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Abstract 7 

Mathematical models of viral infection have been developed and fit to data to gain insight into disease 8 

pathogenesis for a number of agents including HIV, hepatitis C and B virus. However, for acute infections 9 

such as influenza and SARS-CoV-2, as well as for infections such as hepatitis C and B that can be acute or 10 

progress to being chronic, viral load data are often collected after symptoms develop, usually around or 11 

after the peak viral load. Consequently, we frequently lack data in the exponential phase of viral growth, 12 

i.e., when most transmission events occur. Missing data may make estimation of the time of infection, the 13 

infectious period, and parameters in viral dynamic models, such as the cell infection rate, difficult. Here, 14 

we evaluated the reliability of estimates of key model parameters when viral load data prior to the viral 15 

load peak is missing. We estimated the time from infection to peak viral load by fitting non-linear mixed 16 

models to a dataset with frequent viral RNA measurements, including pre-peak. We quantified the 17 

reliability of estimated infection times, key model parameters, and the time to peak viral load. Although 18 

estimates of the time of infection are sensitive to the quality and amount of available data, other 19 

parameters important in understanding disease pathogenesis, such as the loss rate of infected cells, are 20 

less sensitive. We find a lack of data in the exponential growth phase underestimates the time to peak 21 

viral load by several days leading to a shorter predicted exponential growth phase. On the other hand, 22 

having an idea of the time of infection and fixing it, results in relatively good estimates of dynamical 23 

parameters even in the absence of early data. 24 

 25 
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Introduction 26 

In a typical acute infection, the viral load initially increases exponentially, reaches a peak, and then 27 

declines. The same pattern is seen in infections, such as hepatitis C, that can progress from acute to 28 

chronic, where the decline does not necessarily lead to elimination of the virus. The viral load frequently 29 

correlates with a person's infectiousness and thus the probability of viral transmission [1–6]. 30 

Understanding the viral dynamics throughout the course of infection, including prior to the viral peak, is 31 

critical to understanding viral transmission [7–9]. However, viral load data is often obtained from settings 32 

where infected individuals are tested and identified days after symptoms develop [3,10–12]. In the case 33 

of SARS-CoV-2, symptom onset is usually around the peak viral load and corresponds to the time when a 34 

person is highly contagious [1]. This leads to a lack of data collected during the exponential growth phase. 35 

Additionally, the exact time of pathogen exposure is often unknown, or estimates of infection times are 36 

often based on incomplete data.  37 

Many previous models were fit to data from observational studies with missing data prior to the peak viral 38 

load and thus mostly with unknown times of infection, which may lead to uncertainties in estimates of 39 

the incubation period and, as we show below, in estimates of viral dynamic model parameters. Here, we 40 

present a mathematical analysis estimating key parameters of viral dynamic models from a data set from 41 

the National Basketball Association (NBA) where testing for SARS-CoV-2 was done on a regular basis 42 

irrespective of infection status, and including pre-peak viral load assessment [10,11]. The time peak viral 43 

load was defined as t=0 in this dataset [10,11] and thus the time of infection, tinf, is negative and denotes 44 

the number of days before the viral peak that infection was estimated to have taken place. 45 

We found that the cell infection rate and virus production rate are crucial parameters in viral dynamic 46 

models needed to reliably estimate the dynamics of the exponential growth phase. If data is missing in 47 

the first few days post infection, knowing both parameters led to similar predictions of viral load as having 48 

frequent viral load measurements in the exponential growth phase. Alternatively, knowledge of the time 49 

of infection (e.g., from epidemiological evidence) or assuming a given duration until peak viral load is 50 

attained (e.g., in SARS-CoV-2 assuming the median of 5 days [13,14]) represent good alternatives to 51 

estimating infection times and yields consistent population parameter estimates.  52 

  53 
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Methods 54 

Mathematical Model  55 

A mathematical model often used to study acute infections is the target cell limited model (TCLM) with 56 

an eclipse phase, which was introduced to study influenza infection [15]. This model has been used to 57 

study various acute infections, such as Zika, dengue, influenza A, West Nile virus, Ebola, and SARS-CoV-2 58 

[1,15–19], due to its simplicity and the small number of parameters.  59 

The TCLM describes the dynamics of target cells, i.e., cells susceptible to infection, 𝑇𝑇, infected cells in the 60 

eclipse phase that are not yet virus-producing, 𝐸𝐸, virus-producing infected cells, 𝐼𝐼, and virus, 𝑉𝑉. The TCLM 61 

has also been augmented by including an innate immune response that has provided a better description 62 

of influenza and SARS-CoV-2 infection dynamics [1,15]. In this model, we include a population of cells that 63 

are refractory to infection, which for simplicity, we call refractory cells, 𝑅𝑅, and call the model the refractory 64 

cell model (RCM). Refractory cells are in an antiviral state induced by the innate immune response 65 

mediated by type I and type III interferons [20–22]. The following system of ODEs gives the dynamics of 66 

the five populations of the RCM: 67 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  −𝛽𝛽𝛽𝛽𝛽𝛽 − 𝜑𝜑𝜑𝜑𝜑𝜑 + 𝜌𝜌𝜌𝜌, (1) 68 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  𝜑𝜑𝜑𝜑𝜑𝜑 − 𝜌𝜌𝜌𝜌, 69 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛽𝛽𝛽𝛽𝛽𝛽 − 𝑘𝑘𝑘𝑘, 70 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑘𝑘 − 𝛿𝛿𝛿𝛿, 71 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜋𝜋𝜋𝜋 − 𝑐𝑐𝑐𝑐. 72 

 73 

The TCLM is similar and to obtain it we just remove the 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 equation, and the terms 𝜑𝜑𝜑𝜑𝜑𝜑 and 𝜌𝜌𝜌𝜌 in the 74 

dT/dt equation (see equation S1 in S1 Text). In the model, target cells, T, become infected by virus with 75 

rate constant 𝛽𝛽 and then enter the eclipse phase, E, which lasts for an average duration 1/𝑘𝑘 during which 76 

time they produce no virus. At the end of the eclipse phase cells become productively infected cells, I, 77 
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produce virus with rate constant 𝜋𝜋 and die with rate constant 𝛿𝛿. Note that the average infected cell 78 

lifespan is 1
𝑘𝑘

+ 1
𝛿𝛿

. Finally, virus, 𝑉𝑉, is cleared with first-order rate constant 𝑐𝑐 (Fig 1).  79 

 80 

Figure 1: Schematic illustration of the refractory cell model. A susceptible target cell, 𝑇𝑇, is infected by 81 

virus, 𝑉𝑉, with the infection rate constant 𝛽𝛽. Infected cells in the eclipse phase, 𝐸𝐸, become actively virus 82 

producing cells, 𝐼𝐼, with the transition rate constant 𝑘𝑘. 𝐼𝐼 produce virus with production rate constant 𝜋𝜋 or 83 

die with degradation rate 𝛿𝛿. Virus is cleared with clearance rate 𝑐𝑐. In the refractory cell model, in addition 84 

we also account for the innate immune response, which turns susceptible cells into refractory cells, 𝑅𝑅, with 85 

constant rate 𝜑𝜑, which are in an antiviral state and refractory to infection. However, refractory cells can 86 

become susceptible to infection with constant rate 𝜌𝜌.  87 

 88 

Infection induces the release of interferons that may establish an antiviral state in non-infected target 89 

cells. For simplicity, we do not explicitly include interferons but model their effect as proportional to the 90 

number of infected cells. With per capita rate 𝜑𝜑I, target cells enter the refractory state and leave it with 91 

first-order rate constant 𝜌𝜌, making them again susceptible to infection (Fig 1).  92 

Consistent with our previous work [23], we fixed the initial target cell population at the time of infection 93 

(𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖) to 𝑇𝑇�𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖� = 8 x 107 cells and assumed the initial refractory cell population 𝑅𝑅�𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖� = 0. The virus 94 

concentration that initiates infection is hard to estimate. Thus, as has been done previously [24] we set 95 
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𝑉𝑉�𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖� = 0 and start the infection with one infected cell in the eclipse phase: 𝐸𝐸(𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖) = 1 [23], which 96 

was the value that led to the best model fit according to our sensitivity analysis (S1 Table). In vitro 97 

experiments have shown that it usually takes 4–8 hours before an infected cell starts to produce SARS-98 

CoV-2 [15,25], yielding a rate of transition out of the eclipse phase of 𝑘𝑘 = 4 𝑑𝑑−1. Further, we fixed the 99 

virus clearance rate 𝑐𝑐 = 10 𝑑𝑑−1 [25].  100 

For the above models, the basic reproductive number (𝑅𝑅0) is given by  101 

𝑅𝑅0 =
𝛽𝛽𝛽𝛽𝛽𝛽(𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖)

𝑐𝑐𝑐𝑐
(3) 102 

which corresponds to the average number of cells infected by one single infected cell at the start of 103 

infection. 104 

For model comparisons below, we calculate the root-mean-square error (RMSE)  105 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
, (4) 106 

where 𝑦𝑦𝑖𝑖  are the actual measurements and 𝑦𝑦�𝑖𝑖 are model predictions at time 𝑖𝑖 for all 𝑛𝑛 non-censored data 107 

points, i.e., viral load measurements above the detection limit (LOD).  108 

 109 

Parameter estimation, model selection, and model analysis 110 

Fitting the RCM to data was implemented using the non-linear mixed effects modeling framework in 111 

Monolix (lixoft.com) and R (r-project.org) using Monolix’s R-functions. We conducted 100 different 112 

parameter estimation rounds with randomly chosen initial parameter values uniformly distributed within 113 

the following ranges: 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 ∈ [−8,−5] days, 𝛽𝛽 ∈ [10−8, 10−5] mL/RNA copies/days, 𝛿𝛿 ∈ [0.1, 3] 1/day, 114 

𝜋𝜋 ∈ [1, 100] RNA copies/mL/day,  𝜑𝜑 ∈ [10−8, 10−4] 1/cell/day, and 𝜌𝜌 ∈ [10−3, 10−1] 1/ day. The best 115 

model fit was selected from the 100 different rounds of parameter estimation by comparing the negative 116 

log-likelihood (-LL) and the RMSEs. Note that the randomly chosen initial parameter values serve the 117 

purpose of covering a larger parameter search space. However, the estimated parameter values are not 118 

necessarily in the defined ranges.  119 

 120 
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Data and data collection scenarios 121 

We used published data from the National Basketball Association (NBA) to estimate model parameters, 122 

where unvaccinated individuals were regularly tested during the NBA tournament in 2020 and 2021 123 

[10,11]. We selected 25 unvaccinated individuals from this cohort with frequent viral load measurements, 124 

i.e., individuals with four or more viral load measurements above the limit of detection (LOD), 125 

representing the entire course of infection (viral load up-slope, peak, and down-slope). On average (± 126 

standard deviation), the 25 selected individuals had 9.8 ± 3.8 viral load measurements above the LOD with 127 

3.1 ± 1.6 data points obtained during the up-slope, one measurement representing the observed peak 128 

viral load, and 5.7 ± 3.0 measurements obtained during the post-peak down-slope. We used this “entire 129 

course of infection” data set to estimate the median time to the measured peak viral load and to study 130 

the dynamics of the acute infection (S1 Fig).  131 

 132 

Results 133 

SARS-CoV-2 dynamics: The course of infection 134 

The RCM fits the entire course of infection of the 25 selected individuals and describes both the initial 135 

exponential viral growth and subsequent virus clearance (Fig 2).  136 
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 137 

Figure 2: The best RCM fit to viral load measurements of 25 selected individuals. Filled circles are 138 

measurement points, and non-filled circles are censored and below the detection limit (dotted grey line).  139 

 140 

We estimated the time of infection at a median of -6.4 days from the observed peak, ranging individually 141 

from -9.8 to -5.3 days (S2 Table and S1 Fig). This is consistent with the findings in a human challenge study 142 

[26] where the viral load peak in the nose occurred 6.2 days after infection and ranged between 3 and 9 143 
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days. We note that the model predicted time to peak is not necessarily the same as the time to the 144 

observed peak viral load in the data. In some individuals the model predicts an earlier peak viral load 145 

compared to the observed peak viral load, e.g., the predicted viral load of individual 2349 peaks 4 days 146 

before the measured one (S1 Fig). In fact, the model predicts a time to peak of 5.7 days (Fig 3), i.e., on 147 

average 0.7 days before the observed peak, due to a rapid increase in viral load early post infection in 148 

some individuals. The model also predicts another 9.1 days to clear the infection (from peak viral load to 149 

the limit of detection) with a predicted infection duration of around 15 days.   150 

 151 

Figure 3: Virus and cell dynamics. Dynamics of virus, infected cells, refractory cells, and target cells 152 

(population = black line, individual = colored lines) throughout the course of infection predicted by the 153 

RCM using the best-fit population parameter estimates. 154 

 155 

In combination with the eclipse phase duration, 1/𝑘𝑘, the average lifespan of infected cells is 1
𝑘𝑘

 + 1
𝛿𝛿

. Using 156 

the estimated values of 𝑘𝑘 and 𝛿𝛿, we find the average lifespan of an infected cell is 0.64 days or 15 h. The 157 

within-host reproductive number 𝑅𝑅0 was on average 5 (Table 1).  158 

Table 1: Parameters in the RCM viral dynamic model and their estimated population values. Values 159 

marked with * were fixed.  160 

Parameter Description RCM 

Population estimate 

Unit 
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[95% CI] 

𝑇𝑇�𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖� Initial target cell population 8 ⋅ 107* cells 

𝐸𝐸�𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖� Initial number of infected cells in 

the eclipse phase population 

1* cells 

𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 Infection time -6.4 

[-6.7, 6.1] 

days 

𝛽𝛽  Cell infection rate 1.07 ⋅ 10-8 

[9.12 ⋅ 10-9, 1.26 ⋅ 10-8] 

mL/RNA 

copies/day 

𝑘𝑘 Transition rate out of the eclipse 

phase  

4* 1/day 

𝜋𝜋 Virus production rate 151 

[131, 174] 

RNA 

copies/mL/day 

𝛿𝛿 Death rate of infected cells 2.58 

[2.52, 2.64] 

1/day 

𝑐𝑐 Virus clearance rate 10* 1/day 

𝜑𝜑 Target to refractory cell conversion 

rate constant 

1.82 ⋅ 10-6 

[1.25 ⋅ 10-6, 2.69 ⋅ 10-6] 

 

1/cell/day 

𝜌𝜌 Refractory to target cell conversion 

rate 

0.016 

[0.014, 0.019] 

1/day 

𝑅𝑅0 Basic reproductive number 5.0  

RMSE Root mean squared error 

Sum over all individuals: 

 

Averaged over individuals: 

 

25.5 

 

1.02 

 

-LL 

 

BICc 

negative log likelihood: 

 

corrected Bayesian Information 

Criterion; 

921.3 

 

980.8 

 

 161 
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The infected cell population peaks around 5.5 dpi (Fig 3). Target cells start to decline 3 to 4 dpi until 162 

depletion with less than 3% target cells left around 7 dpi when refractory cells reach their maximum of 163 

81% of the initial susceptible target cells (Fig 3).  164 

 165 

To further explore these fits, we performed a correlation analysis of the population parameters obtained 166 

from fits with a negative log-likelihood (-LL) in the range of 2 units from the best fit [that is, min(-LL) to 167 

min(-LL) + 2]. We found more than 50 fits with a -LL in the defined range with several model parameters 168 

significantly correlated (Fig 4). For example, the cell infection rate constant (𝛽𝛽) and the virus production 169 

rate (𝜋𝜋) are negatively correlated, as has been seen before [27]. The transition rate of susceptible cells 170 

into refractory cells (φ) is positively correlated with 𝜋𝜋 but negatively correlated with 𝛽𝛽. Thus, the faster 171 

the estimated rate cells transition into the refractory state, the lower the estimated cell infection rate and 172 

the higher the estimated virus production rate. Furthermore, the transition rate of refractory cells back 173 

into susceptible cells (𝜌𝜌) is positively correlated with the loss rate of infected cells (𝛿𝛿). Note that when we 174 

included these correlations in the model fitting, there was an increase in the BICc (991 with correlations 175 

compared to 981 without), and thus we did not include the correlations in further analyses.  176 

 177 

Figure 4: Correlation of population parameters in the refractory cell model. The sample size gives the 178 

number of fits that fit the model equally well in the range of min (-LL) to min(-LL)+2. Correlations that are 179 

crossed are non-significant (p-value > 0.05). The plot has been generated with ggstatsplot 180 

[doi:10.21105/joss.03167] 181 
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Missing data in the exponential growth phase 182 

In most human studies, data is not collected starting at the time of infection, but rather starting at the 183 

time of or later than the onset of symptoms [28]. To understand the effect of not having early data, we 184 

constructed different data sets, with varying numbers of viral load measurements during the viral up-185 

slope, to study the robustness of estimated model parameters to missing data by comparison with the 186 

results obtained by fitting the full data set presented above. Based on the estimate of 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 for each 187 

individual, data sets were constructed starting i) 3 days post infection (dpi), yielding on average 2.1 ± 1.6 188 

pre-peak measurements, ii) 5 dpi, yielding on average 0.7 ± 0.9 pre-peak measurements, and iii) 7 dpi 189 

yielding on average 0.1 ± 0.6 pre-peak measurements. In the 3-, 5-, and 7-dpi data sets, pre-peak viral load 190 

measurements were available from 21, 12, and 1 individual, respectively. Note that the 7-dpi data set 191 

starts very near the peak viral load (±1 day), and only one individual has pre-peak data, 17 individuals lose 192 

the peak viral load, and 5 individuals have missing data after peak viral load (viral down-slope). We further 193 

studied the robustness of parameter estimates using only the peak and post-peak measurements, as a 194 

proxy for data collection around symptom onset and, consequently, the most common data set obtained 195 

in clinical practice.  196 

An important issue with fitting acute infection data is that typically we do not know the time of infection, 197 

and thus don’t know the times relative to infection when data was collected. To study this issue, we 198 

considered three different scenarios for each of the artificial data sets created above. First, we assumed 199 

that we do not know the infection time and estimate it (𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒) from the data as we did above, but 200 

now using our reduced data sets.  Here the first measurement is assigned time 0 and we estimate infection 201 

before that. In the second case, we assume we know the time of infection, as estimated from the full data 202 

set, and, thus, 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 = 0 is the actual infection time. We simply fit the model to the various data sets and 203 

estimate model parameters (with 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 = 0). Lastly, when data in the exponential growth phase is missing, 204 

it is common practice to set the time of infection from the literature [25,29–32], e.g., by assuming viral 205 

load peaks at the estimated median time of symptom onset, i.e., 5 dpi for SARS-CoV-2 [13,14]. Thus, for 206 

this third case, we only use the post-peak data set and assume the time of the observed peak viral load is 207 

day 5.   208 

We fitted the model in turn to these different data sets (and assumptions of tinf) and then use all available 209 

data points above the LOD to calculate the RMSE, as we did for the full model fit. Therefore, the lower the 210 

RMSE, the more the predictions of a model fitted to a subset of the data agree with the full viral load 211 
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course. Fitting the model to these modified data sets, we found, as expected, that the more data available 212 

in the exponential growth phase (pre-peak), the lower the RMSE and the more reliable the estimated 213 

course of infection (S2 Fig). However, since infection times and the number of days missing in the 214 

exponential growth phase are often unknown, we averaged the RMSEs over the fits obtained for the 3, 5, 215 

7 dpi, and post-peak data sets to get an idea of how much data we need for the model to perform well 216 

under different assumptions for the time of infection.  217 

Knowing the time of infection (𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 = 0) generally results in lower RMSEs than when estimating 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 (Fig 218 

5, black squares). Furthermore, if we assume that the viral load peaks 5 dpi and fix this (Fig 5, blue dots), 219 

we obtain lower RMSEs compared to re-estimating infection times for each individual (Fig 5, orange 220 

triangles). The TCLM yields similar results, but interestingly, in many cases that model also yields slightly 221 

lower average RMSEs than the RCM (S1 Text). 222 

 223 

 224 

Figure 5: RMSEs for the RCM and three infection time cases. Infection times (𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖) are re-estimated 225 

(triangle), infection times (𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖) known and set to zero (square), or infection times are set to zero and the 226 

VL peaks 5 dpi (circle). RMSEs are averaged over the different data collection scenarios (3-, 5-, 7-dpi, and 227 
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post peak). For each case, all model parameters are re-estimated (NONE on x-axis), or model parameters 228 

were fixed to the values estimated from the full course of infection data set (see Table 1). The dashed line 229 

represents the RMSE calculated from the best model fit using the full course of infection. (The 230 

corresponding plot for individual data collection scenarios are shown in Fig S2 and population 231 

parameters estimated for the different scenarios can be found in Fig S3). 232 

 233 

Fixing one or more model parameters is common practice to reduce uncertainty in data fitting [33]. 234 

Therefore, we were interested in how many model parameters in addition to 𝑐𝑐 and 𝑘𝑘 had to be fixed to 235 

describe well the full course of infection with the different data sets. The parameters 𝑐𝑐 and 𝑘𝑘 are typically 236 

fixed as they refer to processes that take place on timescale of minutes to hours and for which data on 237 

these timescales is unavailable [15,24,25,34–37]. Thus, we systematically fixed every single or possible 238 

pair of remaining model parameters to the population value estimated from the entire data set 239 

representing the entire course of infection (Table 1). Adding knowledge to the model fitting by fixing one 240 

or two additional model parameters improved the RMSEs. Knowing 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 yielded the lowest RMSE, 241 

followed by assuming the viral load peaks 5 dpi, where both outperformed re-estimating 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖. Especially 242 

by fixing the cell infection rate 𝛽𝛽 and the virus production rate 𝜋𝜋, we observed overall the lowest RMSEs, 243 

which were close to those calculated from the whole course of infection data set (Fig 5). Both are crucial 244 

parameters of the exponential growth phase. However, fixing only one of those model parameters (𝛽𝛽 or 245 

𝜋𝜋) led to conflicting results (Fig. 5). If infection times are not known and, thus, must be estimated, fixing 246 

only 𝛽𝛽 yielded lower RMSEs than fixing only 𝜋𝜋. However, if we assume the viral load peaks 5 dpi, fixing 𝜋𝜋 247 

yielded lower RMSEs than fixing 𝛽𝛽 (Fig 5). Additionally, if infection times are re-estimated or if we assume 248 

the viral load peaks 5 dpi and fix 𝜋𝜋, the TCLM yielded lower RMSEs than the RCM (S1 Text).  249 

 250 

How reliable are estimated infection times and other model parameters? 251 

To evaluate the robustness of model parameter estimates, we estimated them from the modified data 252 

sets and compared them to the model parameters estimated from the full course of infection with and 253 

without fixing model parameters (beyond 𝑐𝑐 and 𝑘𝑘).  254 

The estimated 𝛿𝛿 was close to the value estimated from the full course of infection if 𝜌𝜌 was fixed due to 255 

their correlation (Fig 6A and S3 Fig). Furthermore, only by fixing 𝛽𝛽 and 𝜋𝜋, we were able to accurately 256 
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estimate the time of infection reliably and almost exactly (Fig 6B). Estimating 𝛽𝛽 was most reliable if we 257 

assume the viral load peaks 5 dpi (Fig 6C).  Again, 𝜋𝜋 was mostly over or underestimated when fixing one 258 

or two model parameters. However, not fixing any parameters led to the most reliable estimate of 𝜋𝜋 for 259 

all three studied cases (Fig 6D). For both innate immune response model parameters 𝜑𝜑 and 𝜌𝜌, fixing 𝛽𝛽 260 

and 𝜋𝜋 or 𝛽𝛽 and 𝛿𝛿 performed best for all data collection scenarios (Fig 6E and 6F).  261 

 262 
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Figure 6: Estimated population parameters averaged over the four data collection scenario using the 263 

RCM. The dotted line represents the population parameter estimated from the “full course of infection” 264 

data set (Population parameters estimated from every data collection scenario can be found in Fig S3).  265 

 266 

Effect of choosing different combinations of model parameters 267 

Lastly, we were interested in the model performance by choosing different combinations of the cell 268 

infection rate (𝛽𝛽) and the virus production rate (𝜋𝜋), beyond what we estimated in Table 1. For that, we 269 

calculated the RMSEs of model fits where the cell infection rate (𝛽𝛽) and the virus production rate (𝜋𝜋) 270 

where fixed and the remaining model parameters were estimated. For these analyses, we used the post-271 

peak data set and assumed 5 days to reach peak viral load. As shown in Fig 7, 𝛽𝛽 and 𝜋𝜋 correlate inversely 272 

and, because of this, we found that different combinations of 𝛽𝛽 and 𝜋𝜋 led to equally good fits, represented 273 

as dark blue tiles and, thus, low RMSEs (Fig 7).  274 

 275 

Figure 7: Heatmap RMSEs calculated with the RCM and different combinations of population 276 

parameters. A) RMSEs for different combinations of literature values. B) RMSEs for fixed infection rates 277 

from literature and estimated virus production rates. C) RMSEs for fixed virus production rates from 278 

literature and estimated infection rates. ◊ = the population parameters we estimated, x = values for 𝛽𝛽 279 

and/or 𝜋𝜋 found in literature. Parameter values can be found in Table S3.  280 

 281 

Furthermore, since 𝛽𝛽 and 𝜋𝜋 are often unknown and challenging to measure experimentally, we tested our 282 

model performance by fixing 𝛽𝛽 and/or 𝜋𝜋 to different values from the literature [1,12,29,38–42] (S3 Table, 283 
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Fig 7). Compared to our estimate of 𝛽𝛽 = 1 ⋅ 10−8 mL/RNA copies/day, the infection rate values found in 284 

literature were mostly in the range between 1 ⋅ 10−9 to 5 ⋅ 10−8.  These values and their corresponding 285 

virus production rates, which ranged on average between 50 and 1500 (our estimate 𝜋𝜋 = 151 RNA 286 

copies/mL/day), led to equally good fits (Fig 7A). However, we observed overall lower RMSEs, if fixing 𝛽𝛽 287 

and estimating 𝜋𝜋 (Fig 7B) instead of fixing 𝜋𝜋 and estimating 𝛽𝛽 (Fig 7C). Thus, using infection rate values 288 

from the literature represents a good strategy to deal with missing data in the exponential growth phase 289 

and missing information about infection times. 290 

Discussion 291 

Reliably estimating parameter values in viral dynamic models with missing data is challenging. Especially 292 

in acute infections, where individuals generally only become aware of being infected when symptoms 293 

develop. Thus, information about the time of infection and viral load measurements prior to symptom 294 

onset is often not available. In the present study, we analyzed the reliability of estimated viral dynamics 295 

model parameters in the absence of variable amounts of data in the exponential growth phase. We found 296 

that viral infection and production rates are key parameters in determining the exponential growth rate. 297 

Especially with a lack of early data, the time to peak viral load was often underestimated. However, fixing 298 

the time of infection based on epidemiological studies represented a good alternative to estimating 299 

infection times and resulted in good model fits.  300 

 301 

Viral dynamics of the entire course of infection 302 

The RCM describes the frequent viral load measurements of the 25 studied individuals well. Most 303 

estimated model parameters agreed with our previous work, except for the transition rate turning 304 

refractory cells back into susceptible cells, which we now estimate almost 3-fold higher [1]. Interestingly, 305 

we estimated that only 3% of the total cells were infected at the peak and 6% cumulative from infection 306 

to peak viral load. However, at the peak viral load most cells were in a refractory state (81%) and 12% of 307 

cells remaining susceptible to infection. Turning target cells into cells refractory to viral infection by 308 

establishing an antiviral state in uninfected cells may be a critical host defense mechanism early on in 309 

fighting a viral infection. However, as far as we know experimental measurements of the fraction of cells 310 

in an antiviral state during SARS-CoV-2 infection are not available and thus limit our ability to compare 311 

these predictions to data. 312 
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 313 

The effect of missing data in the exponential growth phase 314 

With missing data in the exponential growth phase, infection times are underestimated by 2 to 3 days, 315 

resulting in very fast estimated initial growth rates. However, we improved the infection time estimates 316 

by adding knowledge to the model. Cell infection and virus production rates are crucial parameters for 317 

describing the exponential growth phase. Fixing both model parameters to our population values led to 318 

reliable infection time estimates similar to those estimated from the entire course of infection data set.  319 

We were further interested in the reliability of other model parameter estimates. By fitting the RCM to 320 

different data collection scenarios, we found that knowing the infection times led to the lowest RMSEs. 321 

However, a low RMSE did not guarantee the correct estimation of population parameters due to the 322 

correlations in the model structure such as the correlation between the cell infection rate (𝛽𝛽) and the 323 

virus-production rate (𝜋𝜋). Furthermore, since infection times are often unknown, estimating infection 324 

times or having an idea about them from epidemiological studies and fixing them are more realistic but 325 

led to higher RMSEs. Estimated infection times were underestimated by up to 3 days, while fixing 𝛽𝛽 and 326 

𝜋𝜋 led to the most robust infection time-estimates. Nevertheless, assuming a time to peak viral load of 5 327 

days (for SARS-CoV-2) represented a good alternative to estimating infection times and estimated 328 

population parameters close to those estimated from the full course of infection.  329 

Interestingly, whether infection times are known, estimated or assumed, the loss rate of infected cells 330 

represented the most robust model parameter, with more consistent estimation, due to frequent viral 331 

load measurements after symptom onset and thus after peak viral load. 332 

 333 

Estimating the exponential growth phase parameters: What if 𝜷𝜷 and 𝝅𝝅 are unknown? 334 

The cell infection rate 𝛽𝛽 and virus production rate 𝜋𝜋 are crucial parameters of the exponential viral growth 335 

phase. Fixing both model parameters may lead to reliable predictions of infection times. However, both 336 

model parameters are often unknown and challenging to measure experimentally.  337 

If infection times are unknown, assuming 5 days from the time of infection to peak viral load led to the 338 

most reliable estimates of 𝛽𝛽. Nevertheless, estimates of 𝜋𝜋 showed more variability, which may be due to 339 
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lower sensitivity. It has been further shown that the initial target cell population 𝑇𝑇(𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖) also correlates 340 

with the virus production rate 𝜋𝜋 and only their product [𝑇𝑇�𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖� ⋅ 𝜋𝜋] is identifiable [43,44].  341 

However, estimates for cell infection and virus production rates from other modeling studies [1,12,29,38–342 

42] fit our data equally well, such as 𝛽𝛽 = 10−8 mL/RNA copies/day and 𝜋𝜋 = 150 to 200 RNA copies/mL/ 343 

day or 𝛽𝛽 = 10−9 mL/RNA copies/day and 𝜋𝜋 = 1000 to 1500 RNA copies/mL/ day. Consequently, with 344 

missing data in the exponential growth phase taking cell infection and virus production rates from the 345 

literature may allow robust predictions of the exponential growth phase. 346 

 347 

Limitations and outlook 348 

Our analysis was based on models of acute infection that have been used for a variety of viruses including 349 

West Nile virus [45], respiratory syncytial virus [46], influenza [15,27,34,47,48], and SARS-CoV-2 350 

[1,12,17,25,39]. However, here we only analyzed data for SARS-CoV-2 infection due to the availability of 351 

a rich dataset. Also, we selected our data from a unique cohort that included primarily male, young, 352 

healthy, and physically active athletes. However, vendors and staff were also regularly tested and part of 353 

the data set. Even though, the cohort may not be representative of the total population of infected 354 

individuals, no difference in viral load of different age or demographic groups has been reported [12]. 355 

Thus, the conclusions made in the presented analysis will not be affected by the bias in the cohort we 356 

used. Instead, our conclusions inform about the reliability of model parameter estimates in general and 357 

may be particularly beneficial for respiratory infections.  358 

Furthermore, future epidemics and pandemics are inevitable, and our results may be useful in terms of 359 

guiding data collection and in using that data to best estimate viral dynamic parameters such as the death 360 

rate of infected cells, which can inform us about viral pathogenesis. Moreover, we emphasize that only 361 

with the most informative data sets, i.e., frequent measurements throughout the course of infection, can 362 

we accurately infer the infection kinetics and the infectious period of an individual if a novel respiratory 363 

virus emerges in the future.  364 

 365 

In summary, the current study provides new insights into viral dynamic modeling in the absence of 366 

frequent viral load measurements. We evaluated the reliability of estimated model parameters and found 367 
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that cell infection and virus production rates are key parameters of the exponential viral growth phase. 368 

Furthermore, missing data before the viral load peaks leads to underestimates of the time to peak viral 369 

load and to unreliable estimated model parameters. However, fixing infection times from epidemiological 370 

studies, and model parameters of the exponential growth rate (𝛽𝛽 and 𝜋𝜋) represented a good alternative 371 

to estimating infection times and led to good model fits and model parameters estimates.  372 

 373 
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 507 

S1 Table: Sensitivity of the fit to the initial number of infected cells 𝑬𝑬(𝒕𝒕𝒊𝒊𝒊𝒊𝒊𝒊). Highlighted in orange is the 508 

best fit. [-LL = negative log likelihood, BICc = corrected Bayesian Information Criterion, TCLM = Target cell 509 

limited model, RCM = Refractory cell model] 510 

 511 

S2 Table: Individual parameters in the RCM and their estimated values.  512 

S3 Table: Estimated beta and pi parameter values from literature. TCLM = Target cell limited model, 513 

RCM = Refractory cell model 514 

 515 

S1 Fig: Best model fit with peak viral load at t = 0. The best model fit to viral load measurements of 25 516 

selected individuals with 𝑡𝑡 = 0 corresponds to the measured peak viral load. Filled circles are 517 

measurement points, and non-filled circles are censored and below the detection limit (dotted grey line).  518 

 519 

S2 Fig: RMSEs for RCM and data collected 3, 5, 7, dpi, or post-peak. RMSEs for RCM and the different 520 

data collection scenarios and A) infection times (𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖) are re-estimated or B) infection times (𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖) are 521 

known and set to zero. For each data set, all model parameters are re-estimated (NONE on x-axis), or 522 

model parameters were fixed to the values estimated from the full course of infection data set (see Table 523 

1). The dashed line represents the RMSE calculated from the best model fit using the full course of infection.   524 

 525 

S3 Fig: Estimated population parameters of the RCM and data collected 3, 5, 7, dpi, or post-peak. The 526 

dotted line represents the population parameter estimated from the full course of infection data 527 

set (Y axis are estimated population values). 528 

 529 

S1 Text: The target cell limited model. 530 
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