1 2 3	
4	Mapping COVID-19 vaccine acceptance and uptake amongst Chinese residents: A
5	systematic review and meta-analysis
6	Hassan Masood ¹ , Syed Irfan ¹
7	
8	Affiliation
9	¹ Faculty of Health Sciences, McMaster University, Hamilton, Canada
10	
11	
12 13	Correspondence*
14	Hassan Masood M.Sc.
15	McMaster University
16	1280 Main Street West, Hamilton, ON L8S4L8, Canada
17	(289) 684-3075
18	hassan.masood9@gmail.com
19	
20	
21 22	
22 23	
23 24	
25	
26	
27	
28	
29	
30	

1

31 Abstract

Objective: Controlling the COVID-19 pandemic depends on the widespread acceptance of
vaccination. Vaccine hesitancy is a growing area of concern in China. The aim of the study is to
map the overall acceptance and uptake rates of COVID-19 vaccines across different groups.
Methods: Five peer-reviewed databases bases were searched (PubMed, EMBASE, Web of
Science, EBSCO, and Scopus). Studies that conducted cross-sectional surveys in China to
understand the acceptance/willingness to receive COVID-19 vaccines were included.
Results: Among 2420 identified studies, 47 studies with 327,046 participants were eligible for
data extraction. Males had a higher uptake of COVID-19 vaccines (OR=1.17; 95% CI:1.08 -
1.27) along with Chinese residents with \geq 5000 RMB monthly income (OR=1.08; 95% CI:1.02 -
1.14).
Conclusion: COVID-19 vaccination uptake rates in China need to be improved. To inform
public health decisions, continuous vaccination uptake monitoring is required.

2

62

63 1. Introduction

64 1.1. Background of COVID-19

65 The emergence of coronavirus disease 2019 (COVID-19), a respiratory illness caused by the virus SARS-CoV-2, has resulted in a global pandemic since its breakout in 2019 [1]. More 66 67 than 213 counties have reported COVID-19 outbreaks [2]. As of November 2022, there were 68 more than 600 million confirmed cases of COVID-19 across the globe, resulting in approximately 7 million mortalities [1]. Looking at China alone, the World Health Organization 69 70 (WHO) reported over 99 million COVID-19 cases and 121,000 deaths [3]. COVID-19 continues 71 to impact public health as novel contagious variants of SARS-CoV-2 can affect fully immunized 72 individuals [4]. According to data published by the WHO, different population groups are 73 impacted disproportionately [4]. For instance, healthcare workers are at higher risk of contracting 74 COVID-19 infection due to their occupational exposure to patients [4]. COVID-19 cases among 75 young adults have a higher probability of resulting in asymptomatic infections compared to their 76 older counterparts [1]. Similarly, sociodemographic factors such as age, gender, and level of 77 knowledge influence the rate of uptake of vaccines and contribute to vaccine hesitancy [4] 78 Scientific literature also indicates that the COVID-19 pandemic has disrupted the functionality of 79 different systems, such as health and education [1]. In addition to the virus' physical health 80 impacts, reports show that there are also severe mental health repercussions of this deadly COVID-19 infection [1]. 81

82

83 1.2. Importance of vaccines

84 The cataclysmic consequences of the COVID-19 pandemic have resulted in rapid vaccine
85 research and development [5]. Vaccine development is a rigorous and time-consuming process,

3

86 and it can take up to 10 years to develop a safe and effective vaccine [5]. However, the deadly 87 impacts of COVID-19 have increased the pace of vaccine production, where vaccines were developed within one year [5]. Scientific evidence emphasizes the importance of vaccines as 88 89 they are critical to ensure protection amongst the public [5]. Promoting the uptake of vaccination services results in the state of herd immunity, which is a fundamental method to control the 90 91 spread of such infections [2] Considering the delta variant of the SARS-CoV-2, roughly 85% of 92 the population should gain immunity to COVID-19 either via natural infection or by uptaking 93 vaccination services [5]. However, the omicron variant of SARS-CoV-2 displayed stronger 94 abilities to fight neutralizing antibodies produced by vaccines [5]. In this case, scientific 95 evidence suggests that more than 85% of the population needs to be immunized to achieve herd immunity [5]. Therefore, achieving high vaccine coverage within a population is key to reducing 96 97 the severity of the COVID-19 pandemic [2].

98

99 1.3. COVID-19 Protocols in China

In order to fight the COVID-19 pandemic, the government of China established several safety protocols [2]. These restrictions included lockdown, isolation, quarantine mandates, travel restrictions and prohibition of mass gatherings [2]. While these protocols displayed increased success over time in controlling the spread of the infection, they yielded negative consequences for economic growth and social development [2]. Therefore, several restrictions were lifted in China, and the focus shifted more toward vaccine development and promotion amongst the general public [2].

107

108 1.3.1. China's Zero-covid Policy

4

109	China makes a unique global case due to its strict zero Covid policy implementation over
110	three years. When the COVID-19 pandemic was declared, the Chinese government viewed it as a
111	major threat and placed strict restrictions to keep the COVID-19 cases close to zero [6]. These
112	steps were collectively termed China's COVID zero policy [6]. While these strategies effectively
113	controlled the spread, they severely affected the economy and fueled protests across many cities
114	[7]. Government finances were strained as most of the funds were directed toward COVID-19
115	safety protocols [7].
116	

116

117 1.3.2. Overnight wholesale re-opening

Due to these substantial economic and social losses, the Chinese government decided to ease the stringent regime. In December 2022, China lifted the restrictions to open up the factories, companies, stores and restaurants in an attempt to return back to pre-pandemic conditions [8]. The cases surged dramatically, and an extremely low vaccination rate was reported among older adults [9]. After relaxing the restrictions, over a million COVID-19 cases and 5000 deaths per day have been reported [9].

124 This recent surge of COVID-19 cases has severely impacted two populations: the elderly 125 and those with underlying medical conditions. A study conducted by Ioannidis et al. [10] 126 explored the increase in cases and deaths after the abandonment of the zero COVID policy and 127 found that from December 2023 till the summer of 2023, 691,219 new cases of COVID-19 were 128 recorded in China [10]. The majority of the fatalities were observed in senior citizens that were 129 aged 60 years and above. In Hong Kong alone, 70.6% of deaths due to COVID-19 were among 130 those aged 80 and above [10] The second highest deaths were recorded for those that were 70-79 131 years old (Ioannidis et al., 2023). These disproportionate fatal outcomes among the elderly are of

5

132	high concern considering that as of December 2022, only 40% of the people over the age of 80
133	are vaccinated against COVID-19 [10]. This figure is even worse in some parts of China such as
134	Hong Kong, where only 25% of people over the age of 80 are vaccinated [10].
135	
136	1.4. Vaccine Development in China
137	After extensive research and testing, the China National Medical Products Administration
138	(CNMPA) approved two COVID-19 vaccines: Sinopharm and Sinovac [11]. Sinopharm was
139	approved in December 2020, whereas Sinovac was approved in February 2021 [11]. According
140	to recent studies, there are three types of vaccines that are available in China for uptake [1].
141	These include the single-dose adenovirus vector vaccine, the 2-dose inactivated vaccine and the
142	3-dose recombinant subunit vaccine [1]. Most vaccine research in China was conducted before
143	the approval of Chinese vaccines, whereby the population's perceptions were based on the
144	benefits and barriers to hypothetical COVID-19 vaccines [11]. Findings by Lin et al. [12] show
145	that some Chinese residents prefer domestic vaccines over imported ones. Therefore, it is crucial
146	to conduct in-depth research that aims to evaluate the different COVID-19 vaccine uptake rates
147	along with reasons to create targeted approaches.

148

149 1.5. Vaccine Hesitancy in China

Due to widespread misinformation, public vaccine acceptance can vary over time. Social media is one of the avenues where misinformation is spread [13]. "Weibo" is China's most popular social media platform, with reportedly 500 million active users [13]. Since the rise of the COVID-19 pandemic, Weibo has been one of the outlets where the general public in China has been having discussions regarding COVID-19 vaccines [13]. Due to the vast outreach of Wiebo,

6

155 it is cited as one of the sources that breed COVID-19 vaccine hesitancy amongst the Chinese156 population in particular [13].

157	Research conducted by Liu et al. [14] demonstrated that there is variation in vaccine
158	hesitancy between China and the United States (US). Chinese residents hold a different
159	viewpoint, as they reported being more concerned about the adverse effects of COVID-19
160	vaccines (19.68%) compared to US residents (6.12%) [14]. While the overall prevalence of
161	hesitancy was found to be high in both countries, the reasons for vaccine refusal were drastically
162	different. In order to develop innovative and personalized solutions to achieving herd immunity,
163	it is important to understand the unique challenges that are at play within different countries.
164	While significant research has examined the acceptance of COVID-19 vaccines, there are
165	few studies that have systematically reviewed and compiled the current evidence [5]. As China is
166	a heavily populated country with complex national conditions, it is imperative to investigate the
167	COVID-19 vaccine acceptance, uptake, and reasons for vaccine hesitancy. By understanding the
168	factors fueling vaccine refusal, tailored strategies can be undertaken to increase the efficacy of
169	COVID-19 vaccination campaigns in China.

170

171 **1.6. Research objective**

This systematic review and meta-analysis aims to examine the 1) acceptance and uptake of COVID-19 vaccines across different population groups (adults, healthcare workers, patients with chronic diseases, pregnant women, university students, and parents) in China; 2) compare the differences in uptake rates across diverse subgroups based on their sociodemographic characteristics; and 3) common reasons for vaccine refusal. The population subgroups investigated in this study include age, gender, income, and level of education. This in-depth

178	analysis will add context to current research and help guide vaccine promotion strategies in
179	China by understanding each subgroup's concerns, beliefs, and needs. The findings can also
180	function as a reference for future studies that investigate COVID-19 vaccination beliefs in China.
181	
182	2. Materials and methods
183	2.1. Data Sources and Strategy
184	This systematic review and meta-analysis was developed according to the Preferred
185	Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [15]. The
186	following peer-reviewed databases were searched: PubMed, EMBASE, Web of Science,
187	EBSCO, and Scopus.
188	Within these databases, the following search terms were employed: coronavirus terms
189	("coronavirus disease" [All Fields] OR "coronavirus" [MeSH Terms] OR "coronavirus" [All
190	Fields] OR "coronaviruses" [All Fields] OR "2019-nCoV" [All Fields] OR "2019ncov" [All
191	Fields] OR "covid 19"[All Fields] OR "severe acute respiratory syndrome coronavirus 2"[All
192	Fields]) AND vaccine terms ("vaccin" [All Fields] OR "vaccine" [All Fields] OR "vaccines" [All
193	Fields] OR "vaccination" [All Fields] OR "vaccinable" [All Fields] OR "vaccinal" [All Fields] OR
194	"vaccinate" [All Fields] OR "vaccinated" [All Fields] OR "vaccinates" [All Fields] OR
195	"vaccinating" [All Fields] OR "vaccinations" [All Fields] OR "vaccination's" [All Fields] OR
196	"vaccinator" [All Fields] OR "vaccinators" [All Fields] OR "immunization" [All Fields] OR
197	"immunizations" [All Fields] OR immuniz* OR immunis*) AND survey terms ("survey" [All
198	Fields] OR "surveys" [All Fields] OR "survey's" [All Fields] OR "surveyed" [All Fields] OR
199	"surveying" [All Fields] OR "questionnaire" [All Fields] OR "questionnaires" [All Fields]) OR
200	"poll"[All Fields]).

8

201 All research articles published in the English language between December 1, 2019, and 202 June 1, 2023, were collected using the search terms mentioned above.

- 203
- 204

2.2. Selection and Eligibility Criteria

205 Collected research articles were imported into COVIDENCE, a screening and data 206 extraction tool for conducting systematic reviews [16]. COVIDENCE automatically removed all 207 duplicate articles, yielding a set of studies to review. Subsequently, abstract and full-text 208 screening were conducted by HM and SIT independently conducted on the resultant pool of 209 articles and conflicts were addressed through unanimous consensus. Articles were included in 210 this systematic review and meta-analysis based on the following inclusion criteria 1) they 211 investigated COVID-19 vaccine acceptance, willingness, and uptake, 2) they were original cross-212 sectional survey studies, and 3) if they were conducted in China. The exclusion criteria were 213 studies assessing 1) wrong outcome of interest, 2) willingness-to-pay or conditional vaccine 214 acceptance, 3) non-COVID-19 vaccine acceptance, 4) continuous variables as they adopted 215 different ranges of responses, and 5) studies conducted outside of China. Editorials, intervention 216 studies, reviews, commentaries, letters, and qualitative research articles were also excluded for 217 the purpose of this review.

218

2.3. Data Extraction 219

220 Data was extracted from all studies that met the inclusion criteria. The following data was 221 collected onto an Excel sheet: article title, author name, date of publication, country, study 222 design, sample size, sampling method, response rate, age of participants, data collection period, 223 study objective, and type of publication (journal or pre-print service). To meet the goals of this

9

systematic review, the following outcomes were also extracted: 1) overall COVID-19 vaccine
acceptance/willingness (total sample), 2) overall COVID-19 vaccine uptake (total sample), 3)
COVID-19 vaccination uptake across different subgroups (age, gender, income, and education),
4) COVID-19 vaccination acceptance/willingness, uptake, unsure, across different population
groups (adults, healthcare workers, patients with chronic diseases, pregnant women, university
students, and parents), and 5) reasons for COVID-19 vaccination refusal.

230

231 2.4. Risk of Bias Assessment

232 The NHLBI Quality Assessment Tool for Observational Cohort and Cross-Sectional 233 Studies was used to assess the methodological risk of bias for all studies included in this 234 systematic review and meta-analysis [17]. 14 criteria were used within this tool to answer the 235 following questions for each study: (1) Was the research question or objective in this paper 236 clearly stated? (2) Was the study population clearly specified and defined? (3) Was the 237 participation rate of eligible persons at least 50%? (4) Were all the subjects selected or recruited 238 from the same or similar populations (including the same time period)? Were inclusion and 239 exclusion criteria for being in the study prespecified and applied uniformly to all participants? 240 (5) Was a sample size justification, power description, or variance and effect estimates provided? 241 (6) For the analyses in this paper, were the exposure(s) of interest measured prior to the outcome(s) being measured? (7) Was the timeframe sufficient so that one could reasonably 242 243 expect to see an association between exposure and outcome if it existed? (8) For exposures that 244 can vary in amount or level, did the study examine different levels of the exposure as related to the outcome (e.g., categories of exposure or exposure measured as a continuous variable)? (9) 245 246 Were the exposure measures (independent variables) clearly defined, valid, reliable, and

10

247	implemented consistently across all study participants? (10) Was the exposure(s) assessed more
248	than once over time? (11) Were the outcome measures (dependent variables) clearly defined,
249	valid, reliable, and implemented consistently across all study participants? (12) Were the
250	outcome assessors blinded to the exposure status of participants? (13) Was the loss to follow-up
251	after baseline 20% or less? (14) Were key potential confounding variables measured and
252	adjusted statistically for their impact on the relationship between exposure(s) and outcome(s)?
253	For each question, there were three answer options: 1) Criteria satisfied, 2) criteria
254	unsatisfied, and 3) Not applicable. Overall study quality ratings were assigned based on author
255	rating, including three levels: "good," "fair," and "poor." Each study was initially assigned a
256	"good" rating and was demoted by one level per unsatisfied criteria.
257	
258	2.5. Statistical analysis
259	Data organization and analysis from the included peer-reviewed studies were conducted
260	using Microsoft Excel and Review Manager 5.4.1, respectively. All figures were created using
261	Review Manager 5.4.1. Microsoft Excel was used to compute data in the tables and the pooled
262	uptake, acceptance, and unsure rates.
263	
264	2.5.1. COVID-19 vaccine uptake outcome measures
265	The primary outcome was the uptake rates of COVID-19 vaccination amongst the
266	population surveyed in China. The uptake status of Chinese residents was categorized into two
267	groups: 1) Yes and 2) No. The pooled uptake rates were categorized for the overall study

268 participants and divided according to respective population groups, such as 1) adults, 2)

healthcare workers, 3) patients with chronic diseases, 4) pregnant women, 5) university/college

11

270	students, and 6) parents. The category labelled "other" populations refers to individuals that
271	cannot be categorized into the six categories mentioned above. These types of populations
272	included caregivers, cold-chain workers, and the general public.

273

274 2.5.2. COVID-19 vaccine acceptance outcome measures

- 275 Another outcome of interest was the rate of acceptance of COVID-19 vaccination.
- 276 Acceptance was defined as study participants willing to/accepting/intending to receive the
- 277 COVID-19 vaccination if the opportunity was made available. Acceptance was stratified based
- on the survey responses reported in the selected studies: 1) Yes/definitely; 2) Unsure/Do not
- know; 3) No/Definitely not. The pooled acceptance rates were reported for the overall study
- 280 participants and for the different population groups outlined above.
- 281

282 **2.5.3**. *Data synthesis*

Data were synthesized in the form of forest plots to compare the likelihood of uptake of 283 284 the COVID-19 vaccination service across four population sub-groups. The sub-groups were 285 created based on the following socio-demographic characteristics: (1) Age; (2) Gender; (3) 286 Income; and (4) Education. Age was divided into five categories: (1) 18-29; (2) 30-39; (3) 40-49; 287 (4) 50-59; (5) \geq 60. Gender was reported as two categories: (1) Male; (2) Female. Income also had two categories: (1) <5000; (2) \geq 5000. The income was reported as the local currency of 288 289 China, Renminbi (RMB). Education had two categories: (1) High School or below; (2) 290 Bachelor's/college or above.

Each socio-demographic group had a reference range, and the Odds Ratio (OR) and 95%
confidence interval (CI) were reported for each range. An OR >1 indicates a higher likelihood to

2

	12
293	uptake compared to the reference group. The pooled uptake outcome was reported if the
294	following criteria were met: 1) two or more studies reported the same COVID-19 vaccine uptake
295	outcome measure, and 2) the I ² statistic $\leq 60\%$.
296	An I^2 value of >60% was considered to be heterogeneous on a statistical level. To meta-
297	analyse the data, an inverse variance statistical analysis was conducted with a random-effects
298	model Meta-analysis was only conducted if there were two or more studies in the pool.
299	Additionally, a P-value of <0.05 was considered to be statistically significant. A sensitivity
300	analysis was conducted to examine outliers for the OR and 95% CI values for COVID-19
301	vaccination acceptance.
302	
303	2.6. Quality of evidence evaluation
304	The quality of evidence gathered in the meta-analysis was assessed using Cochrane's
305	GRADE approach [18]. The quality rating had four levels: "high," "moderate," "low," and "very
306	low." All of the resulting outcomes started with a "high" rating and were demoted one level per
307	unsatisfied criteria
308	
309	2.6.1. Publication bias
310	Publication bias was assessed through the analysis of funnel plot symmetricity.
311	Publication bias was not assessed for quantitative analyses with <5 studies due to a lack of
312	statistical power. The funnel plot was created for two forest plots (Age and Gender) through the
313	Review Manager 5.4.1 statistical analysis software. To test for the presence of publication bias,
314	the funnel plots were visually analyzed and interpreted.

13

316	
317	
318	3. Results
319	3.1. Identification and Selection of Studies
320	A total of 2420 studies were found through the literature searches 881 were found
321	through the Web of Science journal, 781 through Embase, 593 through Scopus, 144 through
322	EBSCO, and 21 through PubMed. 1161 duplicates were found and excluded. A total of 1259
323	studies were available for screening. 1075 studies were excluded in the abstract screening, and
324	184 studies remained for full-text screening. A total of 137 studies were excluded after the full-
325	text screening: 3 for having the wrong study setting, 115 for analyzing the wrong outcome
326	measure, 3 for using the wrong comparator, 2 for having the wrong intervention, 10 for having
327	the wrong study design, and 4 for studying the wrong population. Finally, 47 studies were
328	available for data extraction. A flowchart of study selection according to PRISMA guidelines can
329	be seen in Figure 1 below.
330	
331	Figure 1. PRISMA Flowchart of Study Selection

333 3.2. Study Characteristics

- 334 The main characteristics of the studies included in the systematic review and meta-analysis are presented in Table 1, and data
- 335 collection times for the selected studies ranged from March 2020 to December 2022. The age ranges of the study participants ranged
- from 12-75 years. All of the included studies were conducted in China, and the sample sizes ranged from 208 to 96498 participants.
- 337 While some studies did not report the response rates of the surveys used to obtain data, the lowest response rate recorded was 55%,
- and the highest was 99.3%. There were 19 studies that did not report the sampling method used to select study participants. 13 studies
- 339 utilized convenience sampling, five studies used snowball sampling, two used multi-stage sampling, five used random sampling, two
- 340 used cluster sampling, and 1 study used purposive sampling. All 47 articles were cross-sectional studies published in peer-reviewed
- 341 journals, and there were no studies published in a pre-print service.
- 342

343 Table 1. Overview of studies included in systematic review and meta-analysis

#	Author/ publication year	Study Design	Country	Data collection time	Age range (years)	Sample size (n)	Respo nse rate (%)	Sampling method	Publicat ion
1	Chang et al. 2023 [19]	cross-sectional	China	December 2021 to April 2022	≥18	261	NR	NR	Journal
2	Chan et al. 2021 [20]	cross-sectional	China	31 January 2021 and 15 February 2021	≥18	660	75	Convenience	Journal
3	Chen et al. 2021 [21]	cross-sectional	China	May to June 2020	≥18	3195	NR	Snowball	Journal

4	Feng et al. 2021 [22]	cross-sectional	China	November 17, 2020, to January 28, 2021	≥20	3703	NR	Multi-stage	Journal
5	Fu et al. 2022 [23]	cross-sectional	China	August to November 2021	≥18	343	NR	NR	Journal
6	Gan et al. 2021 [24]	cross-sectional	China	23 October to 10 November 2020	18 to 74	1009	NR	Convenience	Journal
7	Hao et al. 2022 [25]	cross-sectional	China	April 2021 to June 2021	18 to 60	621	93.67	Convenience	Journal
8	Hou et al. 2022 [26]	cross-sectional	China	September 14 to November 18, 2021	≥18	Caregivers: 2588 HCW: 1700	84.8	Multi-stage	Journal
9	Huang et al. 2021 [27]	cross-sectional	China	January and February 2021	18-65	2740	NR	NR	Journal
10	Huang et al. 2023 [28]	cross-sectional	China	May 1 to 31, 2022	≥18	11565	77.81	NR	Journal
11	Huang et al. 2022 [29]	cross-sectional	China	First survey: January 2021 Second survey: June of 2021	NR	NR	97	NR	Journal
12	Hu et al. 2022 [30]	cross-sectional	China	1 and 20 May 2021	≥18	359	NR	NR	Journal
13	Kong et al. 2022 [31]	cross-sectional	China	19 June 2021 to 23 June 2021	≥18	786	NR	Snowball	Journal
14	Li et al. 2022 [32]	cross-sectional	China	May 19 to June 18, 2021	≥18	2176	NR	NR	Journal
15	Li et al. 2022 [33]	cross-sectional	China	20 to 27 January 2022	≥18	11141	NR	Convenience	Journal
16	Li et al. 2021 [34]	cross-sectional	China	June 2020	≥18	2377	88.04	Snowball	Journal
17	Lin et al. 2020 [35]	cross-sectional	China	1–19 May 2020	≥18	3541	NR	NR	Journal

18	Li et al. 2022 [36]	cross-sectional	China	10 and 28 June 2021	18-23	721	83.9	Random	Journal
19	Li et al. 2022 [37]	cross-sectional	China	16 August to 28 October 2021	12-17	2048	NR	Cluster	Journal
20	Liu et al. 2022 [38]	cross-sectional	China	16 December 2020 and 21 December 2020	≥18	244	96	Random	Journal
21	Liu et al. 2023 [39]	cross-sectional	China	NR	≥18	96498	80	Random	Journal
22	Li et al. 2021 [40]	cross-sectional	China	January 20 to February 20, 2021	≥18	1779	95.5	Convenience	Journal
23	Luk et al. 2021 [41]	cross-sectional	China	9 to 23 April 2020	≥18	1501	61.3	NR	Journal
24	Lv et al. 2023 [42]	cross-sectional	China	January 2022 to March 2022	≥18	1424	91.6	Convenience	Journal
25	Mo et al. 2022 [43]	cross-sectional	China	October and November 2020	≥18	1733	NR	NR	Journal
26	Pan et al. 2022 [44]	cross-sectional	China	26 April to 10 May 2022	≥18	449	97.3	Convenience	Journal
27	Qin et al. 2023 [45]	cross-sectional	China	26 December to 31 December 2022	≥18	42565	99	Cluster	Journal
28	Qin et al. 2021 [46]	cross-sectional	China	November 12, 2021	≥18	1724	NR	NR	Journal
29	Song et al. 2022 [47]	cross-sectional	China	January 29 to February 4, 2021.	≥18	2244	NR	Snowball	Journal
30	Sun et al. 2022 [48]	cross-sectional	China	December 1 to December 9, 2020	≥18	3047	NR	NR	Journal
31	Tao et al. 2021 [49]	cross-sectional	China	November 13 to 27, 2020.	≥18	1392	NR	NR	Journal
32	Wang et al. 2021 [50]	cross-sectional	China	January 10 to January 22, 2021	18-60	8742	91.7	NR	Journal
33	Wang et al. 2021 [51]	cross-sectional	China	10 January to 22 January 2021	18-60	2386	NR	Convenience	Journal
34	Wang et al. 2020 [52]	cross-sectional	China	March 2020	≥18	2,058	98	Random	Journal

35	Wang et al. 2021 [53]	cross-sectional	China	November 2020 to January 2021	≥18	7259	NR	Convenience	Journal
36	Wang et al. 2021 [54]	cross-sectional	China	January 2021	≥18	2580	NR	NR	Journal
37	Wong et al. 2021 [55]	cross-sectional	China	July to August, 2020	≥18	1200	55	Random	Journal
38	Wu et al. 2022 [56]	cross-sectional	China	July 10, 2021	≥18	29925	NR	Snowball	Journal
39	Wu et al. 2022 [57]	cross-sectional	China	May to June 2021	60-75	1,067	97	Convenience	Journal
40	Wu et al. 2022 [58]	cross-sectional	China	4 April to 18 April 2021	≥18	1126	NR	NR	Journal
41	Xie et al. 2023 [59]	cross-sectional	China	NR	≥60	951	NR	NR	Journal
42	Yin et al. 2021 [60]	cross-sectional	China	March 25, 2021 to April 2, 2021	≥18	23940	NR	Convenience	Journal
43	Zhang et al. 2021 [61]	cross-sectional	China	August 16–20, 2021	≥22	631	NR	NR	Journal
44	Zhang et al. 2022 [62]	cross-sectional	China	26 and 31 October 2021	≥18	2329	85.8	Purposive	Journal
45	Zhang et al. 2023 [63]	cross-sectional	China	Round1: 1 to 7 September 2020 Round 2: 26 to 31 October 2021	≥18	Round 1: 208 Round 2: 229	85.8	NR	Journal
46	Zhao et al. 2021 [64]	cross-sectional	China	29 January 2021 to 26 April 2021	≥18	34041	99.3	Convenience	Journal
47	Zhou et al. 2021 [65]	cross-sectional	China	1 March 2021 and 10 April 2021	18-65	3940	NR	Convenience	Journal
HC	ICW = Healthcare workers; NR = Not reported								

18

345 *3.2.1. Participant characteristics*

- For qualitative data synthesis in this systematic review, data were collected from a total
 of 327,046 participants. For the meta-analysis, data from 130,441 participants was used.
- 349 3.2.2. COVID-19 vaccine uptake outcome measures

Amongst the 47 studies included in the review, ten studies (21.3%) reported the OR and 95% CI for the uptake of COVID-19 vaccines for different socio-demographic factors. The remaining 37 studies reported the OR and 95% CI for the acceptance/willingness to receive COVID-19 vaccines. For the purpose of meta-analysis, data was only used for uptake of vaccination because it was deemed to be a more robust metric for assessing vaccination habits compared to acceptance/willingness which may be translatable Thus, ten studies were included in the meta-analysis.

357

358 3.3. Risk of bias (quality) analysis for included studies

Results from the risk of bias assessment are reported in S1 Table. After conducting the quality assessment, the majority of the studies were rated as good quality (42/47), while the remaining studies were rated as fair quality (5/47). These five studies were demoted to having fair quality as they failed to report the outcome measures (dependent variables) consistently and clearly. Within these studies, the socio-demographic groups were not completely reported or the ranges differed substantially from the remaining study pool [31, 45, 60, 61, 65).

365

366

367 3.4. Estimated percentage of acceptance, unsure, and uptake outcomes

19

368	Based on data collected from all 47 studies, the acceptance, unsure, and uptake rates of
369	COVID-19 vaccination were reported in Table 2. 35 studies investigated the rate of
370	acceptance/willingness to receive COVID-19 vaccines, 8 studies reported the number of
371	participants unsure about receiving the vaccine, and 21 studies reported the uptake rates of
372	COVID-19 vaccines. The overall acceptance rate of COVID-19 vaccination in China was
373	calculated to be 59.5%. In comparison, 20.9% of the sampled population was found to be unsure
374	about COVID-19 vaccines. The estimated COVID-19 vaccination uptake rate was found to be
375	69.9% amongst the sampled population. The acceptance, unsure, and uptake rates varied across
376	each population group. The highest vaccination acceptance rate was found to be for
377	university/college students (87.4%), while the lowest rate was observed for patients with chronic
378	diseases (42.6%). The highest unsure rate was reported for patients with chronic diseases (48.3),
379	while university/college students had the lowest (2.5%). Additionally, the highest COVID-19
380	vaccination uptake rate was observed for Chinese adults (92%), and the lowest was seen for
381	patients with chronic diseases (43.5%).
382	
383	
384	
385	
386	

	Accepta	nce of COVII)-19 Vaccin	ies	Unsure				Uptake	Uptake of COVID-19 Vaccines			
Population groups	No. of studies	No. of participant s	Total no. of acceptin g	Estimated acceptanc e (%)	No. of studie s	No. of participa nts	Total no. of unsure	Estimat ed unsure (%)	No. of studies	No. of participa nts	Total no. of uptake	Estima ted uptake (%)	
Overall	35	135657	80,705	59.5	8	35332	7400	20.9	21	258124	180358	69.9	
Adults	7	39043	28,360	72.6	4	29211	5101	17.5	3	44302	40774	92.0	
Healthcare Workers	5	12806	9796	76.5	0	NA	NA	NA	3	8453	6183	73.2	
Patients with underlying health conditions	3	4526	1,926	42.6	2	3400	1642	48.3	4	4,768	2076	43.5	
Pregnant women	1	1,392	1077	77.4	0	NA	NA	NA	0	NA	NA	NA	
University/college students	1	721	630	87.4	1	721	18	2.5	2	990	762	76.9	
Parents	4	10152	8,863	87.3	0	NA	NA	NA	3	26994	23184	85.9	
Others	14	67017	30,053	44.8	1	2000	639	31.9	6	172617	107379	62.2	
NA = Not applicable													

388	Table 2 Summary	of estimated	accentance	unsure u	ntake rates
300	Table 2. Summar	of commateu	acceptance,	unsure, u	μιακε ι αιες

21

392 3.5. Reasons for COVID-19 vaccine refusal

393	The most commonly cited reasons for refusing the COVID-19 vaccine among the study
394	samples are presented in Table 3. The reasons are shown for studies included in the meta-
395	analysis. Amongst these ten studies, 7 (70%) investigated the factors that affect the Chinese
396	population's decision to uptake COVID-19 vaccination services and the reasons for refusing
397	vaccines. Among these 7 studies that report this data, 6 (85.7%) utilized descriptive statistics to
398	showcase the percentage of total participants that refused the COVID-19 vaccine due to the
399	stated reasons.
400	The majority of the studies found that concern about COVID-19 vaccine safety was the
401	most common area of concern amongst the sampled population. Other most commonly stated
402	reasons for vaccine refusal were fear about its side effects and the overall efficacy of the vaccine
403	against COVID-19. Hou et al. (2022) found that out of the proportion of participants that refused
404	to receive the COVID-19 vaccine, 82.26% refused to get immunized due to a lack of information
405	regarding vaccine safety.

407	Table 3. Reasons for	vaccine refusal	in studies	included in	ı meta-analysis
-----	----------------------	-----------------	------------	-------------	-----------------

Reference	Common reasons for refusal	No. of refusers (% of sample pool)
Fu et al. 2022 [23]	Worried about vaccine safety	67%
Hou et al. 2022 [26]	Lack of evidence about vaccine safety	82.26
Huang et al. 2021 [27]	NR	NR
Huang et al. 2023 [28]	Fear of side-effects	53.78
Li et al. 2021 [34]	vaccine's safety	37.6%
Qin et al. 2023 [45]	NR	NR
Song et al. 2022 [47]	Concerns about safety and efficacy	NR

0	S
2	2

Wu et al. 2022 [56]	Skepticism about vaccine	47.2
Xie et al. 2023 [59]	NR	NR
Zhao et al. 2021 [64]	Concerns about vaccine safety	71.9
NR = Not reported		

408

409 **3.6.** Sensitivity analysis

410 Two sensitivity analyses were conducted. The first sensitivity analysis was the exclusion 411 of uptake outcome values (OR, 95% CI), whereby the socio-demographic groups (age and 412 income) were substantially far apart from the reference group. Uptake outcome values were also 413 excluded for studies that had incongruent reference groups. This sensitivity was conducted in 4 414 out of 14 studies that reported OR and 95% CI for socio-demographic groups and were excluded 415 from the meta-analysis: [19, 31, 42, 61]. 416 The second sensitivity analysis was the exclusion of Fu et al. [23] from the meta-analysis 417 for income. This was done in order to assess whether this study was a detrimental outlier and 418 played a significant role in the overall uptake outcome. 419 420 3.7. Quality of evidence 421 GRADE assessment was conducted for all four meta-analyses (Age, gender, income, 422 education) and is presented in S2 - S5 Tables. One meta-analysis for OR - Income was assessed 423 to have high quality. Two meta-analyses for OR - Age and OR - Gender were assessed to have

moderate quality. One meta-analysis for education was analyzed to be low in quality according

425 to the GRADE criteria.

426

424

427 **3.8.** Meta-analysis

428	Forest plots were created for four socio-graphic groups: (1) Age; (2) Gender; (3) Income;
429	(4) Education.
430	
431	3.8.1. Odds Ratio – Age
432	Five studies with fifteen outcomes displayed varied results for OR of vaccine uptake.
433	Statistical pooling was inappropriate for the age group because of statistical heterogeneity ($I^2 =$
434	77%) (Figure 2).
435 436 437 438 439	Figure 2. Age Odds Ratio for sub-groups uptaking COVID-19 vaccine compared to reference group 3.8.2 Odds Ratio – Gender
440	Nine studies with nine outcomes displayed varied results for OP of vession untake
440	Nine studies with nine outcomes displayed varied results for OR of vaccine uplake.
441	Statistical pooling was inappropriate for the gender group because of statistical heterogeneity (I ²
442	= 97%) (Figure 3). The OR value and 95% CI for the uptake likelihood of male gender were
443	statistically significant as the P-value was equal to 0.0001 and the data was homogeneous ($I^2 =$
444	0%). Males were more likely to uptake COVID-19 vaccination (OR=1.17, 95% CI:1.08-1.27)
445	(Figure 3).
446 447 448 449	Figure 3. Gender Odds Ratio for sub-groups uptaking COVID-19 vaccine compared to reference group
450	3.8.3 Odds Ratio – Income
451	Three studies with three outcomes had different results for OR of vaccine uptake. Li et al.
452	[40], Xie et al. [59], and Zhao et al. [64] reported an increase in the likelihood of uptaking
453	COVID-19 vaccination for individuals with a monthly income or more than or equal to 5000
454	RMB. The reference group for this analysis included participants with a monthly income of less

455	than 5000 RMB. Statistical pooling was appropriate due to statistical homogeneity ($I^2 = 0\%$)
456	(Figure 4). There was an overall increase in the likelihood of vaccine uptake (OR=1.08, 95%
457	CI:1.02-1.14), and it was statistically significant (P-value = 0.005).
458 459 460 461 462	Figure 4. Income Odds Ratio for sub-groups uptaking COVID-19 vaccine compared to reference group 3.8.4 Odds Ratio – Education
463	Four studies with four outcomes displayed varied results for OR of vaccine uptake
464	Statistical pooling was inappropriate for the gender OR values because of statistical
465	heterogeneity ($I^2 = 88\%$) (Figure 5).
466 467 468 469	Figure 5. Education Odds Ratio for sub-groups uptaking COVID-19 vaccine compared to reference group
470	3.9. Publication bias
471	The funnel plots generated to detect publication bias are presented in S1 - S2 Fig. As the
472	quantitative analysis for income and education socio-demographic groups were derived from 3
473	and 4 studies, respectively, funnel plots were not assessed for publication bias due to a lack of
474	statistical power.
475	
476	3.9.1. Odds Ratio – Age
477	The funnel plot for the age socio-demographic group is presented in S1 Fig. The majority
478	of the studies are plotted near the average (dotted line), which indicates high precision.
479	Therefore, no publication bias was detected visually.
480	

481	3.9.2. Odds Ratio – Gender
482	The funnel plot for the gender socio-demographic group is presented in S2 Fig. The
483	majority of the studies are plotted near the average (dotted line), which indicates high precision.
484	Therefore, no publication bias was detected visually.
485	
486	3.9.3. Odds Ratio – Income
487	A funnel plot was not created for the Income funnel plot as there were insufficient studies
488	(<5), lowering the statistical power of publication bias analysis.
489	
490	3.9.4. Odds Ratio – Education
491	A funnel plot was not created for the Education funnel plot as there were insufficient
492	studies (<5), lowering the statistical power of publication bias analysis.
493	
494	4. Discussion
495	The purpose of this systematic review and meta-analysis was to extrapolate the
496	acceptance and uptake of COVID-19 vaccination among Chinese residents. This paper also
497	reports common reasons for vaccine refusal among the Chinese population, along with factors
498	influencing the decision to vaccinate. Currently, there are no systematic reviews that identify the
499	uptake and willingness to vaccinate oneself across different population groups in China. This
500	paper reports for the first time vaccination behaviours across different groups (adults, healthcare
501	workers, patients with chronic diseases, pregnant women, university students, and parents) and
502	meta-analyzes the likelihood of specific socio-demographic factors (age, gender, income, and
503	education) influencing uptake COVID-19 vaccines.

26

504

505 4.1. Acceptance of COVID-19 vaccines

506	The analysis conducted in this review revealed that more than half of the overall Chinese
507	population (59.5%) was accepting of the COVID-19 vaccination and believed that it was
508	necessary to control the spread of the COVID-19 pandemic. However, this review also indicated
509	that there is variation regarding the rate of acceptance of COVID-19 vaccines across different
510	population groups. The highest rate of acceptance in China was observed amongst
511	university/college students (87.4%). Greater exposure to the scientific curriculum as per the
512	academic curriculum could potentially explain the higher acceptance rate among students, as
513	they might be more aware of the efficacy of vaccines.
514	The review also found that the acceptance of COVID-19 vaccines was lower amongst
515	healthcare workers (HCWs) compared to other groups, such as students and pregnant women.
516	These HCWs were not willing to receive COVID-19 vaccines despite having access is crucial to
517	increase the rate of acceptance and willingness of COVID-19 vaccination among the healthcare
518	workforce as they provide care to patients and are a high-risk group for spreading infectious
519	diseases [40].
520	
521	4.1.1. Vaccine hesitancy among those with underlying health conditions

522 Furthermore, this systematic review found that the lowest acceptance rate of COVID-19 523 vaccination was amongst patients with chronic diseases (42.6%). These patients were diagnosed 524 with diseases such as asthma, HIV/AIDS, cancer, and hypertension [39, 27, 23, 19, 20].

525 Comparing these acceptance rates with those of healthy adults (72.6%), this is a substantial

526 difference. There is also a difference in uptake rates, with 92% of healthy adults receiving

27

527 COVID-19 vaccines compared to 43.5% of patients with underlying disease. These observable 528 differences could be due to concern about the side effects of COVID-19 vaccines on underlying 529 conditions, many of which are rooted in misinformation (citation). It is important to increase 530 knowledge dissemination regarding the safety of COVID-19 vaccines and potential side effects, 531 to fight disinformation and gain patient confidence.

532 Another study by Lv et al. [42] found that people with underlying conditions were more 533 likely to be of old age. Lv et al. [42] found that older people with underlying conditions had 534 difficulty grasping, assessing and analyzing media content, which further added to the 535 development of misconceptions. People with health conditions also had a higher likelihood of 536 dealing with anxiety and depression [42]. Chinese residents with moderate or high levels of 537 anxiety had a significantly higher vaccine refusal rate [42]. Moreover, the anxiety suppressors 538 being taken by these patients were found to have a correlation with increasing vaccine hesitancy 539 amongst those with underlying conditions [42]. These findings point to the intersectionality of 540 multifarious factors that lead to vaccine hesitancy and consequent refusal. It is vital to 541 understand these factors at length to make informed decisions about ways to increase the overall 542 COVID-19 vaccine acceptable rate in China.

543

544 4.2. Uncertainty about COVID-19 vaccines

This review uncovered that a substantial amount of the Chinese population is unsure
about receiving the COVID-19 vaccine. Overall, the rate of unsure participants was 20.9%.
However, there is a lot of variation amongst different population groups. The highest percentage
of people unsure about COVID-19 vaccination were found to be patients with chronic diseases
(48.3%). In fact, 17.5% of the adult population in China was unsure regarding the safety and

28

550	efficacy of COVID-19 vaccines. On the other hand, the lowest rate of uncertainty was found
551	within students enrolled in colleges or universities (2.5%). This goes to show that education is an
552	important determinant of vaccine hesitancy.

553 No articles included in this review reported quantitative data for HCWs and pregnant 554 women, which indicates a knowledge gap regarding vaccination perceptions and behaviours 555 within these groups.

- 556
- 557 4.3. Uptake of COVID-19 vaccines

558 The overall prevalence of COVID-19 vaccine uptake among the Chinese population was 559 69.9%. The findings revealed notable differences in the rates of uptake of COVID-19 vaccines 560 across population groups. The highest uptake rate was found to be for Chinese adults (92%). 561 Some reasons for this exceptionally high rate could be due to the serious impacts of the COVID-19 pandemic on their daily lives. Notably the disruptions regarding work, travel restrictions, and 562 severe economic losses [21]. Consequently, this might have led to dynamic changes where adults 563 564 were more informed about preventative measures such as COVID-19 vaccines, increasing their 565 rate of uptake. However, the rate of uptake of COVID-19 vaccination was lower for healthcare 566 workers (73.2%). The most common reason for this low uptake rate is the aforementioned lack of confidence in the safety and efficacy of COVID-19 vaccines [50]. More importantly, some 567 HCWs did not believe that the vaccine was a reliable method of tackling the spread of the 568 569 COVID-19 pandemic [50]. The uptake rates were also vastly different for the type of HCWs. 570 Administration employees in healthcare environments were more likely to be skeptical about the vaccines, whereas doctors and nurses had a higher uptake rate [50] This could be due to the 571 572 nature of the jobs. HCWs, such as doctors, have a stronger medical background and are more

573	knowledgeable about the benefits of vaccines. In comparison, the lowest uptake rate was
574	observed for patients with chronic diseases in China. This is in accordance with the high level of
575	concerns about vaccines and low acceptance observed earlier.
576	Males were also more likely to uptake COVID-19 vaccination services (OR=1.17; 95%
577	CI:1.08 - 1.27) when compared to females in China. These results imply that males are 17%
578	more likely to get vaccinated against COVID-19 compared to females. Given that P-
579	value=0.0001, the findings were also statistically significant. Similar to acceptance/uncertainty
580	regarding COVID-19 vaccines, reasons for the higher uptake rate amongst Chinese males could
581	be due to a higher perception of the detrimental effects of COVID-19 and less observance of
582	misconceptions
583	The quantitative analysis further highlighted important differences in COVID-19 vaccine
584	uptake rates based on the income of Chinese residents. In terms of the local currency of China
585	(RMB), it was observed that having a higher monthly income corresponded to a greater
586	likelihood of uptake of COVID-19 vaccines. Specifically, Chinese residents with a monthly
587	income \geq 5000 RMB had higher uptake of vaccination (OR=1.08; 95% CI:1.02 - 1.14) when
588	compared to those with a monthly income < 5000 RMB. This shows that having an income \geq
589	5000 RMB results in an 8% higher likelihood of uptake of COVID-19 vaccines. As the P-value
590	=0.005, the results were also statistically significant. Possible reasons for these findings include
591	higher access to transportation, which can act as a facilitator to uptaking vaccination.
592	Furthermore, a lower income could be associated with the geographic location or place of
593	residence in China, whereby such individuals do not have access to an abundance of vaccination
594	clinics. Individuals living in remote locations and lower-income households might not be able to
595	receive the vaccine despite having the willingness. Also, income can function as a determinant of

30

the daily schedules of Chinese residents. It is possible that having a lower household income
increases stress and creates hectic daily schedules, which can lead to a lower likelihood of having
the time to uptake COVID-19 vaccination.

599

600 *4.3.1. Varying degrees of vaccine hesitancy among different age groups*

601 This analysis revealed a lower likelihood of COVID-19 vaccine uptake amongst older-602 aged individuals in China. Those within the 50-59 age bracket had a 2% lower uptake of 603 COVID-19 vaccine. However, this percentage increases dramatically with age. Amongst those 604 that were ≥ 60 years of age, there was a 10% lower uptake of vaccination. However, there were a 605 low amount of studies reporting data for those over the age of 60, which is why the findings of 606 this analysis need to be utilized with caution. There is a need to investigate in-depth recent 607 changes in vaccination uptake rates amongst those over the age of 60 and specifically those that 608 are 80 and above. The reason is that recent reports, as mentioned earlier, with the termination of restrictive policies from the zero-covid policy, show a steep rise in COVID-19 cases and 609 610 mortality amongst those over the age of 80 in China.

611 A research study conducted by Smith et al. [66] has demonstrated clear findings 612 showcasing a higher vaccination hesitancy/refusal and an extremely low coverage rate amongst 613 Chinese elders. Among those aged 60 and above, the COVID-19 vaccination coverage rate 614 declined with age. Only 48% of those that fall within the 70-79 year age bracket had received at 615 least one dose of the COVID-19 vaccine [66]. Furthermore, amongst those that were ≥ 80 years, 616 only 20% had received at least one vaccine [66]. The consequences of these low vaccination 617 uptake rates are evident by looking at the case and fatality statistics. Amongst 5,906 deaths that 618 were reported, 5,655 (96%) occurred among people in China aged 60 and above [66]. Moreover,

31

of these deaths, 70% occurred among those that were unvaccinated against COVID-19 [66].
Notably, Smith et al. [66] found that within the 60 and above age group in China, the risk of
death among unvaccinated individuals was 21.3 times higher than those that were vaccinated.

623

4.4. Strengths and Limitations

624 This study has several strengths and limitations. Firstly, this review was conducted 625 according to the Cochrane guidance to ensure that the methodologies were robust and 626 appropriate. Secondly, developing clear and focused inclusion/exclusion criteria allowed a clear 627 scope for this systematic review. Thirdly, the database searches were conducted by clearly 628 outlined and comprehensive search terms, which were applied to multiple databases (PubMed, 629 EMBASE, Web of Science, EBSCO, and Scopus). Only peer-reviewed databases were screened, 630 which allowed searching a broad spectrum of articles to gather detailed information on the 631 research topic. Furthermore, the presence of publication biases and assessment of reporting 632 biases were accounted for through the creation of funnel plots. These funnel plots were visually 633 assessed for asymmetry to determine whether bias was present. No publication bias was detected 634 for this systematic review and meta-analysis. This enhances the validity of this study and ensures 635 transparency of the data reported.

However, there are some limitations to this study. Firstly, the research studies used to
conduct this systematic review and meta-analysis derived data from cross-sectional analyses,
which are referred to as snapshots of COVID-19 vaccination behaviours in each region. Crosssectional studies can have diverse sampling methods such as convenience sampling, snowball
sampling, multi-stage sampling, random sampling, cluster sampling, and purposive sampling.
These differences can, to some extent, explain the differences observed in the acceptance,

32

642 unsure, and uptake rates of COVID-19 vaccines across studies from a single country. Therefore, 643 these results gathered need to be interpreted with caution as they might not be able to predict 644 future changes in COVID-19 vaccination behaviours in China. Secondly, an essential limitation 645 is with regard to the different methods used to acquire data regarding willingness and acceptance 646 of COVID-19 vaccines amongst different population groups in China. Some studies utilized a 647 binary response system within the questionnaires/surveys (yes/no), whereas other studies used a 648 different breakdown of options (strongly agree/agree/neutral/disagree/strongly disagree) to assess 649 attitudes regarding vaccination. Answers can differ based on the subjective perceptions of the 650 participants surveyed within these studies. Therefore, these variables should be taken into 651 consideration to ensure an accurate comparison of vaccination behaviours across the different 652 studies included in this review.

653

654 4.5. Next steps of research

This review guides several next steps for prospective research studies. The current studies 655 656 available for this review lacked an in-depth analysis of the perceptions of the general public 657 regarding vaccines, as they only offered binary answers. Future research studies should conduct 658 a more in-depth qualitative analysis by creating focus groups and conducting interviews with the 659 sampled study participants. Employing such methods can help build a positive group dynamic and synergy where everyone is provided equal opportunity to share their opinions freely in a 660 661 non-judgmental atmosphere. Not only is this method cost-effective, but it is efficient in gathering 662 data to look beyond the numbers and truly understand the meaning behind the results. Future studies should also investigate the engagement of the Chinese population with media sources and 663 664 other outlets to map out sources of misinformation and popular platforms in China and guide

33

solutions to increase vaccination uptake rates. Also, future research studies regarding this topic
should utilize a consistent model, such as during the design of the questionnaires, to enhance the
precision and applicability of the findings.

668

669 4.6. Recommendations

670 There are several recommendations to bolster the overall acceptance and uptake of 671 COVID-19 vaccination services in China. Firstly, a community health training model can be 672 utilized as per the common reasons for refusal observed from this review. Lack of knowledge, 673 negative attitudes towards vaccines, and misconceptions are possible reasons why the majority of 674 the Chinese population is worried about the safety of COVID-19 vaccines. To address this, home 675 visits and informational campaigns should be initiated that would aid in addressing the common 676 misconceptions through one-on-one conversations between trained health professionals and the public. The public would be able to ask questions on the spot, which can lead to an overall 677 increase in the acceptance of the campaign as well as vaccination services. A research study by 678 679 Singh et al. [67] showcases that employing such strategies led to an overall increase in 680 vaccination coverage rates from 21 to 33%.

681 Secondly, incentivizing the uptake of COVID-19 vaccines is an effective tool to improve 682 vaccination coverage. In particular, this method can be helpful in targeting the rural and remote 683 regions of China as they might be more willing to accept the notion due to the incentives set in 684 place [67]. Monetary incentives will help overcome barriers to receiving vaccines, such as lack 685 of transportation or the possibility of using the incentives for personal use among low 686 socioeconomic individuals.

34

687 Thirdly, Technology-based health literacy is a method that can improve the overall 688 acceptance of COVID-19 vaccines in China. This includes leveraging health literacy by using 689 technologies such as posters, leaflets, social media platforms, and educational videos [67]. 690 However, while doing so, it is important to ensure the creation of innovative educational 691 information pieces that are engaging for the public. This will greatly maximize the engagement 692 of the public and improve the knowledge regarding vaccines to address rumours, 693 misconceptions, and concerns. 694 Additionally, interventions such as sending reminders through calls, text messages, and 695 emails can function as media-based strategies to address vaccine hesitancy. These recall 696 messages would help remind those individuals in China that are accepting COVID-19 vaccines 697 and have not received the vaccine yet, possibly due to forgetting to book an appointment. 698 Overall, whilst working to pursue these educational-based approaches to address the 699 current skepticism about vaccines, it is crucial to be mindful of jargon. While engaging with the 700 public, layperson terminology should be used to convey scientific findings about the safety and 701 efficacy of vaccines. This approach would help foster trust and a sense of belonging between the 702 public and the scientific community and ultimately help boost the overall acceptance and uptake

703 of COVID-19 vaccination services in China.

704

705 5. Conclusion

The results of this systematic review and meta-analysis map out the overall attitude of the population in China toward COVID-19 vaccines. An outcome faced following the COVID-19 pandemic and the creation of vaccines is vaccine resistance and hesitancy. This study showed that there is a notable variation with regard to vaccine acceptance and uptake in China across

35

different population groups. There remains a deep-seated unwillingness and skepticism of the
efficacy of COVID-19 vaccines amongst certain populations, such as patients with chronic
diseases in China. Furthermore, this analysis uncovered statistically significant differences in the
likelihood of vaccine uptake across various socio-demographic factors. Specifically, Chinese
males and individuals with more than or equal to 5000 RMB had a higher COVID-19 vaccine
uptake rate.

716 More studies are recommended to assess the behaviours of other population groups, such 717 as remote employees, ethnic minorities, and religious people, to develop a broader 718 understanding. Such studies would help evaluate the prevalence of vaccine uncertainty across 719 diverse groups to help guide strategies to boost overall vaccine uptake. Vaccine hesitancy can 720 prove to be a source of hindrance to vaccination campaigns and lessen the negative impacts of 721 the COVID-19 pandemic. Furthermore, hesitancy regarding COVID-19 vaccines can also lead to 722 the refusal of other routine immunizations. The prevalence of low willingness/acceptance and 723 uptake of the COVID-19 vaccine mandates collaboration from the government, policy-makers, 724 and media to campaign efforts to mitigate current barriers. It is recommended to focus on 725 building trust between the public and government to prioritize clear communication and advocate 726 for the need for vaccinations to achieve herd immunity among the overall population.

Future studies should also take into account key factors such as education level, residency status (rural/urban), and race to tailor current educational and vaccination programs according to the needs of the population. Novel research should also investigate other factors that lead to distrust and concern regarding COVID-19 vaccines by gathering the subjective experiences of the public. Overall, this study informs key considerations for the development of integrated models and a community-based transparent approach to guide future research and efforts.

Acknowledgments
I wish to express my sincere gratitude to Dr. Zhou Xing for advising me throughout this
scholarly paper project and for their insightful and valuable comments on the manuscript that
helped to improve its quality to a great degree. This research received no external funding. All
data utilized within this systematic review and meta-analysis is available in this manuscript.

768		References
769 770	1.	Xu X, Bian J, Guo Z, Li X, Zhang W, Wang B, Sun Y, Meng X, Zou H. Uptake of
771		COVID-19 Vaccination and Its Associated Factors among College Students in China: A
772		Nationwide Cross-Sectional Study. International Journal of Environmental Research and
773		Public Health. 2023 Feb 8;20(4):2951.
774	2.	Hong L, Jin Z, Xu K, Shen G, Zou Y, Li R, Xu L, Wang D, Chen L, Wu Y, Song W.
775		COVID-19 vaccine uptake and vaccine hesitancy in rural-to-urban migrant workers at the
776		first round of COVID-19 vaccination in China. BMC Public Health. 2023 Dec;23(1):1-3.
777	3.	China: WHO coronavirus Disease (COVID-19) dashboard with vaccination data
778		[Internet]. WHO Coronavirus (COVID-19) Dashboard With Vaccination Data. Available
779		from: https://covid19.who.int/region/wpro/country/cn
780	4.	Galanis P, Vraka I, Katsiroumpa A, Siskou O, Konstantakopoulou O, Katsoulas T,
781		Mariolis-Sapsakos T, Kaitelidou D. COVID-19 vaccine uptake among healthcare
782		workers: a systematic review and meta-analysis. Vaccines. 2022 Sep 29;10(10):1637.
783	5.	Wang Q, Hu S, Du F, Zang S, Xing Y, Qu Z, Zhang X, Lin L, Hou Z. Mapping global
784		acceptance and uptake of COVID-19 vaccination: A systematic review and meta-
785		analysis. Communications medicine. 2022 Sep 12;2(1):113.
786	6.	Liu L, Zhang M, Chen H, Xian J, Cao H, Zhou X, Gu Z, Liu H, Li Q, Wu F, Chen Q.
787		COVID-19 vaccine acceptance among cold-chain workers in Shenzhen, China: A cross-
788		sectional survey. Human Vaccines & Immunotherapeutics. 2022 Nov 30;18(5):2056400.
789	7.	Bai W, Sha S, Cheung T, Su Z, Jackson T, Xiang YT. Optimizing the dynamic zero-
790		COVID policy in China. International Journal of Biological Sciences. 2022;18(14):5314.

38

- 8. He L. China's Covid surge hits factories and consumer market [Internet]. CNN. 2022
- 792 [cited 2023 Aug 7]. Available from: https://www.cnn.com/2022/12/26/economy/china-
- 793 covid-surge-economy-strain-intl-hnk/index.html
- 9. Davey M. China's move to open up travel sparks concern over spread of new variants.
- The Guardian [Internet]. 2023 Jan 5; Available from:
- 796 https://www.theguardian.com/world/2022/dec/28/chinas-move-to-open-up-travel-sparks-
- 797 concern-over-spread-of-new-covid-variants
- 10. Ioannidis JP, Zonta F, Levitt M. Estimates of COVID-19 deaths in Mainland China after
- abandoning zero COVID policy. European Journal of Clinical Investigation. 2023

800 Apr;53(4):e13956.

- 801 11. Luo W, Song S. Perceived benefits and barriers to Chinese COVID-19 vaccine uptake
 802 among young adults in China. Frontiers in Public Health. 2022 Jun 3;10:825874.
- 12. Lin Y, Hu Z, Zhao Q, Alias H, Danaee M, Wong LP. Understanding COVID-19 vaccine
- demand and hesitancy: A nationwide online survey in China. PLoS neglected tropical
 diseases. 2020 Dec 17;14(12):e0008961.
- 806 13. Sun Y, Li X, Guo D. COVID-19 Vaccine Hesitancy in China: An Analysis of Reasons
 807 through Mixed Methods. Vaccines. 2023 Mar 22;11(3):712.
- 808 14. Liu T, He Z, Huang J, Yan N, Chen Q, Huang F, Zhang Y, Akinwunmi OM, Akinwunmi
- BO, Zhang CJ, Wu Y. A comparison of vaccine hesitancy of COVID-19 vaccination in
 China and the United States. Vaccines. 2021 Jun 14;9(6):649.
- 811 15. Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., ... &
- 812 Stewart, L. A. (2015). Preferred reporting items for systematic review and meta-analysis
- 813 protocols (PRISMA-P) 2015 statement. *Systematic reviews*, 4(1), 1-9.

814	16. Veritas Health Innovation. Covidence systematic review software [Internet]. Covidence.
815	[cited 2023 Jul 03]. Available from: www.covidence.org
816	17. Study quality assessment tools. National Heart, Lung, and Blood Institute. NHLBI
817	[Internet]. https://www.nhlbi.nih.gov/health-topics/study-qualityassessment-tools
818	18. Schünemann HJ, Brożek J, Guyatt G, Oxman A. Handbook for grading the quality of
819	evidence and the strength of recommendations using the GRADE approach. Updated
820	October. 2013 Oct;2013:15.
821	19. Chang C, Zhang X, Feng Y, Jin R, Sun L, Liang Y, Liu X, Ma Y, Song J, Xiang P, Zhang
822	E. COVID-19 vaccine uptake and hesitancy in Chinese patients with asthma. Journal of
823	Asthma. 2023 May 31(just-accepted):1-8.
824	20. Chan WL, Ho YH, Wong CK, Choi HC, Lam KO, Yuen KK, Kwong D, Hung I.
825	Acceptance of COVID-19 vaccination in cancer patients in Hong Kong: approaches to
826	improve the vaccination rate. Vaccines. 2021 Jul 16;9(7):792.
827	21. Chen M, Li Y, Chen J, Wen Z, Feng F, Zou H, Fu C, Chen L, Shu Y, Sun C. An online
828	survey of the attitude and willingness of Chinese adults to receive COVID-19
829	vaccination. Human Vaccines & Immunotherapeutics. 2021 Jul 3;17(7):2279-88.
830	22. Feng H, Zhu H, Zhang H, Cao L, Li L, Wang J, Huang Y, Lai X, Lyu Y, Jing R, Guo J.
831	Caregivers' intentions to COVID-19 vaccination for their children in China: A cross-
832	sectional survey. Human Vaccines & Immunotherapeutics. 2021 Dec 2;17(12):4799-805.
833	23. Fu L, Wu S, Wang B, Zheng W, Sun Y, Tian T, Zhang X, Xu L, Sun Y, Zhan J, Peng Z.
834	COVID-19 vaccination perception and uptake among cancer patients in Guangzhou,
835	China. Human Vaccines & Immunotherapeutics. 2022 Nov 30;18(6):2102329.

836	24.	Gan L, Chen Y, Hu P, Wu D, Zhu Y, Tan J, Li Y, Zhang D. Willingness to receive
837		SARS-CoV-2 vaccination and associated factors among Chinese adults: a cross sectional
838		survey. International journal of environmental research and public health. 2021
839		Feb;18(4):1993.
840	25.	Hao J, Liu H, Shi J, Wang Q, Su X, Shi Z, Yu Y, Liu B, Qiao Y. A study on the
841		willingness and influencing factors of novel coronavirus vaccination among medical
842		personnel in North China. Human Vaccines & Immunotherapeutics. 2022 Nov
843		30;18(5):2031775.
844	26.	Hou Z, Song K, Wang Q, Zang S, Tu S, Chantler T, Larson HJ. Childhood COVID-19
845		vaccine acceptance and preference from caregivers and healthcare workers in China: A
846		survey experiment. Preventive Medicine. 2022 Aug 1;161:107138.
847	27.	Huang X, Yu M, Fu G, Lan G, Li L, Yang J, Qiao Y, Zhao J, Qian HZ, Zhang X, Liu X.
848		Willingness to receive COVID-19 vaccination among people living with HIV and AIDS
849		in China: nationwide cross-sectional online survey. JMIR public health and surveillance.
850		2021 Oct 21;7(10):e31125.
851	28.	Huang Y, Wu Q, Xu S, Zhao X, Wang L, Lv Q, Wu S, Zhang X. COVID-19 vaccine
852		uptake and its determinants among teenagers and their parents in Zhejiang, China: An
853		online cross-sectional study. Asian Pacific Journal of Tropical Medicine. 2023 Apr
854		1;16(4):176-86.
855	29.	Huang N, Wang C, Han B, Zhao T, Liu B, Chen L, Xie M, Zheng H, Zhang S, Wang Y,
856		Juan D. Change in willingness to COVID-19 vaccination in China: Two online surveys
857		during the pandemic. Journal of Medical Virology. 2022 Nov;94(11):5271-8.

858	30. Hu X, Yan D, Liao M, Wei S, Wang J. Vaccination practices, knowledge and attitudes
859	regarding COVID-19 vaccines among Chinese university students: a cross-sectional
860	study from a comprehensive university in Wuhan. BMJ open. 2022 Nov
861	1;12(11):e058328.
862	31. Kong Y, Jiang H, Liu Z, Guo Y, Hu D. The uptake and vaccination willingness of
863	COVID-19 vaccine among Chinese residents: web-based online cross-sectional study.
864	Vaccines. 2022 Jan 8;10(1):90.
865	32. Li H, Cheng L, Tao J, Chen D, Zeng C. Knowledge and willingness to receive a COVID-
866	19 vaccine: a survey from Anhui Province, China. Human Vaccines &
867	Immunotherapeutics. 2022 Jan 31;18(1):2024064.
868	33. Li JB, Lau EY, Chan DK. Why do Hong Kong parents have low intention to vaccinate
869	their children against COVID-19? Testing health belief model and theory of planned
870	behavior in a large-scale survey. Vaccine. 2022 Apr 26;40(19):2772-80.
871	34. Li L, Wang J, Nicholas S, Maitland E, Leng A, Liu R. The intention to receive the
872	COVID-19 vaccine in China: Insights from protection motivation theory. Vaccines. 2021
873	May 2;9(5):445.
874	35. Lin Y, Hu Z, Zhao Q, Alias H, Danaee M, Wong LP. Understanding COVID-19 vaccine
875	demand and hesitancy: A nationwide online survey in China. PLoS neglected tropical
876	diseases. 2020 Dec 17;14(12):e0008961.
877	36. Li S, Gao Z, Zhong M, Yu Z, Li J, Bi H. Chinese university students' awareness and
878	acceptance of the COVID-19 vaccine: a cross-sectional study. Risk Management and
879	Healthcare Policy. 2022 Apr 29:845-64.

880	37. Li T, Qi R, Chen B, Luo Y, Zhang W, Zhou YH, Xu B. COVID-19 vaccination coverage
881	among adolescents aged 12-17 years in three provinces of eastern China: a cross-
882	sectional survey, 2021. Frontiers in public health. 2022 Jul 22;10:919190.
883	38. Liu J, Liu M, Liang W. The dynamic COVID-zero strategy in China. China CDC
884	Weekly. 2022 Jan 1;4(4):74.
885	39. Liu S, Jiang C, Wang J, Liu Y. The factors correlated with COVID-19 vaccination
886	coverage in Chinese hypertensive patients managed by community general practitioner.
887	Human Vaccines & Immunotherapeutics. 2023 Dec 31;19(1):2197839.
888	40. Li XH, Chen L, Pan QN, Liu J, Zhang X, Yi JJ, Chen CM, Luo QH, Tao PY, Pan X, Lu
889	SY. Vaccination status, acceptance, and knowledge toward a COVID-19 vaccine among
890	healthcare workers: a cross-sectional survey in China. Human Vaccines &
891	Immunotherapeutics. 2021 Nov 2;17(11):4065-73.
892	41. Luk TT, Zhao S, Wu Y, Wong JY, Wang MP, Lam TH. Prevalence and determinants of
893	SARS-CoV-2 vaccine hesitancy in Hong Kong: A population-based survey. Vaccine.
894	2021 Jun 16;39(27):3602-7.
895	42. Lv X, Zhao C, Song B, Huang H, Song S, Long H, Liu W, Du M, Liu M, Liu J. COVID-
896	19 vaccination in people living with HIV and AIDS (PLWHA) in China: A cross-
897	sectional study. Human Vaccines & Immunotherapeutics. 2023 Dec 31;19(1):2151798.
898	43. Mo PK, She R, Yu Y, Li L, Yang Q, Lin J, Ye X, Wu S, Yang Z, Guan S, Zhang J.
899	Resilience and intention of healthcare workers in China to receive a COVID-19
900	vaccination: The mediating role of life satisfaction and stigma. Journal of Advanced
901	Nursing. 2022 Aug;78(8):2327-38.

902	44. Pan Y, Gong S, Zhu X, Xue C, Jing Y, Sun Y, Qian Y, Zhang J, Xia Q. Investigation on
903	the hesitancy of COVID-19 vaccination among liver transplant recipients: a cross-
904	sectional study in China. Frontiers in Public Health. 2022 Dec 15;10:1014942.
905	45. Qin C, Du M, Wang Y, Li M, Wu H, Li S, Liu J. COVID-19 Vaccination Coverage
906	among 42,565 Adults Amid the Spread of Omicron Variant in Beijing, China. Vaccines.
907	2023 Mar 27;11(4):739.
908	46. Qin C, Wang R, Tao L, Liu M, Liu J. Association between risk perception and
909	acceptance for a booster dose of COVID-19 vaccine to children among child caregivers
910	in China. Frontiers in public health. 2022 Mar 16;10:834572.
911	17. Song S, Zang S, Gong L, Xu C, Lin L, Francis MR, Hou Z. Willingness and uptake of th
912	COVID-19 testing and vaccination in urban China during the low-risk period: a cross-
913	sectional study. BMC Public Health. 2022 Dec;22(1):1-3.
914	48. Sun Y, Li B, Li N, Li B, Chen P, Hao F, Sun C. Acceptance of COVID-19 vaccine
915	among high-risk occupations in a Port city of China and multifaceted strategies for
916	increasing vaccination coverage: a cross-sectional study. Risk Management and
917	Healthcare Policy. 2022 Apr 14:643-55.
918	49. Tao L, Wang R, Han N, Liu J, Yuan C, Deng L, Han C, Sun F, Liu M, Liu J. Acceptance
919	of a COVID-19 vaccine and associated factors among pregnant women in China: a multi
920	center cross-sectional study based on health belief model. Human Vaccines &
921	Immunotherapeutics. 2021 Aug 3;17(8):2378-88.
922	50. Wang C, Wang Y, Han B, Zhao TS, Liu B, Liu H, Chen L, Xie M, Zheng H, Zhang S,
923	Zeng J. Willingness and SARS-CoV-2 vaccination coverage among healthcare workers
924	in China: A nationwide study. Vaccines. 2021 Sep 6;9(9):993.

925	51. Wang C, Han B, Zhao T, Liu H, Liu B, Chen L, Xie M, Liu J, Zheng H, Zhang S, Wang
926	Y. Vaccination willingness, vaccine hesitancy, and estimated coverage at the first round
927	of COVID-19 vaccination in China: A national cross-sectional study. Vaccine. 2021 May
928	18;39(21):2833-42.
929	52. Wang J, Jing R, Lai X, Zhang H, Lyu Y, Knoll MD, Fang H. Acceptance of COVID-19
930	Vaccination during the COVID-19 Pandemic in China. Vaccines. 2020 Aug 27;8(3):482.
931	53. Wang J, Yuan B, Lu X, Liu X, Li L, Geng S, Zhang H, Lai X, Lyu Y, Feng H, Jing R.
932	Willingness to accept COVID-19 vaccine among the elderly and the chronic disease
933	population in China. Human vaccines & immunotherapeutics. 2021 Dec 2;17(12):4873-
934	88.
935	54. Wang MW, Wen W, Wang N, Zhou MY, Wang CY, Ni J, Jiang JJ, Zhang XW, Feng ZH,
936	Cheng YR. COVID-19 vaccination acceptance among healthcare workers and non-
937	healthcare workers in China: a survey. Frontiers in public health. 2021 Aug 2;9:709056.
938	55. Wong MC, Wong EL, Huang J, Cheung AW, Law K, Chong MK, Ng RW, Lai CK, Boon
939	SS, Lau JT, Chen Z. Acceptance of the COVID-19 vaccine based on the health belief
940	model: A population-based survey in Hong Kong. Vaccine. 2021 Feb 12;39(7):1148-56.
941	56. Wu J, Ma M, Miao Y, Ye B, Li Q, Tarimo CS, Wang M, Gu J, Wei W, Zhao L, Mu Z.
942	COVID-19 vaccination acceptance among Chinese population and its implications for the
943	pandemic: a national cross-sectional study. Frontiers in public health. 2022 Feb
944	8;10:796467.
945	57. Wu L, Wang X, Li R, Huang Z, Guo X, Liu J, Yan H, Sun X. Willingness to receive a
946	COVID-19 vaccine and associated factors among older adults: a cross-sectional survey in
947	Shanghai, China. Vaccines. 2022 Apr 21;10(5):654.

948	58. Wu S, Ming F	F, Xing Z, Zhang Z, Zhu S,	Guo W, Zou S, Liu J, Liu	Y, Liang K. COVID-
-----	------------------	----------------------------	--------------------------	--------------------

- 949 19 vaccination willingness among people living with HIV in wuhan, China. Frontiers in
 950 Public Health. 2022 May 9;10:883453.
- 951 59. Xie P, Shi X, Zhu B, Zhao W, Li X, Zou X, Liu G, Han X. COVID-19 vaccine uptake,
- 952 reasons, and associated factors among older adults in Shenzhen, China. Human Vaccines
 953 & Immunotherapeutics. 2023 Dec 31;19(1):2196914.
- 954 60. Yin D, Chen H, Deng Z, Yuan Y, Chen M, Cao H, Zhou X, Luo J, Zhang W, Gu Z, Wen
- 955 Z. Factors associated with COVID-19 vaccination acceptance among industrial workers
- 956 in the post-vaccination era: a large-scale cross-sectional survey in China. Human
- 957 Vaccines & Immunotherapeutics. 2021 Dec 2;17(12):5069-75.
- 958 61. Zhang J, Dean J, Yin Y, Wang D, Sun Y, Zhao Z, Wang J. Determinants of COVID-19
- 959 vaccine acceptance and hesitancy: a health care student-based online survey in Northwest960 China. Frontiers in Public Health. 2022 Jan 6;9:777565.
- 961 62. Zhang K, Fang Y, Chan PS, Cao H, Chen H, Hu T, Chen Y, Zhou X, Wang Z.
- 962 Behavioral intention to get a booster dose of COVID-19 vaccine among Chinese factory
- 963 workers. International Journal of Environmental Research and Public Health. 2022 Apr
 964 26;19(9):5245.
- 965 63. Zhang K, Liang X, Tam KL, Kawuki J, Chan PS, Chen S, Fang Y, Cao H, Zhou X, Chen
- 966 Y, Hu T. Changes in COVID-19 Vaccine Acceptability among Parents with Children
- 967 Aged 6–35 Months in China—Repeated Cross-Sectional Surveys in 2020 and 2021.
- 968 Vaccines. 2023 Jan 12;11(1):170.

969	64. Zhao YM, Liu L, Sun J, Yan W, Yuan K, Zheng YB, Lu ZA, Liu L, Ni SY, Su SZ, Zhu
970	XM. Public willingness and determinants of COVID-19 vaccination at the initial stage of
971	mass vaccination in China. Vaccines. 2021 Oct 13;9(10):1172.
972	65. Zhou Q, Tian T, Ni J, Zhao X, Li H, Yang Y, Zhang Y, Pan J. COVID-19 vaccination
973	acceptance in China after it becomes available: a cross-sectional study. Vaccines. 2021
974	Nov 25;9(12):1398.
975	66. Smith DJ, Hakim AJ, Leung GM, Xu W, Schluter WW, Novak RT, Marston B, Hersh
976	BS. COVID-19 mortality and vaccine coverage—Hong Kong special administrative
977	region, China, January 6, 2022–March 21, 2022. Morbidity and Mortality Weekly
978	Report. 2022 Apr 4;71(15):545.
979	67. Singh P, Dhalaria P, Kashyap S, Soni GK, Nandi P, Ghosh S, Mohapatra MK, Rastogi A,
980	Prakash D. Strategies to overcome vaccine hesitancy: a systematic review. Systematic
981	reviews. 2022 Dec;11(1):1-3.
982	
983	
984 985	Supporting Information Captions:
986	S1 Table. Quality assessment [19-65]
987	S2 Table. GRADE Assessment for Odds Ratio - Age
988	S3 Table. GRADE Assessment for Odds Ratio - Gender
909 909	54 1 able. GRADE Assessment for Odds Ratio – Income S5 Table CRADE Assessment for Odds Ratio – Education
991	S5 Table. PRISMA Checklist
992	S1 Fig. Odds Ratio – Age funnel plot
993	S2 Fig. Odds Ratio – Gender funnel plot

Fig 1

				Odds ratio	Odds ratio			
Study or Subgroup	log[OR]	SE	Weight	IV, Random, 95% CI	IV, Random, 95% CI			
1.1.1 30-39								
Hou 2022	0.322083	0.178138	6.3%	1.38 [0.97 , 1.96]	-			
Huang 2021	-0.040822	0.094788	8.9%	0.96 [0.80 , 1.16]	+			
Li 2021	0.042101	0.109926	8.4%	1.04 [0.84 , 1.29]	+			
Song 2022	0.518794	0.275441	4.0%	1.68 [0.98 , 2.88]				
Wu 2022	0.231112	0.040258	10.3%	1.26 [1.16 , 1.36]	-			
Subtotal (95% CI)			37.9%	1.17 [1.00 , 1.37]	•			
Heterogeneity: Tau ^a =	0.02; Chi ² =	10.74, df =	4 (P = 0.	03); l ^z = 63%	ľ			
Test for overall effect:	Z = 1.94 (P =	= 0.05)						
1.1.2 40-49								
Hou 2022	0.385262	0.240322	4.7%	1.47 [0.92 , 2.35]				
Huang 2021	0.113329	0.117381	8.2%	1.12 [0.89 , 1.41]	+			
Li 2021	0.317726	0.150059	7.1%	1.37 [1.02 , 1.84]	-			
Song 2022	0.699129	0.293071	3.7%	2.01 [1.13 , 3.57]				
Wu 2022	0.625938	0.07339	9.5%	1.87 [1.62 , 2.16]	-			
Subtotal (95% CI)			33.2%	1.50 [1.17 , 1.94]	•			
Heterogeneity: Tau ^a =	0.06; Chi ² =	15.49, df =	4 (P = 0.	004); l ^a = 74%	-			
Test for overall effect:	Z = 3.14 (P =	= 0.002)						
1.1.3 50-59								
Hou 2022	-0.051293	0.288018	3.8%	0.95 [0.54 , 1.67]	+			
Huang 2021	-0.314711	0.1645	6.7%	0.73 [0.53 , 1.01]	-			
Li 2021	-0.006018	0.307001	3.5%	0.99 [0.54 , 1.81]	+			
Wu 2022	0.239017	0.101796	8.7%	1.27 [1.04 , 1.55]	-			
Subtotal (95% CI)			22.6%	0.98 [0.71 , 1.35]	•			
Heterogeneity: Tau ^a =	0.06; Chi ² =	8.46, df = 3	3 (P = 0.0	i4); l² = 65%				
Test for overall effect:	Z = 0.10 (P =	= 0.92)						
1.1.4 ≥60								
Wu 2022	-0.105361	0.178843	6.3%	0.90 [0.63 , 1.28]	+			
Subtotal (95% CI)			6.3%	0.90 [0.63 , 1.28]	+			
Heterogeneity: Not ap	plicable							
Test for overall effect:	Z = 0.59 (P =	= 0.56)						
Total (95% CI)			100.0%	1.21 [1.06 , 1.39]	•			
Heterogeneity: Tau ^a =	0.05; Chi ^z =	61.89, df =	: 14 (P < 0	0.00001); I ^z = 77%				
Test for overall effect:	Z = 2.74 (P =	= 0.006)		0	01 0.1 1 10 100			
test for subgroup differences: Chi* = 7.03, df = 3 (P = 0.07), I* = 57.3%								

Fig 2

				Odds ratio		Odds ratio		
Study or Subgroup	log[OR]	SE	Weight	IV, Random, 95% CI	IV, R	IV, Random, 95% CI		
2.1.1 Female								
Huang 2021	0.019803	0.176827	10.0%	1.02 [0.72 , 1.44]		+		
Huang 2023	0.198851	0.162076	10.4%	1.22 [0.89 , 1.68]		-		
Li 2021	-0.382726	0.149335	10.7%	0.68 [0.51, 0.91]		-		
Song 2022	-0.001001	0.125634	11.3%	1.00 [0.78 , 1.28]		+		
Wu 2022	-0.462035	0.036799	12.7%	0.63 [0.59 , 0.68]		-		
Xie 2023	-0.139262	0.172678	10.1%	0.87 [0.62 , 1.22]		-		
Zhao 2021	0.19062	0.023112	12.8%	1.21 [1.16 , 1.27]		-		
Subtotal (95% CI)			78.0%	0.92 [0.67 , 1.26]		•		
Heterogeneity: Tau ² =	0.17; Chi ² =	234.40, df	= 6 (P < 0	0.00001); I ² = 97%		1		
Test for overall effect:	Z = 0.52 (P =	= 0.60)						
2.1.2 Male								
Hou 2022	0.157004	0.203214	9.4%	1.17 [0.79 , 1.74]		+		
Qin 2023	0.157004	0.041342	12.7%	1.17 [1.08 , 1.27]		-		
Subtotal (95% CI)			22.0%	1.17 [1.08 , 1.27]				
Heterogeneity: Tau ² =	0.00; Chi ² =	0.00, df =	1 (P = 1.0	0); l ² = 0%		ľ		
Test for overall effect:	Z = 3.88 (P =	= 0.0001)						
Total (95% CI)			100.0%	0.97 [0.77 , 1.22]		•		
Heterogeneity: Tau ² =	0.11; Chi2 =	246.65, df	= 8 (P < 0	0.00001); l ² = 97%		I		
Test for overall effect:	Z = 0.27 (P =	= 0.79)		0	01 01	1 1	0 100	
Test for subgroup diffe	rences: Chi ²	= 2.11, df	= 1 (P = 0).15), l² = 52.6%				

				Odds ratio		Odd	is ratio		
Study or Subgroup	log[OR]	SE	Weight	IV, Random, 95% CI		IV, Rand	om, 95	% CI	
3.1.1 ≥5000 RMB									
Li 2021	0.149282	0.10559	6.8%	1.16 [0.94 , 1.43]			+		
Xie 2023	0.277632	0.224585	1.5%	1.32 [0.85 , 2.05]			+		
Zhao 2021	0.067659	0.02864	91.8%	1.07 [1.01 , 1.13]			•		
Subtotal (95% CI)			100.0%	1.08 [1.02 , 1.14]			Τ.		
Heterogeneity: Tau ² =	0.00; Chi ² =	= 1.37, df =	2 (P = 0.9	50); I ^z = 0%			ſ		
Test for overall effect:	Z = 2.78 (P	= 0.005)							
Total (95% CI)			100.0%	1.08 [1.02 , 1.14]					
Heterogeneity: Tau ² =	0.00; Chi ² =	= 1.37, df =	2 (P = 0.5	50); I ² = 0%			1		
Test for overall effect:	Z = 2.78 (P	-		0.01	01	1	10	100	
Test for subgroup diffe	erences: No	t applicable	,		0.01				.00

Test for subgroup differences: Not applicable

Fig 5