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Abstract

The outbreak of novel coronavirus (COVID-19) has the potential for global spread, infecting large
numbers in all countries. In this case, estimating the country-specific basic reproductive ratio is a
vital first step in public-health planning. The basic reproductive ratio (R0) is determined by both
the nature of pathogen and the network of contacts through which the disease can spread - with this
network determined by socio-demographics including age-structure and household composition. Here we
focus on the age-structured transmission within the population, using data from China to inform age-
dependent susceptibility and synthetic age-mixing matrices to inform the contact network. This allows
us to determine the country-specific basic reproductive ratio as a multiplicative scaling of the value from
China. We predict that R0 will be highest across Eastern Europe and Japan, and lowest across Africa,
Central America and South-Western Asia. This pattern is largely driven by the ratio of children to older
adults in each country and the observed propensity of clinical cases in the elderly.

1 Introduction

The ongoing outbreak of 2019 novel coronavirus (2019-nCoV) has been characterised by a pattern of spread
with most cases occur in older individuals, and in particular very few cases have been seen in under-15s[1, 2].
This suggests that transmission is characterised by age-specific heterogeneities going beyond those explained
by differences in contact patterns across age groups.

A 2017 study by Prem et al. estimated contact patterns for 152 countries based on social and demographic
data. These are in the form of matrices whose entries correspond to the expected total number of age-
stratified contacts per day for individuals belonging to each of 16 5-year age classes[3]. These estimated
contact matrices are publicly available as supplementary material attached to Prem et al.’s paper. Here we
use the estimated social contact matrix for China to define the early age-structured transmission dynamics;
this is formed from the country-specific social contact matrix k and a vector of age-specific susceptibilities z
– whose entries scale the risk of transmission from contact with infected individuals to susceptible individuals
of each age class. Based on age-structured data from the outbreak in China, we can estimate z. We then
combine z with Prem et al.’s estimates of the contact matrices in the other 151 countries to generate an
estimate of an age-structured transmission structure for each of those countries. The basic reproductive
ratio can then be estimated from these transmission structures to give us an approximation of the spreading
potential of a COVID-19 outbreak in each of these countries.
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2 Methods

Our estimation process consists of calculating an age-specific susceptibility profile based on epidemiological
data from China and the estimated China-level contact matrix[3]. This susceptibility profile can then be
combined with the estimated country-level contact matrices from the other countries in Prem et al.’s study[3]
to produce age-stratified transmission matrices for these countries. The dominant eigenvalue from these
transmission matrices (which are linear scalings of the next-generation matrix) provides a relative estimate
of the basic reproductive ratio for that country.

We assume that we have a population divided into K discrete age classes C1, ...CK . Suppose we have a
set of outbreak data in the form x = (x1, ..., xK), where xi is the cumulative number of cases so far in age
class Ci, expressed as a fraction of all the cases, so that

∑
i xi = 1. Denote by ki,j the expected number of

contacts with individuals of age class Ci made per day by a single individual of age class Cj . The matrix
K = (ki,j) will be asymmetric, with the ith row corresponding to an average individual of each age class’s
contacts with age class Ci, and the ith column corresponding to the contacts made per day by an average
individual of age class Ci. Let pi be the conditional probability that a susceptible individual in age class
Ci becomes infected, given that they have had contact with an infectious individual. We assume that this
probability depends only on the age class of the recipient, and not on that of the infector, i.e. we have
age-dependent susceptibility but homogeneous infectivity. The expected number of infections generated in
age class Ci in a single day by an infectious indvidual in age class Cj is given by piki,j . Defining zi = piγ

−1,
the expected number of cases in age class Ci generated by a single infectious individual in age class Cj over
its entire infectious period is given by

Ri,j = ziki,j . (1)

These age-stratified reproductive ratios define a matrix R (often called the next generation matrix), whose
leading eigenvalue is the basic reproductive ratio of the entire system[4]. The corresponding magnitude 1
eigenvector is the distribution of cases by age in the early stages of the epidemic. Thus, given the dataset x

and an estimate R̂0 of the associated basic reproductive ratio, the matrix R should satisfy

Rx = R̂0x. (2)

If we look at the ith row of this set of equations, we have∑
j

Ri,jxj = R̂0xi,

or, given Equation 1,

zi
∑
j

ki,jxj = R̂0xi.

The age-specific susceptibility zi can thus be estimated as

zi = R̂0
xi∑

j

ki,jxj
. (3)

To estimate the equivalent of the matrix R for some new population with age-structured contact matrix
k̃ = (k̃i,j), we assume that zi is constant across populations (i.e. in every population we see the same
dependence of susceptibility on age). Then our desired matrix has (i, j)th entry

R̃i,j = zik̃i,j ,

and the eigenvalue of this matrix gives us the estimated basic reproductive ratio R̃0 for the new population.
Since Equation 3 tells us that every zi term is linear in R̂0, and every entry of R̃ contains one of the

zi terms, it follows that the eigenvalue R̃0 is also linear in R̂0. We can thus write R̃0 = σR̂0 for some
population-specific scaling factor σ, which we can calculate by carrying out the estimation of z with R̂0
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Figure 1: Estimated scaling factor σ for each country assuming no age-specific susceptibility. Gray countries
are those not included in Prem et al.’s study [3].

set to one. We can therefore calculate a full set of scaling factors for every country without requiring an
estimate of the basic reproductive ratio in China; these scaling factors provide a measure of transmission
relative to that observed in China, and can be used to generate country-specific basic reproductive ratios
given a reliable estimate for China. Although we note that estimates for China differ widely depending on
the time-scales examined ( R0 = 2.2 [1], R0 = 2.3 − 2.6 [5], R0 = 2 − 2.7, [6], R0 = 2.35 [7], R0 = 3.11 [8]).

3 Results

In Figure 1 we present the results of a null-model in which there is no age-specific susceptibility (zi1), and
plot the associated scaling factor σ for each of the 152 countries included in Prem et al.’s study. That is,
we assume that the reproduction matrix R is directly proportional to the contact matrix K. The constant
of proportionality will be the ratio between the leading eigenvalues of the two matrices, i.e. R0 divided by
the leading eigenvalue of K. To obtain the reproduction matrix for some other country, we just multiply its
contact matrix by the constant of proportionality we estimate for China.

Figure 2 presents the estimated scaling factors based on the age distribution reported by two studies of
the early dynamics in China: Li et al.[1] which reports on the first 425 confirmed cases; and Yang et al.[2]
which examines data from the first 4021 confirmed cases. (Our estimates of the scaling factors for each of
the 152 countries is given in the Supplementary Material.)

In Figure 3(a) we plot the scaling factors obtained through our consideration of age-dependent susceptibil-
ity (figure 2) against the factors obtained by assuming homogeneous susceptibility across age groups (figure
1). Allowing for age-dependent susceptibility substantially increases the amount of variation in scaling (and
thus in basic reproductive ratio) by country, and in particular can lead us to predict much larger scaling
factors. When the transmission structure is modelled as a simple scaling of a population’s contact patterns,
the variation in scaling is driven by the variation in average intensity of contacts (captured by the eigenvalue
of the contact pattern matrix K) by country. When we incorporate age-dependent susceptibility, contact
patterns involving members of highly susceptible age classes becomes particularly important - generating a

3

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 27, 2020. ; https://doi.org/10.1101/2020.02.26.20028167doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.26.20028167
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2: Estimated scaling factor σ for each country based on case data from Li et al. [1] (upper map)
and Yang et al.[2] (lower map). Gray countries are those not included in Prem et al.’s study [3].
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Figure 3: (a) Scaling factor estimated using outbreak data and the age-dependent susceptibility model
versus scaling factor estimated without age-dependent susceptibility, based on age-dependent susceptibility
profiles estimated from the Li et al. data (blue dots) and the Yang et al. data (red crosses). (b) Population
pyramids for Niger, China and Poland - which have the highest, medium and lowest scaling respectively.
Data from [9].

core-group within the population. For COVID-19, this means that we see higher scaling factors in countries
with older populations, since this usually means contacts involving older individuals are more common. In
countries with comparitively younger populations, contacts involving older individuals are less common and
so the capacity of the infection to spread is reduced relative to the purely-contact pattern based transmission
model.

Figure 3(b) illustrates this principle for Niger (which is predicted to have one of the lowest scalings of
the reproductive ratio) and Poland (which is predicted to have one of the highest scalings) in comparison to
China. The population pryamid of Niger is dominated by young children; China has a relatively stable age-
structure although there are more individuals in 30-54 age classes than in younger age-groups; the pryamid
for Poland shows even fewer children and substantial proportions into older age-classes. We therefore observe
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that it is interaction between the population pryamid and the age-structured susceptiblity that largely drives
the scaling of the basic reproductive ration.

This point is seen to hold for all countries investigated (Figures 1 and 2). In Figure 1, we see that without
age-dependent susceptibility transmission is low in many European countries as well as in South Korea and
Japan, and high in many African countries, consistent with the differences in daily number of contacts
predicted by Prem et al driven by the proportion of children. However, the maps in Figure 2 demonstrate
that when age-specific susceptibility is taken into account, the pattern of infectious potential by country is
generally reversed. We then expect to see higher transmission in Eastern Europe (including Italy which had
the largest number of cases in Europe in late February 2020) and Japan, and reduced transmission across
Africa, central America, the Middle East and India.

4 Discussion

Here we have developed a simple model for age-structured transmission of 2019-nCoV with two components:
an age-structured contact matrix dependent on the behaviour of the host population and an age-dependent
susceptibility profile dependent on physiological response to infection. By using a previously-estimated syn-
thetic contact matrix and age-stratified data, we were able to estimate age-dependent susceptibility profiles
based on the first 425 and the first 4,021 cases in China. We then combined these estimated profiles with
estimates of age-stratified contacts in 151 other countries to give us transmission matrices for these countries
from which we could estimate the scale of basic reproductive ratios in each country relative to China. We
demonstrated that taking age-specific susceptibility into account results in substantially different predictions
of transmission intensity by country relative to a model without age-specific susceptibility; countries with
older populations are at substantially higher risk than countries with younger populations.

The predictions we have made are limited by two main elements. The first is the accuracy of the estimated
contact matrices; although there are known issues (as discussed in [3]) they remain our best estimate of age-
structured contacts to date. Unfortunately, not all countries have an associated mixing matrix; many counties
in Africa do not have the underlying demographic data to support the generation of the associated mixing
matrix. Secondly, in inferring the age-dependent susceptibility, we are effectively generating a matrix Ri,j

which determines the distribution of secondary confirmed cases in terms of current confirmed cases. We are
therefore assuming that either younger individuals are unlikely to infected or if infected they are generally
asymptomatic and play a minor role in onward transmission. If such asymptomatic infections transmit
equally to symptomatic cases, then the scaling of the reproductive ratio is expected to be closer to Figure
1. Finally, it is worth stressing that these projections only inform about early phase of the outbreak in
the absence of controls; the rapid and effective use of non-pharmaceutical interventions (contact-tracing,
self-isolation and movement controls) can substantially reduce the reproductive ratio.
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