4] 35 [2,40]
Norway 1.461 [1.379,2.935] 0.164 [0.082,1.64] 1 [1,3] 20 [1,40]
Poland 1.476 [1.422,3.542] 0.109 [0.054,2.17] 1 [1,1] 20 [1,40]
Portugal 1.400 [1.356,3.077] 0.0886 [0.044,1.77] 1 [1,1] 20 [1,40]
South Africa 1.563 [1.513,2.65] 0.057 [0.031,1.15] 1 [1,2] 20 [1,37]
South Korea 1.238 [1.231,1.289] 0.98 [0.76,4.65] 20 [14,20] 7 [1,9]
Spain 1.411 [1.405,1.418] 0.127 [0.016,0.63] 20 [20,20] 5 [1,40]
Sweden 1.356 [1.343,1.372] 0.064 [0.0068,0.27] 19 [19,20] 3 [1,40]
Switzerland 1.527 [1.448,2.121] 0.4 [0.267,1.078] 3 [2,3] 12 [2,21]
UK 1.252 [1.248,1.257] 0.68 [0.412,0.878] 19 [17,20] 1 [1,1]
USA 1.306 [1.303,1.309] 0.0014 [0.0006,0.009] 10 [3,12] 4 [1,7]

Table 3: Fit parameters for 20 countries.

B.1 Explaining β

We perform a simple statistical analysis to test if β can be explained by any of the country param-
eters in Table 2. We include the delay as a global explanatory variable, which would account for a
global increase in vigilence as time passes and awareness of the pandemic increases. One expects
β to decrease with the delay. A table of correlations of β with the various parameters is shown
below. For our analysis we use the best case β, although similar results follow from the optimal β.

Dependent var. Delay Den Age Wealth Income Poverty Den-Init

ρ(β, x) 0.68 -0.15 -0.51 -0.26 -0.23 0.403 0.52
p-value 0.001 0.52 0.02 0.26 0.32 0.082 0.017

As expected, there is a very significant correlation of β with delay, but in the opposite direction.

• The larger the delay, the larger is β. The more a country has observed, the faster the spread
in that country. That seems unusual but seems strongly indicated by the data.

• Population density at the infection site has a strong positive effect but the country’s popula-
tion density does not.

• There is faster spread in poorer countries.

• Median age has a strong effect. Spread is faster in younger countries. The youth are more
mobile and perhaps also more carefree.

• There is a slight negative effect from wealth and per-capita income. Spread is slower in
richer countries. Perhaps this is due to more risk-aversion, perhaps higher levels of education,
perhaps less use of public transportation. Whatever the cause, it does have an impact, but
relatively smaller than the other effects.
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Figure 5: Optimal feature to predict β, within a cross-valudation setting to select the regularization
parameter. The gray region is the range of the predicted value for each country. The R2 = 0.57,
so the cross-validation based optimal linear feature captures 57% of the residual variance.

We now use regularized regression to perform a linear model fit to explain β. To make the weight
magnitudes meaningful, we normalize the data. We use a leave-one-out cross validation to select
the optimal regularization parameter (which happens to be 20). The optimal regularized fit with
this regularization parameter gives a new feature

X = w1 · (Del) + w2 · (Pop) + w3 · (Age) + w4 · (Wlth) + w5 · (Inc) + w6 · (Pov) + w7 · (Pop-Init)

The learned weights and the their ranges which yield a cross-validation error within 10% of optimal
are shown in the table.

Feature Weight [min,max]

Delay 0.030705 [0.023,0.045]
Pop-Den -0.0014362 [-0.002, 0.00064]
Age -0.012958 [-0.013, -0.011]
Wealth -0.004016 [-0.004, -0.0028]
Income -0.0032445 [-0.0033, -0.0031]
Poverty 0.0109 [0.0089, 0.016]
Pop-Den-Init 0.018305 [0.015, 0.025]
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The predictions of β using this feature are also shown in Figure 5. A statistical regression model
using these data produces the fit:

Feature Estimate SE t-Stat p-Value

(Intercept) 1.2213 0.32759 3.7282 0.0028836
Delay 0.0030891 0.0010042 3.0762 0.0096064

Pop-Den 2.0281e-05 0.00014317 0.14166 0.8897
Age -0.0013599 0.0074969 -0.1814 0.85908

Wealth 2.274e-06 7.9597e-06 0.28569 0.77999
Income -1.8495e-06 6.0964e-06 -0.30338 0.7668
Poverty 0.0019366 0.0024657 0.7854 0.44745

Pop-Den-Init 9.6516e-06 6.6452e-06 1.4524 0.17203

The statistical regression model also identifies positive weights on delay, population density at the
initial site and poverty in that order of significance.

As we observed from the correlations, Delay, Poverty and Population Density at the initial
infection site have strong positive weights. Age has a strong negative weight. Wealth and income
have weak negative effects, but non-zero. The population density of the country as a whole seems
to have no effect, with a weight range that includes 0.
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