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 2 

Research in context  26 

Reproductive number is (R) an epidemiological parameter that defines outbreak transmission 27 

dynamics. While early estimates of R exist for COVID-19, the sample size is relatively small 28 

(<2000 individuals) taken during the early stages of the disease in China. The outbreak is now a 29 

pandemic and a more comprehensive assessment is needed to guide public health efforts in 30 

making informed decisions to control regional outbreaks. Commonly, R is computed using a 31 

sliding window approach, hence assessment of impact of intervention is more difficult to 32 

estimate and often underestimates the dynamic nature of R as the outbreak progresses and 33 

expands to different regions of the world. Parallel to epidemiological metrics, pathogen whole 34 

genome sequencing is being used to infer transmission dynamics. Viral genome analysis 35 

requires expert knowledge in understanding viral genomics that can be integrated with the rapid 36 

responses needed for public health to advance outbreak mitigation. This study establishes 37 

integrative approaches of genome sequencing with established epidemiological outbreak 38 

metrics to provide an easily understandable estimate of transmission dynamics aimed at public 39 

health response using evidence-based estimates. 40 

 41 
Added value of this study  42 

Estimates of R are dynamic within the progression of the epidemic curve. Using the framework 43 

defined in this study with dynamic estimates of R specific to each epicurve stage combined with 44 

whole genome sequencing led to creation of a novel metric called GENI (pathogen genome 45 

identity) that provides genomic evolution and variation in the context of the outbreak dynamics. 46 

The GENI scores were directly linked and proportional to outbreak changes when using disease 47 

incidence from epicurve stages (index, takeoff, exponential, and decline). By simulating short 48 

and standard (2 day and 7 day, respectively) serial intervals, we calculated instantaneous R 49 

followed by a global comparison that was associated with changes in GENI. This approach 50 

quantified R values that are impacted by public health intervention to change the outbreak 51 
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 3 

trajectory and were linked to case incidence (i.e. exponential expansion or decelerating) by 52 

country. Integrating viral whole genome sequences to estimate GENI we were able to infer 53 

circulation time, local transmission, and index case introduction. Systematic integration of viral 54 

whole genome sequences with epidemiological parameters resulted in a simplified approach in 55 

assessing the status of outbreak that facilitates decisions using evidence from genomics and 56 

epidemiology in combination.  57 

 58 

Implications of all the available evidence  59 

This study created a framework of evidence-based intervention by integrating whole genome 60 

sequencing and epidemiology during the COVID-19 pandemic. Calculating instantaneous R at 61 

different stages of the epicurve for different countries provided an evidence-based assessment 62 

of control measures as well as the underlying genomic variation globally that changed the 63 

outbreak trajectory for all countries examined. Use of the GENI score translates sequencing 64 

data into a public health metric that can be directly integrated in epidemiology for outbreak 65 

intervention and global preparedness systems.  66 

 67 
Abstract 68 

Background: Global spread of COVID-19 created an unprecedented infectious disease 69 

crisis that progressed to a pandemic with >180,000 cases in >100 countries. Reproductive 70 

number (R) is an outbreak metric estimating the transmission of a pathogen. Initial R values 71 

were published based on the early outbreak in China with limited number of cases with whole 72 

genome sequencing. Initial comparisons failed to show a direct relationship viral genomic 73 

diversity and epidemic severity was not established for SARS-Cov-2.  74 

Methods: Each country’s COVID-19 outbreak status was classified according to epicurve 75 

stage (index, takeoff, exponential, decline). Instantaneous R estimates (Wallinga and Teunis 76 

method) with a short and standard serial interval examined asymptomatic spread. Whole 77 

genome sequences were used to quantify the pathogen genome identity score that were used 78 
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to estimate transmission time and epicurve stage. Transmission time was estimated based on 79 

evolutionary rate of 2 mutations/month.  80 

Findings: The country-specific R revealed variable infection dynamics between and within 81 

outbreak stages. Outside China, R estimates revealed propagating epidemics poised to move 82 

into the takeoff and exponential stages. Population density and local temperatures had variable 83 

relationship to the outbreaks. GENI scores differentiated countries in index stage with cryptic 84 

transmission. Integration of incidence data with genome variation directly increases in cases 85 

with increased genome variation.  86 

Interpretation: R was dynamic for each country and during the outbreak stage. Integrating 87 

the outbreak dynamic, dynamic R, and genome variation found a direct association between 88 

cases and genome variation. Synergistically, GENI provides an evidence-based transmission 89 

metric that can be determined by sequencing the virus from each case. We calculated an 90 

instantaneous country-specific R at different stages of outbreaks and formulated a novel metric 91 

for infection dynamics using viral genome sequences to capture gaps in untraceable 92 

transmission. Integrating epidemiology with genome sequencing allows evidence-based 93 

dynamic disease outbreak tracking with predictive evidence.  94 

 95 

Funding: Philippine California Advanced Research Institute (Quezon City, Philippines) and the 96 

Weimer laboratory. 97 

 98 

Introduction 99 

Outbreaks are defined by the reproductive number (R)1,2 a common measure of 100 

transmission. Probability of further disease spread is evaluated based on the threshold value 101 

with likely expansion for values >2 and decline with values of <1. R is the main component for 102 

computing the needed proportion of the population to be vaccinated based on herd immunity3. 103 

The expansion of COVID-19 was determined with the earliest estimate of R = 2.2 (95% CI, 1.4 104 
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to 3.9) using serial intervals for 424 patients in Wuhan, China4. Recalculation with 2033 cases 105 

estimated R = 2.2 to 3.65. However, estimates of R for other countries where cases were found 106 

as the outbreak grew in China were not done routinely and currently a fixed estimate R is used 107 

based on the refined estimate from China. However, this is falling short in predicting the spread 108 

of the pandemic and expansion within individual locations, suggesting that R is not likely to be 109 

constant and likely to be dynamic for each outbreak location that results in underestimates of 110 

the spread rate. This limitation is hindering epidemic dynamics as previously noted due to the 111 

parameter is context specific and dynamic1,2. Hence, there is a need to rapidly estimate country 112 

specific R values during the epidemic. This will provide global comparisons of expansion at 113 

each location.  114 

The Wallinga and Teunis method for R estimation requires input of outbreak incidences and 115 

the serial interval (i.e. the period between the manifestation of symptoms in the primary case 116 

and the onset of symptoms in secondary cases)6. This approach was implemented in a web 117 

resource to estimate R during epidemics7. A key advantage of the approach is the ease of 118 

production of credible intervals compared to other maximum likelihood estimation approaches. 119 

Yet to be done is integration of viral genetic variation with R estimates but one study found that 120 

there was no obvious relationship between R, severity of the epidemic and COVID-19 genome 121 

diversity20.  122 

COVID-19 has reached global spread in all continents except Antarctica and was defined to 123 

be a pandemic by the World Health Organization (WHO) in March 20208-10. The outbreak 124 

dynamics are different between countries as well as varying within individual countries. In part 125 

this is due to varying and diverse healthcare systems, socio-cultural contexts, and rigorous 126 

testing. Considering the lack of containment globally, except in Singapore, Hong Kong, and 127 

Taiwan, we hypothesized that previously calculated R values do not provide reliable estimates 128 

because they are more dynamic than is being considered and that influx of new cases and viral 129 

mutation are likely sustaining expansion. While viral sequencing is occurring, it is not being 130 
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 6 

effectively integrated with epidemiological information because there is no existing framework 131 

for that to systematically occur.  132 

In spite of no clear path for deep integration of viral variation the current pandemic has 133 

demonstrated the public health unity for sharing COVID-19 whole genome sequences with an 134 

unprecedented openness. By quickly sharing the genome sequences it enables investigation of 135 

the genome variation during the outbreak using multiple approaches and samples of the virus 136 

genome space. It is approaching a viral population scale, which provides additional information 137 

that cannot be gleaned with few sequences. Prior work established the value of estimating 138 

transmission dynamics of rapidly evolving RNA viruses and highlights the capability to infer 139 

transmission during outbreaks coupled with pathogen genomes11,12. This approach was 140 

validated in EBOV and MERS. Each virus variant is separated by only several mutations yet 141 

produces new dynamics during the outbreak13,14. Rapidly evolving pathogens undergo genome 142 

sequence mutation, selection pressure, random drift and stochastic events between infected 143 

individuals11. Even small changes in the genome enable transmission that is determined by 144 

accounting for the mutations between isolate sequences. It is recognized that the COVID-19 145 

genome is changing over the outbreak but there is controversy about the impact and specifics of 146 

the exact mutations. In this study, we used incidence data to derive R and compared country 147 

specific COVID-19 infection dynamics with viral population genome diversity. By incorporating 148 

R, epidemic curve timing, and viral genome diversity we created a systematic framework that 149 

deduced how viral genome diversity can be used to describe epidemiological features of an 150 

outbreak before new cases were observed. This was done by creating a genome diversity 151 

metric that was directly and systematic integrated to provide context and allowed quantification 152 

of the infection dynamics globally that are divergent from the early estimates with genomic 153 

evidence. We call this approach pathogen genome identity (GENI) scoring system. Using GENI 154 

differentiated each stage of the outbreak. It also indicated cryptic local transmission from 155 
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surveillance systems. This a defining advantage of using sequences as previous cryptic 156 

transmission can be inferred in the genomic sequences.  157 

 158 
Methods 159 

Incidence data is based on daily Chinese CDC and WHO situations reports as compiled by 160 

the Center for Systems Science and Engineering (CSSE) by the John Hopkins University 161 

(Baltimore, MD, USA) that was accessed on March 1, 202015. We constructed epidemic curves 162 

or epicurves from the incidence data and classified country status accordingly. We defined four 163 

groups that characterize increasing expansion with a decline phase. 164 

The extracted time series case data served as the input for determining instantaneous 165 

reproductive number on a daily basis to effectively capture dynamic changes due to new 166 

detected cases and reduction of cases due to social distancing and nonpharmaceutical 167 

interventions. The prior value for R was selected at 2 and prior standard deviation of 5 to allow 168 

fluctuations in reporting of cases in the exponential phase. As there is limited access to 169 

epidemiological data of case, parametric with uncertainty (offset gamma) distributional estimate 170 

of serial interval was used. A mean of 2 and 7 days, with standard deviation of 1 was used to 171 

capture short and standard serial interval assumptions using 50 samplings of serial interval 172 

distribution. The Wallinga and Teunis method, as implemented by Ferguson7 is a likelihood-173 

based estimation procedure that captures the temporal pattern of effective reproduction 174 

numbers from an observed epidemic curve. R was calculated using the web application 175 

EpiEstim App (https://shiny.dide.imperial.ac.uk/epiestim/)7. The descriptive statistics were used 176 

to compute mean and confidence intervals of the instantaneous reproductive number. 177 

GENI score was anchored on the principle of rapid pathogen evolution between 178 

transmission events. This requires defining a suitable reference sequence of the outbreak, 179 

which is on the early stages the sequence nearest to the timepoint of the index case. For the 180 

case of COVID-19, the reference sequence is Wuhan seafood market pneumonia virus isolate 181 

Wuhan-Hu-1 NC_045512.216. Publicly available virus sequences were retrieved from GISAID 182 
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(supplementary Table 1) with whole genome variant determination using Snippy v4.6.017-19. The 183 

average mutation per isolate was divided to the total epidemic curve days to derive a daily 184 

epidemic mutation rate and scaled to a monthly rate. We calculated the average nucleotide 185 

change per month to be 1.7 (95% CI 1.4-2.0), which was within boundaries of another estimate 186 

with the substitution rate of 0.9 × 10-3 (95% CI 0.5-1.4 × 10-3) substitutions per site per year20. 187 

We derived a transformed value of this rate before integrating it with epidemiological 188 

information. The output from the variant calling step was then used to determine GENI score by 189 

calculating the nucleotide difference. The basis for GENI score cutoffs to estimate transmission 190 

dates are derived from accepted evolutionary inference of mutation rates of COVID-19.  191 

We defined four epidemic curve (epicurves) stages to provide a clear method to define 192 

increases in the outbreak. The ‘index stage’ is characterized by the first report (index case) or 193 

limited local transmission indicated by intermittent zero incidence creating undulating epicurve. 194 

Secondly, which is distinctly different from stage 1, is the ‘takeoff stage’ in which the troughs are 195 

almost at same level of the previous peak and no longer touches zero, suggesting sustained local 196 

transmission. The ‘exponential stage’ is characterized by the classical hockey stick like sharp 197 

uptrend where the outbreak is moving quickly and large number of new cases are emerging. The 198 

last stage is ‘decline’ and is noted when the outbreak has reached the peak and cases being 199 

reported are lower than the peak, which will ultimately result in few to no new cases being 200 

reported, yet viral circulation is likely still occurring.  201 

Results  202 
We determined the outbreak dynamics of pandemic COVID-19 by classifying each country’s 203 

status according to epicurve stages with a framework of a) index b) takeoff c) exponential 204 

d) decline as a clear method that can be used to benchmark metrics that include R and viral 205 

genome diversity. First, we calculated R using the instantaneous method using two serial 206 

intervals (2 and 7 days; Table 1). As of March 1, 2020, this framework defined global epicurves 207 

of COVID-19 outbreaks as gaining momentum globally with 52 countries were in the index 208 
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stage. Three countries were in the exponential stage and five countries in the takeoff stage 209 

(Figure 1). China was the only country that reached the peak of the epicurve and characterized 210 

to be in the decline stage - decreasing cases. At this point there was no evidence of any other 211 

country near the decline stage and some countries that were poised to move into the takeoff 212 

and exponential phase.  213 

Instantaneous R sensitively described real-time shifts of COVID-19 incidence captured 214 

within each epicurve stage (Figure 2). The decline stage in China was reflected by a decrease 215 

in R estimates in the latter stages the outbreak and relative to the early estimates: 1.6 (95 % CI 216 

0.4-2.9) and 1.8 (95 % CI 1.0-2.7) for 2- and 7-days serial interval, respectively. Superspreading 217 

events inflated R estimates seen in exponential stage that was observed in South Korea: 2.8 218 

(95% CI 0.6-5.3) and 25.6 (95 % CI 3.0-48.2) for 2- and 7-days serial interval, respectively. 219 

Efficient disease control was instituted in Singapore enabling it to remain in the index stage 220 

while Japan was moving to the takeoff stage characterized by increased R estimates 3.6 (95% 221 

CI 0.4-7.3) 2.2 (95% CI 1.3-3.0) for 2- and 7-days serial interval, respectively. The R estimates 222 

overlaps for all exemplar country outbreak stages in the two serial interval scenarios, suggesting 223 

that the transmission could be as short as 2 days. These estimates were relatively lower than 224 

previously reported, bringing to light possibility of transmission in the incubation period that is 225 

associated with rapidly expanding outbreaks, which is currently being observed in many 226 

European countries.  227 

Low detection of COVID-19 was observed in representative countries in the index stage with 228 

low R values (<2) that can be attributed to effectiveness of social distancing intervention (i.e. 229 

Hong Kong) or under detection for countries with limited testing (i.e. United States) (Figure 3a). 230 

Sustained local transmission was occurring in five countries that were progressing into takeoff 231 

stage (Japan, Germany, Spain, Kuwait and France) as measured by R values (>2) (Figure 3b). 232 

The magnitude of spread was apparent with relatively higher R estimates (>10) in Italy, Iran and 233 

South Korea, which demonstrated sudden surges in incidence due to prior undetected clusters 234 
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in part but other factors may contribute to this observation (Figure 3b). This significantly 235 

increased the instantaneous R estimates versus other methods of estimation but allows a more 236 

obvious depiction of the surge of cases allows differentiation of the takeoff stage from 237 

exponential stage.  238 

We further examined the value of computing country-specific instantaneous R by 239 

comparing different temperature range (tropical versus temperate) and population density. 240 

Population density of key cities (Table 2) and the higher temperature range values were used 241 

for selected countries; however, no direct link was observed. Increases in the South Korean 242 

outbreak was associated with a secretive religious group Shinsheonji (73% cases of COVID-19 243 

in South Korea) located mainly in Daegu with a lower population density 883/km2 as compared 244 

to the rest of the areas with an outbreak21 and likely explain the outbreak expansion in the early 245 

epicurve. Religious beliefs that modify health seeking behavior particularly reporting clinical 246 

signs of COVID-19 combined with continued large group gathering prevented early detection of 247 

the outbreak. While most countries (Table 2) have cooler temperatures (10-6˚C), Singapore’s 248 

temperature higher indicated that local transmission occurred at higher temperatures and 249 

suggests that temperature shifts will not likely change transmission. These commonly accepted 250 

environmental and behavioral activities did not explain the epicurve. This led to the hypothesis 251 

that the viral genomic variation underpinned changes in cases during outbreaks in each country. 252 

We determined the relationship of epicurve stage with viral genetic variation using a 253 

metric that merges absolute genome variation with the rate of genome change to create the 254 

GENI metric that anchored population genome diversity with the rate of evolution for the SARS-255 

Cov-2. To examine how the viral genome diversity was associated with the epicurve stages we 256 

first examined the index stage (Singapore) and the exponential (South Korea). Integration of 257 

GENI scores successfully distinguished the index from exponential stage (Figure 4). An 258 

increase in GENI scores was associated with exponential stage with a median score of 4, 259 

suggesting that the viral diversity and rate of mutation played was directly proportional to case 260 
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increases during this stage. Singapore (index stage) effectively controlled the disease before 261 

becoming exponential had a GENI median score of 2. This was found in multiple time points 262 

during the outbreak were multiple mutation events were directly associated with increases in 263 

cases. While China is in the decline stage the retrospective association with R, cases, and 264 

GENI provided longitudinal evidence of multiple expansion in cases with mutation events in the 265 

viral genome, especially early in the epicurve. The repeated viral mutations and epicurve 266 

expansion were associated in each time point over 3 months, in three countries, and in three 267 

different outbreak stages. This finding is useful in integrating virus genome diversity and 268 

evolution into assessment of outbreak status in an outbreak between countries but also within 269 

the epicurve when combined into a triad with instantaneous R estimates. The proportionality of 270 

GENI scores with the epicurve stage indicates its value in determining the outbreak status and 271 

the importance of generating population scale genome sequence resources.  272 

A framework to merge epidemiology and population genomics was derived from this 273 

study as a systematic method for molecular epidemiology (Fig. 5). It requires dynamic 274 

measurements be taken for R and longitudinal efforts to determine each virus whole genome 275 

sequence. Using this triad of measurements accurately and quickly provided insight to measure 276 

outbreak progress but also provides an evidence-based method for interventions. This study 277 

demonstrated an advancement of how to use population genomics in a viral situation where the 278 

mutation rate is fast and the genome diversity of the population is extraordinarily high. GENI 279 

provided a missing method that defines how to use viral genome mutation dynamics and 280 

genome population diversity, which is only observable using large numbers of genomes, that 281 

occurs during an outbreak.  282 

 283 
Discussion: 284 

Public health response is proportional to the severity and transmission dynamics of an 285 

infectious disease outbreak. This requires epidemiological metrics that can be used as decision 286 

criteria, and ideally, they can be used to assess impact of the intervention. In this work we 287 
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determined that R is much more dynamic in the COVID-19 pandemic than previously 288 

appreciated by country as well as over the outbreak within each country (Fig 2-3). The 289 

instantaneous R estimation with a serial interval of 2 was extremely sensitive to shifts in the 290 

epicurve during the index phase (Fig 2-3). Singapore is an excellent example of effectively 291 

controlling and containing the COVID-19 outbreak. They previously designated a response 292 

system called Dorscon (Disease Outbreak Response System Condition)22 providing a 293 

systematic approach to control so that they have not moved past the index phase. In contrast, 294 

most other countries in this phase are poised to move into the takeoff phase (Fig 3). The 295 

transition into the takeoff phase signified a transition from a 2-day serial interval to a 7-day serial 296 

interval that was more sensitive to shifts in the epicurve.  297 

While estimates of R alone is insightful in retrospect, gaps in epidemiological surveillance 298 

due to several factors creates blind spots that hindered the ability to determine interventions. To 299 

overcome this limitation, we merged GENI estimates based on whole genome sequence 300 

variation and mutation rate with the epicurve and R and provided a predictive triad of 301 

measurement that resulted in insight that accurately refined case expansion (Fig. 4). Each 302 

phase of the outbreak was characterized with mutations that led to new cases in established 303 

outbreaks by case definition. The merged information indicate that China found variation in the 304 

viral sequence much earlier than the outbreak cases increased. Independent of the phase 305 

framework merging sequence variants with the epicurve found that new cases were observed in 306 

the same timeframe as new sequence variants were found. Previous studies that the 307 

relationship of genomic diversity with epidemic severity (i.e. R) found no clear link20. However, 308 

by merging instantaneous R, the epicurve stage, and the GENI index it is clear that a link exists 309 

for each country examined that resulted in a direct link between outbreak dynamics and the 310 

absolute genomic mutation with the mutation rate. The GENI index provides a basis to examine 311 

imported cases or locally spreading, both of which addressed this current work using 312 

established metric - R and novel integration of viral whole genome sequences to define changes 313 
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in the sequence that are directly linked to increases in cases. This leads to an epidemiological 314 

metric that is scientifically robust and at the same time can convey complex biological properties 315 

to enable an efficient characterization of an outbreak in combination. Transforming complex 316 

pathogen characteristics was made usable to public health and medical field using the GENI 317 

score as a complete merged information set with other characteristics of the outbreak. 318 

Previous outbreaks, such as Ebola, employed state of the art analysis using phylodynamics 319 

that is anchored on the genetic evolution13. Inference such as time to most recent common 320 

ancestor allowed estimation of outbreak origin, population size, and R – yet this was not 321 

integrated into the outbreak dynamics and stage of advancement in the outbreak. This type of 322 

analysis is possible because genomic sequences carry temporal signals and when used in 323 

context with sample from different timepoints, previous divergence can be determined. The 324 

GENI score includes these signals and expands their use by merging them with the outbreak 325 

dynamic using the population genome variation as well as the mutation rate.  326 

This inherit information is not limited to viruses. Another recent example in a bacterial setting 327 

was the cholerae outbreak in Haiti wherein the phylogenetic analysis resolved the origin of the 328 

pathogen23. However, for this analysis to succeed, a substantial database of genome 329 

sequences is needed, collected across time and geographic location to enable placement in a 330 

phylogenetic context. As outbreaks as bound to happen in the future, investment in cataloguing 331 

the genomic space of pathogens is as ever important24,25. It is critical to obtain COVID-19 332 

sequences from humans as well as other animals that have zoonotic potential, as was 333 

demonstrated previously with zoonotic Campylobacter species26,27. Creating sequence 334 

repositories of pathogens is critical and underway for various pathogens25 as well as COVID-335 

1918. 336 

Prior work forewarned the practice of being overly dependent on early estimates of R 337 

alone28. By having the most accurate possible information for a dynamic metric and taking into 338 

account the complex dynamics that factor in the calculation of R along with merging this the 339 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 20, 2020. ; https://doi.org/10.1101/2020.03.17.20037481doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.17.20037481
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

genomics of the pathogen is a robust and insightful method to assess outbreak dynamics, as 340 

demonstrated in this study. Openness and data sharing of incidence reports and sequences at 341 

unprecedented scale is being done in this pandemic and it is paying rewards29. Leveraging on 342 

these resources opens unexpected collaboration and avenues for applying relevant 343 

bioinformatic and disease modelling skills across the scientific community to solve global public 344 

health problems. Examples that hindered this were observed in several countries that led to 345 

cryptic spread of the disease in countries. Additionally, lacking the epidemiological infrastructure 346 

and genome sequencing capabilities limit this approach that is not acceptable for modern public 347 

health. However, without the appropriate technical skills in the performing complicated 348 

phylogenetic inference, utility of such innovation will be limited. Establishing a protocol for 349 

merging epidemiology and genomics was defined in this work (Fig. 5) and can be instituted 350 

globally. 351 

 352 
Conclusion 353 
This study integrated population genomics into epidemiological methods to provide a framework 354 

for molecular epidemiology. Specifically, this study demonstrated using epicurves, 355 

instantaneous R estimates, and GENI specific case increases in COVID-19 are directly 356 

associated with viral mutation. It was demonstrated that the pandemic is poised to become 357 

larger and that mutation will be associated with the increase in cases. Exemplar outbreaks, such 358 

as Singapore, found increases in cases with viral mutations that were effectively controlled. 359 

However, other outbreaks had expanding R estimates during the outbreak, as well as numerous 360 

viral mutation events. Use of epicurve stages, instantaneous R estimates, and GENI provided a 361 

robust and accurate framework to monitor outbreak progression to different stages with direct 362 

association between cases and increases in each metric. 363 
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Figure legends: 449 
Figure 1. Distribution of country classification based on COVID-19 epicurve status.   450 

 451 

Figure 2. Instantaneous reproductive number estimates for different stages of the COVID-19 452 

epidemic curve: a) index (Singapore) b) takeoff (Japan) c) Exponential (South Korea) d) decline 453 

(China) in short (2 days) and standard (7 days) serial interval. Decelerating stage of epidemic 454 

curve results to a reproductive number lower than 2 for both serial intervals, epidemic curve with 455 

multiple introductions yields 2-day serial interval with higher reproductive number and 456 

exponential serial interval yields higher reproductive number for the 7-day serial interval. Dot (.) 457 

the surge in the epidemic curve of China corresponds to the alteration of the case definition of 458 

COVID-19 by broadening confirmed cases with pneumonia confirmed with CT (computed 459 

tomography) scan. South Korea’s higher reproductive number is due to cryptic transmission 460 

associated with a secretive cult with altered health seeking behavior.  461 

 462 

Figure 3. Epicurve estimates with different serial intervals. Panel A represents Epicurves and 463 

instantaneous R values for index stage countries using 2- and 7-day serial interval. Panel B 464 

Global dynamics of COVID-19 using instantaneous estimate of reproductive number with 2-day 465 

serial interval. Under preincubation period infectivity scenario, reproductive numbers globally 466 

increasing (> 2). Italy’s R = 8 is highest due to late detection of infection clusters. This higher R 467 

estimate is due to a huge bump in cases combined with diagnostic gap of low-level incidence. 468 

The same surge dynamics is seen in South Korea. Global dynamics of COVID-19 using 469 

instantaneous estimate of reproductive number with 7-day serial interval. Italy’s R value inflates 470 

to 57 with the 7-day serial interval assumption and overlaps with the lower threshold of 2 day 471 

serial interval R estimate. This estimation depicts a decreasing pattern for countries multiple 472 

introductions like Singapore, Hong Kong.  473 

 474 
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Figure 4. Relationship of pathogen genome identity (GENI) score with the temporal signal along 475 

the epidemic curve. Local transmission is captured by virus mutation as expressed in GENI 476 

score values. GENI scores of SARS-COV2 isolates are relative to Wuhan reference strain 477 

Wuhan-Hu-1 NC_045512.2. The red line in the China epicurve represents the time before an 478 

outbreak was determined yet genome sequences were circulating. The blue shaded curves 479 

indicate GENE scores directly overlaid with the outbreak curve. The dotted line represents the 480 

common point in time as a reference for visualization. The GENI score and epicurve show 481 

similarity except in China as the outbreak advanced to takeoff and exponential the GENI score 482 

increased while in the index stage example of Singapore the outbreak was contained and the 483 

GENI score remained <2.  484 

 485 

Figure 5. Integration of genomic and classical epidemiology for outbreak investigation. The 486 

foundation of epidemiology is the accurate and timely reporting of cases which enable the 487 

calculation of the number. Genomic Identity (GENI) score is formulated from genomic data of 488 

pathogens to differentiate imported cases versus local transmission and measure time of cryptic 489 

spread. Together these two epidemic values deliver insight that can be directly used for making 490 

decision criteria for public health intervention.  491 

 492 

  493 
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Table 1. Country-specific Instantaneous Reproductive Number (R) estimates for COVID-19 as 494 

of March 1, 2020. 495 

  Instantaneous Reproductive Number (R)  
with different serial intervals 

Country Cases 2 days 7 days 

Mainland China 79251 1.6 2.1 

South Korea 3150 2.8 25.6 

Italy 1128 8 57.0 

Iran 593 2.8 17.1 

Japan 241 3.6 2.2 

Singapore 102 3.3 1.6 

France 100 2.9 16.9 

Hong Kong 95 2.6 1.6 

Germany 79 3.1 17.2 

United States 70 4.3 1.7 
Kuwait 45 2.6 15.3 

Spain 45 3.7 10.8 

Thailand 42 3.8 1.7 
 496 
  497 
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Table 2. Epidemiological Parameters and instantaneous R estimates. The population density for 498 

South Korea is based on Daegu where 75% of the cases are reported. 499 

 500 

 Reproductive 
Number (R) 

Temperature 
(˚C) during 
outbreak 

Population 
Density 
(people/km2) 

Interpretation in 
consideration of the 
epidemiological curve 

Singapore 3.3 32 8136 Imported cases, limited 
local transmission 

France 2.9 10 4300 
Imported, Local 
transmission >1-2 
month 

Italy 8 10 7200 Imported cases, Local 
transmission >1 month 

United States 4.3 9 8444 Imported cases, Local 
transmission >2 month 

South Korea 2.8 6 883 
Imported cases, Local 
transmission >1-2 
month 

 501 
  502 
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Table 3. Relationship of Pathogen Genome Identity (GENI) Score derived from mutational 503 

difference from the index genome (Wuhan isolate of COVID-19 or cluster isolate reference from 504 

multiple outbreak regions outside of territory). 505 

 506 

Equivalent 
Pathogen Genome 
Identity (GENI) 
score for COVID-
19 

Clinical Interpretation and 
Epidemiological Inference  Notes 

0-2 

No difference from index case 
isolate genome or reference, 
imported case if there is no prior 
report, indicative of acute 
transmission <1 month 

Reference genome is primarily 
earliest isolate available. 

3-4 

recent local transmission (average 
1-2 months) if there are no prior 
report of cases 

Subsequent outbreak clusters can 
serve as sources of introduction 
hence near neighbor reference has to 
be selected to generate an accurate 
GENI score.  

>4 

sustained local transmission 
(greater than 2 months) if there is 
are no prior report of cases  

Subsequent outbreak clusters can 
serve as sources of introduction 
hence near neighbor reference has to 
be selected to generate an accurate 
GENI score.  

 507 
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