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ABSTRACT

Traditional antiviral therapies often have limited effectiveness due to toxicity and
development of drug resistance. Host-based antivirals, while an alternative, may lead to non-
specific effects. Recent evidence shows that virus-infected cells can be selectively eliminated
by targeting synthetic lethal (SL) partners of proteins disrupted by viral infection. Thus, we
hypothesized that genes depleted in CRISPR KO screens of virus-infected cells may be
enriched in SL partners of proteins altered by infection. To investigate this, we established a
computational pipeline predicting SL drug targets of viral infections. First, we identified
SARS-CoV-2-induced changes in gene products via a large compendium of omics data.
Second, we identified SL partners for each altered gene product. Last, we screened CRISPR
KO data for SL partners required for cell viability in infected cells. Despite differences in virus-
induced alterations detected by various omics data, they share many predicted SL targets,
with significant enrichment in CRISPR KO-depleted datasets. Comparing data from SARS-
CoV-2 and influenza infections, we found possible broad-spectrum, host-based antiviral SL
targets. This suggests that CRISPR KO data are replete with common antiviral targets due to
their SL relationship with virus-altered states and that such targets can be revealed from

analysis of omics datasets and SL predictions.
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INTRODUCTION

We recently proposed that synthetic lethality, a well-established concept in cancer therapy
(1-11), could mitigate multiple known shortcomings of current antiviral drugs such as the
paucity of options, restricted target spectrum due to the small genome size of viruses, the
often rapid development of drug resistance (12), marginal effectiveness due to dose-limiting
toxicity (13), and the necessity to redesign drugs as new viral strains emerge (14, 15). Of 92
approved antiviral drugs in 2018, two-thirds were aimed at HIV and HCV and almost 90%
were small molecule drugs (16, 17). A mere 10% were host-based therapeutics, half of which
were interferon-related biologics. Given the potential advantages of host-based drugs, there
is a pressing need for novel host protein targeting methodologies and associated target

prediction strategies (18, 19).

In the context of viral infections, synthetic lethality describes the vulnerability of virus-
induced cellular states to host-based drug intervention (20). As obligate intracellular
pathogens, viruses require the host cell machinery for every step of the viral life cycle
including attachment, penetration, uncoating, gene expression and replication, assembly,
and finally, virion release (21). During these processes, viruses effectively remodel host cells,
converting them into viral factories by leveraging numerous host cell functions, leading to
wide-ranging cellular changes (22). These changes are initiated by the direct interaction of
viral proteins with host proteins, usurping their functions which leads to a cascade of direct
and indirect effects, including altered protein complexes, changes in RNA and protein
abundances, protein mis-localization, as well as changes in post-translational modifications,
protein cleavage, splice patterns, and metabolomic and regulatory networks, to name a few.
This reliance of viruses on host processes shifts the host cell state and introduces specific

vulnerabilities to infected cells.

As an antiviral strategy, synthetic lethality capitalizes on these virus-induced vulnerabilities
and the dependency of cells on the integrity of genetic networks. Notably, while many genes
can be disrupted individually without undermining cell survival, specific pairs of gene
disruptions are lethal in combination (9, 23-26). When a virus compromises a host protein's
normal functionality, this host protein is designated a viral-induced hypomorph (VIH) (20).
Synthetic lethal partners of these VIHs can be strategically targeted to impede the viral
production machinery, cellular viability, or both, providing a means of selectively disrupting
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the viral lifecycle to contain viral dissemination and disease, while sparing uninfected cells
(20). Since the interruption of viral replication can be achieved by either, the impediment of
the viral factory or the death of the virally infected cell, we do not differentiate between

synthetic sick and synthetic lethal cellular states.

The feasibility of targeting synthetic lethal partners as a host-based antiviral strategy has
been substantiated by two independent studies. Pal, et al. demonstrated that by utilizing
existing transcriptomics and CRISPR data, valid synthetic lethal targets can be predicted in
the context of SARS-CoV-2 (27). In their study, the authors predicted potential VIHs from a
handful of transcriptomics datasets in SARS-CoV-2-infected cell lines and patient tissues. SL
partners of these VIHs were then identified from cancer SL pairs based on the ISLE algorithm
(28) and prioritized by CRISPR KO screens from SARS-CoV-2-infected cells. The authors
validated 24 predicted SL targets demonstrating reduced viral replication in infected cells
combined with a decrease in infected cell counts. Similarly, Navare, et al. illustrated that viral-
host protein-protein interactions can render host proteins hypomorphic and expose cells to
synthetic lethal vulnerabilities (29) Specifically, this study demonstrated that the Golgi-
specific brefeldin A-resistance guanine nucleotide exchange factor 1 (GBF1) (30) was
converted to a hypomorph by binding to poliovirus 3A protein and that depletion of ADP
Ribosylation Factor 1 (ARF1), an SL partner of GBF1, by CRISPR and shRNA led to cell death
specifically in 3A-expressing cells, thus reducing viral replication (29). Importantly, GBF1 is a
critical proviral factor and a common target of many viruses, suggesting that targeting SL

partners of GBF1 could have broad antiviral activity.

Taken together, this evidence suggests that protein-protein interactions and transcriptomic
alterations can generate VIHs, the synthetic lethal partners of which could be targeted to
inhibit typical viral infection. In this study, we aimed to determine whether various existing
omics types can accurately predict VIHs and, by extension, synthetic lethal targets. We also
posit that a certain subclass of genes, identified through genome-wide CRISPR KO studies,
might contain members that are synthetically lethal with VIHs and thus can be explored as
antiviral therapeutics. We expect to find such SL targets among genes depleted in CRIPSR KO
screens alongside antiviral genes, since depletion of both of these subclasses of genes

should lead to diminished cell viability or cell death.
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To explore this, we have engineered a computational pipeline to discern the omics datasets
best suited for predicting VIHs and the associated synthetic lethal targets. Our findings
indicate that multiple different omics data classes can be used to predict synthetic lethal
targets, many of which are incorporated in the pooled survival data of CRISPR KO screens.
Furthermore, we highlight that many candidate synthetic lethal targets of SARS-CoV-2
infection are also targets of influenza infection, suggesting that shared synthetic lethal

targets may be suitable for host-based therapeutics against multiple viruses.

MATERIAL AND METHODS
Data set selection

We utilized 54 published gene sets from 22 studies, encompassing ten different omics data
classes (see Table 1 and references under ‘Identification of viral-induced hypomorphs (VIHs)),
along with 11 SARS-CoV-2 and three influenza genome-wide CRISPR-Cas9 knock-out
screens for this study (see Table 3 and references under ‘Compilation of publicly available
CRISPR KO screen data’). We specifically focused on genome-wide screens conducted in cell

lines or tissues infected with SARS-CoV-2 or influenza viruses.
Identification of viral-induced hypomorphs (VIHs)

We defined VIHs as gene products that exhibited significant alterations in any of the aspects
corresponding to the ten omics data classes when comparing virus-infected cells to non-
infected cells. Omics data classes included bulk or single-cell RNA sequencing
(transcriptomes) (31-35) specialized mass-spectrometry (proteomes, RNA-binding proteome,
phosphoproteomes, ubiquitomes, cleavage) (32, 36-41) as well as combinations of affinity
purification (AP-MS)(32, 42-45) or proximity-dependent labeling (BiolD-MS) (45-50)with
mass-spectrometry (Table 1). We also considered alterations in translation rates
(translatome) (40) as well as changes in the host RNA-binding proteome and the host
interactome with viral RNAs (51-53). All selected datasets were derived from genome-wide
studies in cells infected with live SARS-CoV-2 virus, SARS-CoV-2 pseudovirus, or transduced

with individual SARS-CoV-2 virus proteins or RNAs for interactome studies.
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When applicable, we categorized VIHs as "up" or "down" based on abundance changes and
conducted separate analyses for these subsets in addition to analyzing the complete list of
all VIHs. For example, we performed separate directional analyses on transcriptome,
proteome, RNA-binding proteome, and translatome data classes for both up- and down-
regulated gene products. Whenever available, we adopted the statistical cutoff criteria used
in the associated publication of the respective dataset or reported FDR-adjusted P-values <
0.05 as significantly altered by infection. Lists of significant interactors for virus-host protein-
protein interactions (PPI) and virus-host RNA-protein interactions (RPI) were obtained from
the relevant publications. Using these criteria, we identified VIHs for each data class and then
determined the union of VIHs across all datasets within each of the ten omics data classes.
This union, in addition to directional subsets, were subsequently utilized in our

computational pipeline for predicting synthetic lethality targets.
Prediction of candidate SL targets

We defined candidate SL targets as the SL partners of VIHs listed in SynLethDB 2.0 (54). Thus,
we identified all VIHs that also appeared in an SL pair in SynLethDB and consolidated the
union of all SL genes associated with those VIHs. This process was performed separately for
each list of VIHs compiled from different omics data classes. The resulting list of SL targets
was then employed in downstream analyses to evaluate prediction accuracy against depleted
products in CRISPR KO studies and to assess prediction agreement among different data

classes.
Compilation of publicly available CRISPR KO screen data

We gathered publicly available data from genome-wide CRISPR KO screens conducted in
cells infected with either SARS-CoV-2 (55-65) or influenza virus (66—68) and identified
significantly depleted genes. Genes were considered significantly depleted if they exhibited
FDR-corrected P-values < 0.05 along with negative log fold-changes or z-scores < -1.96.
The aggregated set of CRISPR-depleted genes from all the studies was then used as the
surrogate gold standard set of SL targets when evaluating the predictive performance of

each omics data class in our study.

Enrichment analysis of predicted SL genes in CRISPR depleted genes
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We used hypergeometric tests to quantify the enrichment of predicted SL targets among
depleted genes in CRISPR KO studies. The union of all genes tested across CRISPR KO
studies was considered the background population. We considered FDR-adjusted P-values <

0.05, computed using the Benjamini-Hochberg method (69), as indicative of significance.
Sensitivity, specificity, and precision metrics

To compute sensitivity, specificity, and precision statistics, we designated genes depleted in
CRISPR KO screens as positive cases. Negative cases consisted of products evaluated using
CRISPR KO screens but were not depleted. Thus, the complete set of genes evaluated by
CRISPR KO served as the ground truth against which we assessed SL target predictions.
Predicted SL targets generated by our pipeline were considered positive tests, while negative
tests consisted of genes not predicted to be SL targets. Therefore, a predicted SL target that
was also depleted in CRISPR KO data was considered a true positive. A true negative referred

to a gene product not predicted to be an SL target and not depleted in CRISPR KO data.
Datasets used for characterizing broadly antiviral candidate SL targets

We employed several datasets to further characterize 71 candidate SL target genes that may
be broadly antiviral for SARS-CoV-2, influnza A and possibly other viruses. Gene paralogs
were obtained from Ensembl using the biomaRt package (70) (version 2.50.3). Extremely
multi-functional genes (or hubs) were downloaded from MoonDB 2.0 (71). Essential genes
for ten different cell lines were downloaded from supplemental tables in Bertomeu et al. (72).
Drugs targeting predicted broadly antiviral SL targets were downloaded from DrugBank

(September 22M, 2022) (73).
Analysis software

All analyses were performed using R (version 4.1.1). Heatmap analyses utilized the pheatmap
package (version 1.0.12) with hierarchical clustering based on Euclidean distances.
GO:biological process and Reactome enrichment tests were conducted using the
clusterProfiler (version 4.2.2) (74) and ReactomePA (75) (version 1.38.0) packages,
respectively. For all datasets analyzed in our study, gene and gene product identifiers were

aligned with a reference list of gene symbols using the org.Hs.eg.db R package (76).
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RESULTS
Synthetic lethal target prediction pipeline

Numerous mechanisms exist by which viruses may induce hypomorphic states within host
cells that may introduce synthetic lethal (SL) relationships. These include modifications to
virus-host protein-protein interactions (PPIs), transcription, protein abundance, post-
translational modifications (PTMs), protein repositioning, and proteolytic cleavage, among
others (21, 22). Consequently, a myriad of omics-level data acquisition techniques could
potentially facilitate the identification of virus-induced hypomorphs (VIHs) and subsequently
their SL partners, which could serve as host-based therapeutic targets. To examine this, we
developed a computational pipeline to integrate data from various omics data sources,
identify potential VIHs, and predict their prospective SL partners as antivirals (Figure 1B).
Here, we define VIHs as gene products with impaired function, irrespective of whether the
identified molecular species rise or fall in abundance following viral infection, as protein or

pathway functionality may be compromised in either scenario.

For each omics data category, we selected individual datasets from as many applicable
studies as were available in the literature which led to the inclusion of one to 14 datasets per
omics data class (Table 1). We aimed to encompass a large variety of infection conditions
(varying cell lines, virus strains, infection multiplicity, and timeline) cited in the literature and
thus adopted an aggregate approach incorporating all available datasets within each data
class. Following this, we applied a filtering methodology to identify the candidate SL genes

with the highest likelihood of successful experimental validation (Figure 1).

Initial identification of putative VIHs was achieved by finding molecular species (transcripts,
protein abundance, or PTMs) that exhibited significant alterations following SARS-CoV-2
infection. Subsequently, the SL partners of these VIHs were identified within the SynLethDB
resource (54), a public repository of SL pairings developed for cancer research. Since
genome-wide CRIPSR KO screens in the setting of viral infection should contain SL genes
due to reduced viability of cells with SL gene knockouts, we used depleted CRISPR KO gene
pools to quantify the power of each omics data class for predicting SL targets. These
measures included enrichment of candidate SL targets as well as specificity, sensitivity, and

precision statistics. Finally, we used the same depleted CRISPR KO gene pool as a filter to
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further prioritize candidate SL targets. This step also filtered out the genes in the CRIPSR KO-
depleted gene set that might not be in SL relationships such as antiviral genes and genes

that are essential for cell growth and survival.

The remaining proteins represent candidate SL targets that have led to decreased cell
viability when knocked-out during viral infection compared to infection alone in CRISPR-

based KO screens in at least one published viral infection scenario.

Data selection

We curated datasets from published research focusing on SARS-CoV-2 and influenza viruses
due to their ongoing global health and pandemic implications. Given the intensive research
on these viruses and their relatives, a considerable number of datasets describing various
aspects of gene functionality for orthomyxo- and coronaviruses are available, which is ideal
for an exhaustive exploration of the most accurate predictors for virus-specific SL targets
from a practical perspective. In total, we compiled 56 omics datasets from 22 distinct studies
on SARS-CoV-2 infection, which analyzed a wide spectrum of cellular changes (Table 1). The
datasets depict host interactors of viral proteins and RNA (32, 42, 44-53, 77) infection-
induced alterations in host gene expression (31-33, 35, 78) and protein abundance (32, 36—
38, 40), changes in translation rates (40), as well as alterations in post-translational
modifications (32, 39), cleavage (41), and the RNA-binding proteome (RBP) (51), comprising
ten VIH data classes in total. Host interactors of viral proteins were further split based on
technology: affinity purification (AP) or a proximity-based approach with tagged target
proteins (BiolD), both combined with mass spectrometry (MS) (Table 1). Both techniques
used individual viral open reading frames (ORFs) as bait to identify interacting host proteins.
However, published BiolD-MS data were derived from cells both with and without viral
infection. AP-MS was predominantly employed to capture virus-host multi-protein
complexes (79), whereas BiolD-MS (80) serves as a complementary method to examine
transient interactions based on physical proximity, a frequent occurrence throughout the

viral infection cycle (81).

Synthetic lethal target prediction

Identification of VIHs and their SL partners from omics data stemming from virus-infected

cells. Our pipeline's initial step (Figure 1B) involved the identification of potential VIHs by
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selecting gene products significantly impacted by viral infection, as evident from the ten
omics data classes outlined in Table 1. For VIH identification, we relied on the significance
criteria stipulated in each dataset's corresponding publication. We sub-categorized VIHs
based on the increase or decrease in molecular species abundance post-infection for
transcriptomics, proteomics, RNA-binding proteomics, and translatomics data. For
phosphoproteome, ubiquitome, and protein cleavage data, we ascertained the total absolute

change for each protein based on the aggregate changes reported for all pertinent peptides.

Following VIH identification from each data class, we narrowed down the VIHs to those also
present in the commonly utilized SynLethDB version 2.0, and then identified the SL partners
of putative VIHs (Figure 1B, Table 2). SynLethDB (54) comprises a collection of SL pairs
procured from diverse sources, including confirmed SL pairs from the literature based on
genome-wide siRNA, CRISPR KO screens, or bi-specific SL shRNA screens, in addition to
predictions from computational algorithms, text mining, and SL pairs from other similar
databases. The SynLethDB version utilized in this study contains 35,943 human SL pairs,
encompassing 9,855 unique SL genes. On average, each gene is in a SL relationship with

three other genes.

Overall, across all data classes, we identified a total of 15,183 unique VIHs and a total of
9,643 unique SL partners for those VIHs (Table 2). The number of unique VIHs and SL partner
targets identified using each data class differed substantially (Table 2, Figure 2). The
maximum numbers of VIHs and SL partners were derived from transcriptomic, PPI, and
proteomic studies, while the minimum were derived from translatome and cleavage studies.
We found significant correlations between the number of datasets in a class and the total
number of predicted VIHs (Pearson coefficient = 0.80, P-value = 0.006) as well as their
predicted SL partners (Pearson coefficient = 0.83, P-value = 0.003). This provides evidence, as
anticipated, of the poor overlap between individual datasets within each data class, resulting
from the broad spectrum of different infection scenarios we included. The higher numbers of
predicted VIHs stem from the fact that each additional dataset adds new and different
altered genes to the overall VIH gene pool when datasets don't agree very well. We chose
this strategy because it provided us with a suitably comprehensive list of candidate SL
targets from a larger variation of potentially relevant infection scenarios for further

evaluation.
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VIHs and SL targets inferred by transcriptomics encompass nearly all genes predicted across
omics data classes. To ensure our synthetic lethality prediction pipeline did not overlook
valid SL targets, we examined whether consolidating predictions from multiple omics data
classes would identify more valid targets compared to employing any single data class. In
other words, we explored whether the combined usage of multiple omics data classes would
result in a more sensitive prediction of valid SL targets, given that different classes probe
different facets of infection and might yield non-overlapping predictions. However, our
findings showed that 95% of all the VIHs predicted across data classes were included in the
predictions derived from transcriptome data, and 98% of all the SL targets predicted across
classes were covered (Figure 2). Therefore, within the scope of the data classes we explored,
transcriptome data provides a near-maximal level of sensitivity in predicting SL targets. The
downside is that the transcriptome data class, as elaborated below, demonstrated the lowest
statistical precision, i.e., the highest proportion of false-positive predictions, among the data

classes (Table 4).

We anticipated that the directional changes documented in omics datasets (e.g., upregulated
versus downregulated transcription) would identify mutually exclusive VIHs. While this was
predominantly the case, a considerable number of gene products were predicted to both
increase and decrease in abundance. This can be attributed to the fact that a gene product
might be overexpressed in one dataset but downregulated in another within the same data
class depending, for example, on the viral effect on a particular cell line used in a specific

experiment.

Convergence of different omics data classes on predicted SL targets despite low agreement for
VIHs. Different omics data classes under investigation represent unique perspectives of a
virus's impact on cellular processes, with an uncertainty surrounding the level of agreement
across molecular species impacted by varied mechanisms in response to viral infection. Our
study examined the overlap of predicted VIHs and synthetic lethality targets across these
different omics data classes. By iteratively pairing each data class with others, we calculated
the Jaccard index for predicted VIHs. Although the alignment between data classes for
predicted VIHs was typically low, a significantly higher degree of congruence was observed
for predicted SL targets derived from VIHs (Figure 3). This indicates that despite disparate

VIH predictions, subsets of data classes still converged on common sets of SL targets. Our
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analysis revealed two primary clusters of data classes showing high agreement in SL
predictions, with the first encompassing ubiquitinome, phosphoproteome, transcriptome,
proteome, and virus-host protein-protein interaction (PPI) classes, while the second included
the translatome, cleavage, virus-host RNA-protein interaction (RPI) and RNA binding protein
(RBP) classes. Within this second cluster, a high similarity was observed between virus-host
RPI and RBP classes, both based on RNA binding. Not surprisingly, the closest agreement for

SL partners existed between virus-host PPIs derived from AP and BiolD in the first cluster.

Performance of Omics Data Classes in Predicting Valid Synthetic Lethal Targets

A central aim of our study was to evaluate the predictive accuracy of each data class in
identifying legitimate, experimentally verified SL targets. Unfortunately, a universally accepted
gold standard for validating SL targets is currently unavailable. To create a representative pool
of SL targets, that could serve as a surrogate gold standard bolstered by adequate
experimental evidence, we aggregated depleted genes from multiple, diverse CRISPR
knockout (KO) screens. However, we note the unknown percentage of false negatives such as
antiviral and potentially some essential genes associated with these data. Moreover, there were
no genes that exhibited universal depletion across all CRISPR KO datasets, potentially due to
variable cell type selection among other experimental variables. As with our omics datasets,
we opted to pool depleted genes from multiple disparate CRISPR screens to ensure
representation of diverse SARS-CoV-2 infection scenarios. With these caveats, we used the list
to assess the performance of each data class for predicting SL targets in SARS-CoV-2 infection.
Performance measures included hypergeometric enrichment tests as well as sensitivity,

specificity, and precision metrics.

Our analysis confirmed enrichment of SL targets among genes depleted in CRISPR KO
studies, regardless of the employed omics data class (Table 4). This validates prior research,
demonstrating that genes depleted in CRISPR KO studies indeed encompass authentic SL
targets which, upon disruption, selectively diminish the viability of infected cells (27). We
observed that SL targets predicted using BiolD-MS virus-host PPl data showed the highest
enrichment in CRISPR KO-depleted genes. When directional changes were considered,
enrichment scores among SL targets derived from sets of gene products that were decreased

in abundance outperformed those with increased levels. However, both RNA and protein
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abundance changes in either direction resulted in highly significant CRISPR KO-depletion
enrichment, suggesting that either could create VIHs in an infected cell, thereby sensitizing

the cell to SL disruption.

Sensitivity and specificity scores spanned a broad range across data classes, with the highest
sensitivity observed in the transcriptome, virus-host PPl and proteome classes and the
highest specificity within the translatome, RNA-binding proteome and cleavage data classes
(Table 4, Supplementary Figure S1). However, the statistical precision of all data classes for
the prediction of SL targets was less than or equal to 0.20 (Table 4), indicating that only a
proportion of predicted SL partner targets were valid. We hypothesized that limiting
predicted SL targets to those identified across multiple data classes might improve the
statistical precision of our predictions without compromising sensitivity. However, we found
that the maximum precision achievable with this approach was 0.22 and required SL targets
to be predicted in 90% of data classes, at the cost of reducing prediction sensitivity to 0.05.
Overall, this implies that predicting SL targets from any omics data class investigated here
requires further filtering of candidate SL targets through data from studies validating the
impact of target disruption on cell viability (such as CRISPR KO and/or siRNA data), as a

critical step of our pipeline.

We also probed whether the number of data sets compiled for each omics data class
correlated with the different metrics collected using the ‘gold standard’ CRISPR-depleted
gene set. Although this correlation was not significant for hypergeometric enrichment scores
(Pearson coefficient = 0.55, P-value=0.10), it significantly correlated with sensitivity (Pearson
coefficient = 0.79, P-value = 0.007), specificity (Pearson coefficient = -0.83, P-value = 0.003),

and precision (Pearson coefficient = -0.67, P-value = 0.03).

Upon examining the pattern of positive predictions for SL candidate genes that were also
CRISPR KO-depleted SL targets, we identified two distinct data class clusters (Figure 4). These
clusters largely reflected the groupings observed in our Jaccard index analysis (Figure 3),
further illustrating a convergence in predicted SL targets. The two primary clusters share
overlapping SL targets but differ in the number of SL targets predicted. Overall, the cluster
consisting of transcriptome, virus-host PPI, phosphoproteome, proteome, and ubiquitinome

classes predicted a greater number of valid SL targets than the second cluster consisting of
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virus-host RPI, RBP, cleavage, and translatome data classes. While this second cluster
identified a smaller number of candidate SL targets (lower sensitivity), its members predict a

higher proportion of true positives (higher precision) (Table 4).

Our results highlight a substantial proportion of CRISPR-depleted genes that were not
predicted to be SL partners by any omics data class (28%; N=294; Tables 2 and 4, Figure 4),
primarily due to their absence in SynLethDB. These genes might hold undiscovered SL
relationships with VIHs in the context of SARS-CoV-2 infection or might represent antiviral
genes whose disruption enhances viral propagation. The remaining 738 genes are higher-
confidence SL targets in the context of viral infection, substantiated by three lines of
evidence forming part of our pipeline: 1) experimental evidence of depletion in a CRISPR
screen of virus-infected cells, indicating that their disruption adversely affects cell survival
specifically in virus-infected cells; 2) evidence of being in a negative genetic relationship with
a gene shown to undergo significant alteration due to viral infection; and 3) evidence of

being part of a SL pair in the alternate context of altered cellular states due to cancer.
Functional profiling of high-confidence SL targets

We performed GO:biological process and Reactome enrichment analyses to identify the
cellular pathways and functions associated with the 738 high-confidence SL targets
mentioned above. There were 264 GO:biological process classes enriching for the SL targets,
and they were primarily associated with the cell cycle, nucleic acid processing (including RNA
splicing/processing and many rRNA-related processes), metabolism, chromosome
organization, intracellular localization/transport as well as organelle biogenesis
(Supplementary Table S1). Reactome pathways showing enrichment (N=209) were primarily
associated with mitotic processes, DNA repair, RNA splicing/processing, translation,
infectious disease processes, RNA polymerase Il transcription, signal transduction,
autophagy, transport mechanisms, organelle biogenesis, metabolism, and stress responses

(Supplementary Table S2).

Overall, these findings align well with those of Pal et al. in associating cellular stress
responses, RNA splicing/processing, DNA repair, and translation with SL targets (27).
However, because our results are based on larger and more diverse datasets, they revealed a

broader array of biological functions associated with SL targets in the context of SARS-CoV-2
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infection and, importantly, included multiple GO terms and pathways corresponding to viral

infection themes that included the entire viral life cycle.

Identification of common SL targets for SARS-CoV-2 and Influenza viruses

If pan-viral SL targets exist, we would expect that some of the synthetic lethal targets we
predicted using SARS-CoV-2 omics data, would also be present in CRISPR-depleted genes
derived from cells infected with other viruses. We chose influenza viruses because they are
another global viral threat and also quite different from coronaviruses. For example,
coronaviruses have a continuous dsRNA genome, bind to ACE2 for cell entry and conduct
replication and transcription in the cytoplasm (82). Influenza viruses use
sialyloligosaccharides as their main entry receptors, have a unique segmented genome, and
replicate in the host cell nucleus (83). Hence, we assembled a pool of 1,693 unique genes
that were significantly depleted in three influenza CRISPR KO studies and determined
whether our SARS-CoV-2 SL targets were significantly enriched among these genes (Table 5).
We found that, although enrichment scores were substantially lower than for SARS-CoV-2
CRISPR-depleted genes, half the data classes showed significant scores (transcriptome, virus-
host PPI, proteome and phospho-proteome). Similar to SARS-CoV-2 predictions, precision
based on influenza CRISPR KO depleted genes was uniformly low. Sensitivity and specificity
values indicated that predictions were not substantially more accurate than would be

expected by chance.

However, fifty-three percent of the influenza CRISPR KO-depleted genes were predicted as
SL targets by one or more data classes utilizing the SARS-CoV-2 omics data-based
predictions (Figure 5). Given this substantial overlap as well as the significant enrichment of
candidate SARS-CoV-2 SL targets for half the omics data classes in influenza CRISPR KO data,
we reasoned that there may be a group of SL targets common to both viral infections. We
therefore examined the overlap between the significantly depleted genes in both the SARS-
CoV-2 and influenza CRISPR KO data and found 99 shared genes of which 71 (72%) were
predicted to be SL targets. These 71 genes may therefore represent broad viral SL targets.
GO:biological process terms enriched for these 71 genes included ribosomal biogenesis,
ncRNA processing (including rRNA), translation, regulation of sister chromatid cohesion, and
DNA replication (Supplementary Table S3). Enriched Reactome pathways largely fell within

the same categories but also included influenza/HIV infection, starvation responses, amino
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acid/protein metabolism, DNA synthesis/repair, nonsense-mediated decay, transcription,
mMRNA splicing/processing, and TP53-mediated transcriptional regulation. (Supplementary

Table S4).

Three of the broadly antiviral candidates were also predicted by Pal, et al. as SL targets for
SARS-CoV-2 including RPP25 (Ribonuclease P And MRP Subunit P25), a protein involved in
tRNA and rRNA processing as well as mRNA metabolism, PCBp1 (Poly(RC) Binding Protein 1),
which controls certain steps of pre-mRNA processing, translation, and ferroptosis as well as
the initiation of viral replication and viral translation, and MTBP (MDM2 Binding Protein) a
protein involved in the initiation of DNA replication, mitotic progression and chromosome
segregation, as well as in cell migration and the suppression of invasive behavior due to its

interaction with MDM2.

The 71 broadly antiviral candidate SL targets need to be further scrutinized and prioritized
before undergoing experimental testing. For example, researchers may wish to deprioritize
targets that have high functional interconnectivity risking off-target consequences, such as
those referenced in the MoonDB database (71). Other candidate targets that might better be
avoided are genes that have documented essentiality in a specific cell line of interest or in
multiple cell lines, because their disruption would be expected to kill both infected and
uninfected cells (72). Candidate SL genes with numerous paralogs may also warrant careful
consideration; if paralogs provide too much functional redundancy, they might prevent
efficient synthetic lethality-based killing. However, pairs of genes that are paralogs of each
other have been demonstrated to be in SL relationships more frequently than by chance (84).
VIH-SL pairs may be prioritized based on any or all these criteria and final candidate SL
genes may be chosen for experimental testing based on druggability and availability of

drugs or ligands (Table 6).

DISCUSSION

This study is part of an on-going effort to examine the concept of synthetic lethality as a
means to discover novel host-based antiviral therapeutics. A critical step in this effort is the
establishment of a computational pipeline for predicting SL targets. Since synthetic lethality

is a type of genetic interaction relatively unexplored in infectious diseases, such a pipeline,
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once fully established, would expand the number of antiviral drug targets as well as add to
the knowledge base of pathogen biology. Our goal is that our pipeline will ultimately
generate a plethora of SL targets to be examined, prioritized, and experimentally validated.

This study addresses several critical research issues that arose during the process.

Our pipeline generated a list of potential SL targets that are enriched with genes depleted in
CRISPR KO studies specific to SARS-CoV-2 infection. These targets were predicted by reusing
an array of available omics datasets, which were specific for virus-infected cells, in
combination with a synthetic lethality database. One assumption we made was that the SL
partners of genes undergoing significant changes in virus-infected cells would be depleted in
CRISPR KO screens, thus potentially serving as SL targets. Our results supported this
assumption. An approach that would further aid in the prediction of SL targets from CRISPR
KO screens is the addition of viral replication measurements in addition to cell viability, a

practice not typically adopted for genome-wide functional screens.

We also investigated whether different classes of omics data would differ in their ability to
accurately predict SL targets by measuring whether SL prediction by some data classes was
better supported by CRISPR KO screens than others. Exploring various omics classes, each
interrogating different facets of host-virus biology, we observed that despite varying VIH
predictions, there was substantial overlap in the SL vulnerabilites predicted from different
omics classes. This also indicates that a common set of biological pathways and functions
may be altered upon SARS-CoV-2 infection. Our findings demonstrate that valid SL targets
can indeed be derived from different omics data types. Furthermore, we speculate that omics
datasets describing other ways in which viral infection alters normal gene and protein
functions, such as changes in RNA splicing or additional post-translational modifications,

might also be beneficial for SL prediction, but they are currently fewer in number.

Analyzing the high-confidence SL targets predicted by different omics classes, we identified
two primary clusters. The larger cluster included classes associated with transcription and
translation, post-translational modifications, and host-viral protein interactions. The second
cluster included classes associated with translation rate, cleavage, and RNA-binding
behavior. We found that each data class varied in sensitivity and specificity in predicting SL

targets based on functional assays such as CRIPSR KO screens (Figure S1), indicating that
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some omics data classes might be more suitable than others for accurate SL prediction. The
fact that overall statistical precision was low across all data classes (Table 4), also emphasizes
the need to reduce false positives. One way to do so is to limit predicted SL targets to those

found depleted in CRISPR KO studies.

Recent findings by Pal et al. (27) confirmed that transcriptomic data alone could be used to
predict SL target genes leading to reduced viral replication and cell death in SARS-CoV-2-
infected cells when depleted. However, the authors reported a relatively modest difference in
cell viability between infected and uninfected cells for at least half of their 26 top candidates.
We noted substantial overlap in enriched cellular pathways and functions between our study
and theirs, but also identified additional pathways that may become vulnerable in the virus-
infected cellular state, such as metabolic and transport processes, autophagy, biogenesis and
maintainance of organelles, and polymerase Il mediated transcription, that may contain
significant SL targets. Furthermore, our 738 high-confidence SL targets were enriched for
multiple Reactome and GO terms associated with viral infection, confirming the relevance of
the targets within the infection context. Our data suggest that inclusion of many diverse
omics datasets as well as multiple CRISPR studies generates a large pool of SL candidate

genes for further prioritization and validation.

Broadening our investigation, we identified SL targets that may be pan-viral. Even with their
distinct life cycles and biology, both coronaviruses and influenza viruses shared common
host SL targets. While only eleven of our 71 targets were enriched in virus-associated
pathways, our data suggest that the number of pan-viral targets based on synthetic lethality
might be substantially larger. One known example is 60S ribosomal protein L28 (RPL28)
which plays a role in negatively regulating an influenza A virus encoded peptide for antigen
presentation, thus potentially modulating immunosurveillance (85). Another candidate SL
target, charged multivesicular body protein 2A (CHMP2A), is a member of the endosomal
sorting complex required for transport (ESCRT)-IIl machinery (86) and interacts with SARS-
CoV-2 Orf9b. Furthermore, CHMP2A has been shown to contribute to the budding of a
variety of viruses, including HIV (87) , equine infectious anemia virus (EIAV) 401, and murine
leukemia virus (88) , suggesting a critical role for virus release and thus a potential role as

pan-viral SL target.
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Thus, our discovery significantly widens the future exploration scope for therapeutic
strategies against multiple viruses, using combined drug regimens that could target two or

more host genes at otherwise subtherapeutic levels, potentially minimizing off-target effects.

It is important to note that our methodology, while promising, is not without limitations. We
recognize that no single dataset or database can predict or validate virus-specific SL targets
with absolute accuracy. For example, CRISPR KO depleted genes are not a true “gold
standard” for SL prediction, but they currently provide the best available type of data suitable
for assessing performance in support of a gene’s SL candidacy. Additionally, the SynLethDB
database used here contains synthetic lethal gene pairs derived primarily from cancer cell
lines and tumors (54). Thus, while it includes many SL interactions that are relevant in both
cancer and viral infection states, it will contain some SL targets that are irrelevant in the
virus-infected cellular state. It also may lack some targets that are important in viral
infections. Yet, when available data are combined in the manner demonstrated in our study,
they can predict a significant number of candidate SL genes that can be further constrained

and validated in laboratory settings using virus-infected cell lines and animal models.

For example, to prioritize targets, fold-change values in omics (27)and CRISPR data sets
could be used to rank virus-impacted host proteins (VIHs) and functional depletion,
respectively. The “SL statistics” score provided by SynLethDB and the number of VIH partners
paired with a predicted SL target (27) could provide additional measures. Arguments that
have been shown to enrich for SL interactions in a more generic manner include pairing
paralogs (84) as well as co-regulated or mutually exclusive gene pairs (89, 90), in addition to
pairing genes that exhibit certain network topology features (91). Some of these data-driven
algorithms are part of SL-Cloud (90), a new platform that was developed for the cancer field
but is essentially agnostic and can be utilized for infectious disease research. Any of the
above metrics alone or in combination could be integrated into our pipeline upon laboratory
confirmation of their usefulness in the viral infection context, enhancing precision and virus-

specificity.

To summarize, our research has demonstrated that virus-specific SL targets can be predicted
from various omics data classes, with varying levels of predictive power. Furthermore, these

SL genes are highly enriched in depleted CRISPR KO data from virus-infected cells. Thus, our
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pipeline allows for a new application of many already existing high-throughput infectious
disease datasets which are often under-utilized. In human cells, each VIH was seen to form
SL interactions with an average of three genes ; in yeast, every gene is in at least one
synthetic lethal relationship across different growth conditions (10, 92). Hence, it was not
surprising that our study found many candidate SL targets for the two viruses investigated,
all having the potential to specifically kill virus-infected cells. These candidate SL targets add
substantially to the number of potential host-based antiviral targets previously described in
the literature. With further validation, our presented strategy for identifying SL targets has
the potential to identify additional SL targets for other viruses and cell-dependent
pathogens, leading to new specific and broadly-targeting host-based therapies against

infectious diseases.
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TABLE AND FIGURE LEGENDS

Table 1. Omics data classes and datasets used to identify candidate synthetic lethal targets

based on viral-induced hypomorphs. Table includes experimental methods and tissue/cell

type used as well as the multiplicity of infection (MOI) and hours post infection (HPI).

Table 2. Number of viral-induced hypomorphs (VIHs) identified among omics data classes,

VIHs in SynLethDB, and synthetic lethal (SL) partners. Data classes are ordered by the

number of unique SL partners they predicted.

Table 3. CRISPR KO datasets used for validating predicted synthetic lethal targets.
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Table 4. Metrics of performance among omics data classes for predicting valid synthetic
lethal targets against SARS-CoV-2 infection. The total number of CRISPR-depleted non-

redundant candidate SL targets is 738.

Table 5. Metrics of performance for predicting valid synthetic lethal targets against influenza
infection using omics data from SARS-CoV-2 infections. The total number of non-redundant

CRISPR-depleted candidate SL targets is 892.

Table 6. Characteristics of candidate pan-viral synthetic lethal targets potentially useful for

prioritizing their confirmation.

Figure 1. Strategy for identifying antiviral synthetic lethal targets. A) Synthetic lethality in
virus-infected cells: In uninfected cells, disrupting one member of an SL pair (A-B) does not
impact viability. In infected cells, where one of the SL partners is hypomorphic, disrupting its
SL partner can compromise cells, or cause cell death. That is, protein B suppresses the
negative consequences of A becoming a viral-induced hypomorph when cells are infected.
Conversely, protein A suppresses the negative consequences of drugging B in uninfected
cells. However, the combination of a viral-induced hypomorph and targeting its SL partner
with a drug has no recourse from these negative consequences and results in lethality. B)
Workflow used for validating predicted SL targets from various omics data classes. SL:

synthetic lethal; VIH: viral-induced hypomorph.

Figure 2. Percentage of predicted viral-induced hypomorphs and synthetic lethal targets for
individual omics data classes. For each class, bar width indicates the percentage of VIHs
(blue) and SL targets (yellow) predicted out of the combined set of all predictions across data
classes. For directional omics data, results are shown for gene products that increased (“up”)
or decreased (“down”) in abundance. The numbers at the ends of the bars indicate absolute

number of VIHs and SL targets identified.

Figure 3. Heatmaps showing pairwise overlap of predicted viral-induced hypomorphs and SL
partners across omics data classes. For each data class pairing, the degree of overlap of

predicted hypomorphs (left) and synthetic lethal partners (right) was quantified using the
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Jaccard index with darker purple indicating more significant overlap. The dendrograms on

both axes indicate similar groupings of overlapping genes between omics data classes.

Figure 4. Candidate synthetic lethal targets across omics data classes depleted in SARS-CoV-
2 CRISRP KO studies. Binary heatmap showing which of the 1,032 genes in the SARS-CoV-2
CRISPR-depleted gene pool (rows) were predicted to be SL targets for each omics data class.
Predicted targets are indicated in blue (refer to Supplementary Tables S6 and S7 for gene
names). Grey cells indicateCRISPR-depleted gene products not predicted to be an SL target.

Rows are sorted by number of omics data classes predicting the product as an SL target.

Figure 5. Candidate synthetic lethal targets across omics data classes depleted in Influenza A
CRISRP KO studies. Binary heatmap showing which of the 1,693 genes in the influenza

CRISPR-depleted gene pool (rows) were predicted to be SL targets for each omics data class.
As in Figure 4, predicted targets are indicated in blue (refer to Supplementary Tables S8 and
S9 for gene names). Grey cells indicate CRISPR-depleted products not predicted to be an SL

target. Rows are sorted by number of data classes predicting the product as an SL target.
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Table 1

Data class Study Cell line Tissue/cell type MOI HPI Significance

Transcriptome — RNA-seq

(5 studies/14 datasets) Blanco-Melo, et al. Calu-3 bronchial epithelial 2 24 |log2FC| > 1 & F
Blanco-Melo, et al. A549 alveolar basal epithelial 2 24 |log2FC| > 1 & F
Blanco-Melo, et al. AB49ACE2 alveolar basal epithelial 0.2 24 |log2FC| > 1 & F
Blanco-Melo, et al. AB49ACE2 alveolar basal epithelial 2 24 |log2FC|>1 & F
Blanco-Melo, et al. NHBE - primary cells bronchial epithelial 2 24 |log2FC| > 1 &F
Blanco-Melo, et al. clinical - lung tissue alveolar & bronchial epithelial NA NA |log2FC|> 1 &F
Stukalov, et al. AB49ACE2 alveolar basal epithelial 2 6,12,24 |log2FC| > 1 &F
Huang, et al. NHBE - primary cells lung epithelial 5 24,96 |log2FC| > 1 & Fi
Lieberman, et al. clinical - nasal swabs nasal epithelial & immune cells low/high NA |log2FC| > 1 &F
Xiong, et al. clinical - BALF alveolar macrophages (mostly) NA NA |log2FC| > 1 & F

Proteome — Mass-spectrometry

(5 studies/12 datasets) Appleberg, et al. Huh7 liver epithelial-like 1 48, 72vs48! |log2FC|>0 & F
Akgun, et al. clinical - nasal swabs nasal epithelial & immune cells NA NA |log2FC| > 0 & F
Bojkova, et al. Caco2 colon epithelial 0.01 2,6,10,24 |log2FC|>0&F
Stukalov, et al. (glob&indiv) AB49ACE2 alveolar basal epithelial 2 6,12, 24 |log2FC| >0 & F
Weingarten-Gabbay. et al A549ACE2TMPRSS2 alveolar basal epithelial 3 24 |log2FC| >0 & F

9 Y. elal HEK293TACEZTMPRSS2  empbryonic kidney epithelial 3 24 llog2FC| > 0 & F

RBP remodeling (RNA binding proteome) - cRIC

(1 study/2 datasets) Kamel, et al. Calu3 bronchial epithelial 1 8,24 log2FC| > 0 & FI

Translatome - Mass-spectrometry

(1 study/4 datasets) Bojkova, et al. Caco2Spec bronchial epithelial 0.01 2,6,10,24 log2FC|>0 & F[i

Phospho-proteome - Mass-spectrometry (MDLC-MS/MS)

(2 studies/ 4 datasets) Klann, et al. Caco2 colon epithelial 1 24 |log2FC| > 1 & F
Stukalov, et al. AB49ACE2 alveolar basal epithelial 2 6,12,24 |log2FC| > 1 & F

Ubiquitome - Mass-spectrometry

(1 study/3 datasets) Stukalov, et al. AB49ACE2 alveolar basal epithelial 2 6, 12,24 log2FC| > 1 & F]

Cleavage - Mass-spectrometry (neo-N-termini)

(1 study/1 dataset) Meyer, et al. A549ACE2 alveolar basal epithelial 1 24 |log2FC| >0 & S

value <= 0.05

Virus-host protein-protein interaction (BiolD-MS)

(6 studies/6 datasets) Liu, et al. tet-inducible HEK293T  embryonic kidney epithelial
Samavarchi-Tehrani, et al. A549 alveolar basal epithelial
St-Germain, et al. HEK 293 Fip-In T-REx  embryonic kidney epithelial NA - .
Meyers, et al. HEK293T embryonic kidney epithelial NA significant interact
Laurent, et al. HEK 293 Flp-In T-REx  embryonic kidney epithelial
May, et al. A549 alveolar basal epithelial

Virus-host protein-protein interaction (AP-MS)

(5 studies/5 datasets) Gordon, et al. HEK293T embryonic kidney epithelial
Stukalov, et al. A549 alveolar basal epithelial
Zhou, et al. Caco2 colon epithelial NA NA significant interactf
Li, et al. HEK 293 Flp-In T-REx  embryonic kidney epithelial
Liu, et al. tet-inducible HEK293T  embryonic kidney epithelial

RNA-protein interaction — ChIRP-MS, vRIC, RAP-MS

(3 studies/5 datasets) Flynn, et al. Huh 7.5 liver epithelial-like 0.01 24,48 log2FC| > 0 & F[
Kamel, et al. Calu3 bronchial epithelial 1 8,24 log2FC| > 0 & F[
Schmidt. et al. Huh 7 liver epithelial-like 10 24 loa2FCI > 0 & FO
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Table 2
N VIHs in N SL partners
Data class N VIHs SynLethDB of VIHs
Cleavage 77 60 520
Phosphoproteome 2448 1753 4491
Proteome (down) 1244 798 3463
Proteome (up & down) 2100 1334 5048
Proteome (up) 994 621 3206
RBP (down) 107 86 440
RBP (up & down) 217 175 784
RBP (up) 111 90 496
Transcriptome (down) 11263 6632 9267
Transcriptome (up & down) 14360 7774 9484
Transcriptome (up) 6423 3111 6280
Translatome (down) 49 26 148
Translatome (up & down) 56 31 167
Translatome (up) 7 5 25
Ubiquitinome 224 176 2800
Virus-host PPI (AP) 2076 1419 5273
Virus-host PPI (BiolD) 4191 2877 6184
Virus-host RPI 312 251 1175
Total unique genes 15,183 8,213 9,643
Table 3
N depleted
Study Cell line Library Virus strain [\ [o]] DPI gene products
SARS-CoV-2
Biering Calu3ACE2/TMPRSS2 Brunello USA-WA1/2020 0.05 4 0
Baggen Huh7 Brunello USA-WA1/2020 2.5,0.1 41, 22 0
I GeCKOv2 1 6 0
Daniloski A549ACE2 ASB USA-WA1/2020 3 6 0
Rebendenne Caco2ACE2 Brunello BetaCoV/France/IDF0372/2020 0.005 10-13 206
Calu3 Gattinara BetaCoV/France/IDF0372/2020 0.005 10-13 0
. Huh7.5 at 33°C 0.01 5 63
Schneider Huh7.5 at 37°C Brunello USA-WA1/2020 01 5 73
Wang Huh7.5ACE2/TMPRSS2 GeCKO USA-WA1/2020 0.01 12 8
SARS-CoV-2/human/CHN/SH01/2020
Zhu A549ACE2 Brunello (nCoV-SHO1) 3 7+ 12
Hou A549ACE2 H1 rec. 2019-nCoV/USA_WA1 5 2 84
HEK239ACE2 - initial infect UF-1 0.01 (40% CPE)
Grodzki HEK239ACE?2 - reinfect Brunello B 0.01 (40% CPE) 627
HEK239ACE?2 - reinfect 0.1 (40% CPE)
' B.1.1.7 (Alpha), B.1.351 (Beta),
Israeli Calu3 Brunello B.1.617.2 (Delta) 0.02-0.04 7-9 7
Huh7 .5 at 33°C s 0.25 7 19
Hoffmann Huh? 5 at 37°C custom USA-WA1/2020 0.25 11 21
Influenza
5 2(rd 2) 0
Han J, Cell Rep., 2018 A549 GeCKO H5N1 (VNO4LOW) 5 2(rd 5) 0
) H7N9 H7N9
Yi C, Cell Rep., 2022 A549 GeCKO (Alchicken/Guangxil97/2017) 0.01 10 (after 2 rds) 26
H1N1 (IAV-G, pseudotyped
GeCKO AWSN/1933 strain) 03 20-21(rd ) !
Tran V, Synthego, 2020 A549 GeCKO H1N1 (A/WSN/1933) 0.3 40-42 (rd 2) 2
H7N7 (SC35M Flu-GFP;
Brunelio Alseal/Massachusetts/1-SC35M/1980) 01 63 (after 7 rds) 1669
Significance cut-offs: L2FC < 0, FDR < 0.05 (Biering, Baggen Daniloski, Wang, Zhu, Hou, Grodzki, Israeli) or z-score < -1.96 (Rebendienne, Schneider,
Hoffman)
$ “Human SARS-COV-2 host protein interactome CRISPR library” including sgRNAs targeting 332 host factor proteins interacting with SARS-COV-2
proteins and control sgRNAs
# Influenza-virus infected cells were generally allowed to expand after each round of infection
MOI: multiplicity of infection; DPI: days post-infection, rd(s): round(s) of infection
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Table 4
i Enrichment of SL targets in
N candidate SL targets . . .
Data class CRISPR-depleted genes Sensitivity Specificity Precision
also CRISPR-depleted .
-logio(FDR-adjusted P-value)
Virus-host PPI (BiolD) 600 85.79 0.58 0.72 0.1
Virus-host PPI (AP) 526 74.7 0.51 0.76 0.1
Transcriptome (down) 732 71.69 0.71 0.58 0.08
Transcriptome (up & down) 736 68.6 0.71 0.57 0.08
Proteome (up & down) 490 63.63 0.47 0.77 0.1
Transcriptome (up) 555 60.68 0.54 0.72 0.09
Proteome (down) 378 58.08 0.37 0.85 0.11
Virus-host RPI 188 48.94 0.18 0.95 0.16
Phosphoproteome 418 46.26 0.41 0.8 0.09
Proteome (up) 330 43.45 0.32 0.86 0.1
RBP (up & down) 125 31.78 0.12 0.97 0.16
RBP (down) 90 31.02 0.09 0.98 0.2
Ubiquitinome 268 28.68 0.26 0.87 0.1
Cleavage 93 27.41 0.09 0.98 0.18
RBP (up) 74 17.15 0.07 0.98 0.15
Translatome (up & down) 17 243 0.02 0.99 0.1
Translatome (down) 15 2.21 0.01 0.99 0.1
Translatome (up) 4 1.5 0 1 0.16
Table 5
Enrichment of SL targets in
CRISPR-depleted genes

Data class -logio(FDR-adjusted P-value) Sensitivity Specificity Precision

Transcriptome (down) 3.07 0.51 0.54 0.09

Transcriptome (up & down) 3.07 0.52 0.53 0.09

Virus-host PPI (BiolD) 222 0.34 0.69 0.09

Proteome (up & down) 1.9 0.28 0.75 0.09

Proteome (up) 1.83 0.18 0.84 0.1

Transcriptome (up) 1.83 0.34 0.69 0.09

Proteome (down) 1.43 0.19 0.83 0.09

Virus-host PPl (AP) 1.43 0.29 0.74 0.09

Phosphoproteome 1.34 0.24 0.78 0.09

Ubiquitinome 0.9 0.15 0.86 0.09

RBP (up & down) 0.81 0.05 0.96 0.1

RBP (up) 0.77 0.03 0.98 0.1

RBP (down) 0.71 0.03 0.98 0.1

Cleavage 0.63 0.03 0.97 0.1

Virus-host RPI 0.63 0.06 0.94 0.09

Translatome (up) 0.14 0 1 0.08

Translatome (down) 0.09 0.01 0.99 0.07

Translatome (up & down) 0.09 0.01 0.99 0.07
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Table 6

Gene 5::'1': Evszzmliil;: par:IIogs Targeting drug (DrugBank ID)

ACAD9 no 5 14

ATXN7L3 no 3 4

CHERP yes 9 0

CHMP2A no 10 4

COX4l1 no 9 1 DB02659; DB04464

CPSF2 no 10 3

DDX10 no 6 38

DDX11 no 2 3

DDX21 no 10 38

DDX49 no 10 38

DHX8 no 10 18

DNAJC19 no 1 1

DRAM1 no 0 4

EEF2 no 10 18 DB02059; DB03223; DB04315; DB08348; DB11823; DB12688

EIF2S3 no 8 18 DB04315

F2R no 0 16 DB00086; DB05361; DB09030; DB11300

FDX2 no 0 1

GOLGA80 no 0 18

GPN2 no 9 2

ISCA2 no 5 1

KDM2A no 4 4

LIG3 no 2 2 DB00290

MRPL43 no 8 0

MRPS14 no 9 0

MRPS21 no 5 0

MTBP no 4 0

MTIF2 no 7 18

MYBBP1A no 10 0

NBR1 no 1 0

NOL10 no 10 0

P4HB no 0 13 DB01593; DB03615; DB09130; DB11638; DB14487; DB14533; DB14548

PCBP1 no 9 12

PDE4DIP no 9 1

PDPK1 yes 3 5 DB00482; DB01863; DB01933; DB01946; DB02010; DB03777; DB04522;

DB06932; DB07033; DB07132; DB07300; DB07456; DB07457; DB12010

PLEKHF2 no 0 13

POLD1 no 5 3

POLR2A no 10 2

POLR2J no 0 3

PPP2R1A no 9 2 DB02506; DB06905

PRPF8 no 10 0

PTRH1 no 1 0

PWP2 no 10 0

RAD51 no 10 6 DB04395; DB12742

ROS1 no 0 53 DB11986; DB12010

RPL11 no 10 0 DB02494; DB07374; DB08437

RPL18 no 10 0 DB11638

RPL28 no 0 0

RPL3 no 8 1 DB02494; DB04865; DB07374; DB08437; DB09092

RPL36 no 7 0

RPLP1 no 6 2

RPP25 no 2 1

RUVBL1 no 10 1

SBNO1 no 9 1

SERINC3 no 0 4

SLX4 no 1 0

SMAD6 no 0 7

SMC2 no 10 7

SMC5 no 8 1

SUPT4H1 no 5 0

TAF6 no 10 1

TP53RK no 9 0

TPT1 no 7 0 DB11093; DB11348; DB14481

TRRAP no 10 5

TSR3 no 1 0

TUBB4B no 0 23 DB00518; DB00643; DB01873; DB03010; DB04910; DB05147; DB12695

TXN no 5 4 DB12695

U2AF1L4 no 0 2

UBE2I yes 9 24

UFD1 yes 0 0

VPS25 no 10 0

WAPL no 0 0
EMF: Extremely multi-functional (MoonDB 2.0). The 16 highlighted genes are not EMF, are essential in < 3 cell lines and
have < 5 paralogs. However, we recommend that each gene be examined on a wider range of merits and/or by possible
ranking algorithms, before testing on the bench. While we consider these to be important characteristics, no
characteristic alone indicates a high-level SL target.
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Figure 1 - Strategy for identifying antiviral synthetic lethal targets.
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Figure 2 - Percentage of predicted viral-induced hypomorphs and synthetic lethal targets for
individual omics data classes.
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Figure 3 - Heatmaps showing pairwise overlap of predicted viral-induced hypomorphs and
SL partners across omics data classes.
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Figure 4 - Candidate synthetic lethal targets across omics data classes depleted in SARS-
CoV-2 CRISRP KO studies.
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Figure 5 - Candidate synthetic lethal targets across omics data classes depleted in Influenza
A CRISRP KO studies.
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