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ABSTRACT 

Traditional antiviral therapies often have limited effectiveness due to toxicity and 

development of drug resistance. Host-based antivirals, while an alternative, may lead to non-

specific effects. Recent evidence shows that virus-infected cells can be selectively eliminated 

by targeting synthetic lethal (SL) partners of proteins disrupted by viral infection. Thus, we 

hypothesized that genes depleted in CRISPR KO screens of virus-infected cells may be 

enriched in SL partners of proteins altered by infection. To investigate this, we established a 

computational pipeline predicting SL drug targets of viral infections. First, we identified 

SARS-CoV-2-induced changes in gene products via a large compendium of omics data. 

Second, we identified SL partners for each altered gene product. Last, we screened CRISPR 

KO data for SL partners required for cell viability in infected cells. Despite differences in virus-

induced alterations detected by various omics data, they share many predicted SL targets, 

with significant enrichment in CRISPR KO-depleted datasets. Comparing data from SARS-

CoV-2 and influenza infections, we found possible broad-spectrum, host-based antiviral SL 

targets. This suggests that CRISPR KO data are replete with common antiviral targets due to 

their SL relationship with virus-altered states and that such targets can be revealed from 

analysis of omics datasets and SL predictions. 
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INTRODUCTION 

We recently proposed that synthetic lethality, a well-established concept in cancer therapy 

(1–11), could mitigate multiple known shortcomings of current antiviral drugs such as the 

paucity of options, restricted target spectrum due to the small genome size of viruses, the 

often rapid development of drug resistance (12), marginal effectiveness due to dose-limiting 

toxicity (13), and the necessity to redesign drugs as new viral strains emerge (14, 15). Of 92 

approved antiviral drugs in 2018, two-thirds were aimed at HIV and HCV and almost 90% 

were small molecule drugs (16, 17). A mere 10% were host-based therapeutics, half of which 

were interferon-related biologics. Given the potential advantages of host-based drugs, there 

is a pressing need for novel host protein targeting methodologies and associated target 

prediction strategies (18, 19). 

In the context of viral infections, synthetic lethality describes the vulnerability of virus-

induced cellular states to host-based drug intervention (20). As obligate intracellular 

pathogens, viruses require the host cell machinery for every step of the viral life cycle 

including attachment, penetration, uncoating, gene expression and replication, assembly, 

and finally, virion release (21).  During these processes, viruses effectively remodel host cells, 

converting them into viral factories by leveraging numerous host cell functions, leading to 

wide-ranging cellular changes (22).  These changes are initiated by the direct interaction of 

viral proteins with host proteins, usurping their functions which leads to a cascade of direct 

and indirect effects, including altered protein complexes, changes in RNA and protein 

abundances, protein mis-localization, as well as changes in post-translational modifications, 

protein cleavage, splice patterns, and metabolomic and regulatory networks, to name a few. 

This reliance of viruses on host processes shifts the host cell state and introduces specific 

vulnerabilities to infected cells.  

As an antiviral strategy, synthetic lethality capitalizes on these virus-induced vulnerabilities 

and the dependency of cells on the integrity of genetic networks. Notably, while many genes 

can be disrupted individually without undermining cell survival, specific pairs of gene 

disruptions are lethal in combination (9, 23–26). When a virus compromises a host protein's 

normal functionality, this host protein is designated a viral-induced hypomorph (VIH) (20). 

Synthetic lethal partners of these VIHs can be strategically targeted to impede the viral 

production machinery, cellular viability, or both, providing a means of selectively disrupting 
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the viral lifecycle to contain viral dissemination and disease, while sparing uninfected cells 

(20). Since the interruption of viral replication can be achieved by either, the impediment of 

the viral factory or the death of the virally infected cell, we do not differentiate between 

synthetic sick and synthetic lethal cellular states. 

The feasibility of targeting synthetic lethal partners as a host-based antiviral strategy has 

been substantiated by two independent studies. Pal, et al. demonstrated that by utilizing 

existing transcriptomics and CRISPR data, valid synthetic lethal targets can be predicted in 

the context of SARS-CoV-2 (27). In their study, the authors predicted potential VIHs from a 

handful of transcriptomics datasets in SARS-CoV-2-infected cell lines and patient tissues. SL 

partners of these VIHs were then identified from cancer SL pairs based on the ISLE algorithm 

(28) and prioritized by CRISPR KO screens from SARS-CoV-2-infected cells. The authors 

validated 24 predicted SL targets demonstrating reduced viral replication in infected cells 

combined with a decrease in infected cell counts. Similarly, Navare, et al. illustrated that viral-

host protein-protein interactions can render host proteins hypomorphic and expose cells to 

synthetic lethal vulnerabilities (29) Specifically, this study demonstrated that the Golgi-

specific brefeldin A-resistance guanine nucleotide exchange factor 1 (GBF1) (30) was 

converted to a hypomorph by binding to poliovirus 3A protein and that depletion of ADP 

Ribosylation Factor 1 (ARF1), an SL partner of GBF1, by CRISPR and shRNA led to cell death 

specifically in 3A-expressing cells, thus reducing viral replication (29). Importantly, GBF1 is a 

critical proviral factor and a common target of many viruses, suggesting that targeting SL 

partners of GBF1 could have broad antiviral activity.  

Taken together, this evidence suggests that protein-protein interactions and transcriptomic 

alterations can generate VIHs, the synthetic lethal partners of which could be targeted to 

inhibit typical viral infection. In this study, we aimed to determine whether various existing 

omics types can accurately predict VIHs and, by extension, synthetic lethal targets. We also 

posit that a certain subclass of genes, identified through genome-wide CRISPR KO studies, 

might contain members that are synthetically lethal with VIHs and thus can be explored as 

antiviral therapeutics. We expect to find such SL targets among genes depleted in CRIPSR KO 

screens alongside antiviral genes, since depletion of both of these subclasses of genes 

should lead to diminished cell viability or cell death. 
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To explore this, we have engineered a computational pipeline to discern the omics datasets 

best suited for predicting VIHs and the associated synthetic lethal targets. Our findings 

indicate that multiple different omics data classes can be used to predict synthetic lethal 

targets, many of which are incorporated in the pooled survival data of CRISPR KO screens. 

Furthermore, we highlight that many candidate synthetic lethal targets of SARS-CoV-2 

infection are also targets of influenza infection, suggesting that shared synthetic lethal 

targets may be suitable for host-based therapeutics against multiple viruses. 

 

MATERIAL AND METHODS 

Data set selection 

We utilized 54 published gene sets from 22 studies, encompassing ten different omics data 

classes (see Table 1 and references under ‘Identification of viral-induced hypomorphs (VIHs)), 

along with 11 SARS-CoV-2 and three influenza genome-wide CRISPR-Cas9 knock-out 

screens for this study (see Table 3 and references under ‘Compilation of publicly available 

CRISPR KO screen data’). We specifically focused on genome-wide screens conducted in cell 

lines or tissues infected with SARS-CoV-2 or influenza viruses. 

Identification of viral-induced hypomorphs (VIHs) 

We defined VIHs as gene products that exhibited significant alterations in any of the aspects 

corresponding to the ten omics data classes when comparing virus-infected cells to non-

infected cells. Omics data classes included bulk or single-cell RNA sequencing 

(transcriptomes) (31–35) specialized mass-spectrometry (proteomes, RNA-binding proteome, 

phosphoproteomes, ubiquitomes, cleavage) (32, 36–41) as well as combinations of affinity 

purification (AP-MS)(32, 42–45) or proximity-dependent labeling (BioID-MS) (45–50)with 

mass-spectrometry (Table 1). We also considered alterations in translation rates 

(translatome) (40) as well as changes in the host RNA-binding proteome and the host 

interactome with viral RNAs (51–53). All selected datasets were derived from genome-wide 

studies in cells infected with live SARS-CoV-2 virus, SARS-CoV-2 pseudovirus, or transduced 

with individual SARS-CoV-2 virus proteins or RNAs for interactome studies. 
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When applicable, we categorized VIHs as "up" or "down" based on abundance changes and 

conducted separate analyses for these subsets in addition to analyzing the complete list of 

all VIHs. For example, we performed separate directional analyses on transcriptome, 

proteome, RNA-binding proteome, and translatome data classes for both up- and down-

regulated gene products. Whenever available, we adopted the statistical cutoff criteria used 

in the associated publication of the respective dataset or reported FDR-adjusted P-values < 

0.05 as significantly altered by infection. Lists of significant interactors for virus-host protein-

protein interactions (PPI) and virus-host RNA-protein interactions (RPI) were obtained from 

the relevant publications. Using these criteria, we identified VIHs for each data class and then 

determined the union of VIHs across all datasets within each of the ten omics data classes. 

This union, in addition to directional subsets, were subsequently utilized in our 

computational pipeline for predicting synthetic lethality targets. 

Prediction of candidate SL targets 

We defined candidate SL targets as the SL partners of VIHs listed in SynLethDB 2.0 (54). Thus, 

we identified all VIHs that also appeared in an SL pair in SynLethDB and consolidated the 

union of all SL genes associated with those VIHs. This process was performed separately for 

each list of VIHs compiled from different omics data classes. The resulting list of SL targets 

was then employed in downstream analyses to evaluate prediction accuracy against depleted 

products in CRISPR KO studies and to assess prediction agreement among different data 

classes. 

Compilation of publicly available CRISPR KO screen data 

We gathered publicly available data from genome-wide CRISPR KO screens conducted in 

cells infected with either SARS-CoV-2 (55–65) or influenza virus (66–68) and identified 

significantly depleted genes. Genes were considered significantly depleted if they exhibited 

FDR-corrected P-values < 0.05 along with negative log2 fold-changes or z-scores < -1.96. 

The aggregated set of CRISPR-depleted genes from all the studies was then used as the 

surrogate gold standard set of SL targets when evaluating the predictive performance of 

each omics data class in our study. 

Enrichment analysis of predicted SL genes in CRISPR depleted genes 
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We used hypergeometric tests to quantify the enrichment of predicted SL targets among 

depleted genes in CRISPR KO studies. The union of all genes tested across CRISPR KO 

studies was considered the background population. We considered FDR-adjusted P-values < 

0.05, computed using the Benjamini-Hochberg method (69), as indicative of significance. 

Sensitivity, specificity, and precision metrics 

To compute sensitivity, specificity, and precision statistics, we designated genes depleted in 

CRISPR KO screens as positive cases. Negative cases consisted of products evaluated using 

CRISPR KO screens but were not depleted. Thus, the complete set of genes evaluated by 

CRISPR KO served as the ground truth against which we assessed SL target predictions. 

Predicted SL targets generated by our pipeline were considered positive tests, while negative 

tests consisted of genes not predicted to be SL targets. Therefore, a predicted SL target that 

was also depleted in CRISPR KO data was considered a true positive. A true negative referred 

to a gene product not predicted to be an SL target and not depleted in CRISPR KO data. 

Datasets used for characterizing broadly antiviral candidate SL targets 

We employed several datasets to further characterize 71 candidate SL target genes that may 

be broadly antiviral for SARS-CoV-2, influnza A and possibly other viruses. Gene paralogs 

were obtained from Ensembl using the biomaRt package (70) (version 2.50.3). Extremely 

multi-functional genes (or hubs) were downloaded from MoonDB 2.0 (71). Essential genes 

for ten different cell lines were downloaded from supplemental tables in Bertomeu et al. (72).  

Drugs targeting predicted broadly antiviral SL targets were downloaded from DrugBank 

(September 22nd, 2022) (73). 

Analysis software 

All analyses were performed using R (version 4.1.1). Heatmap analyses utilized the pheatmap 

package (version 1.0.12) with hierarchical clustering based on Euclidean distances. 

GO:biological process and Reactome enrichment tests were conducted using the 

clusterProfiler (version 4.2.2)  (74) and ReactomePA (75) (version 1.38.0) packages, 

respectively. For all datasets analyzed in our study, gene and gene product identifiers were 

aligned with a reference list of gene symbols using the org.Hs.eg.db R package (76). 
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RESULTS 

Synthetic lethal target prediction pipeline 

Numerous mechanisms exist by which viruses may induce hypomorphic states within host 

cells that may introduce synthetic lethal (SL) relationships.  These include modifications to 

virus-host protein-protein interactions (PPIs), transcription, protein abundance, post-

translational modifications (PTMs), protein repositioning, and proteolytic cleavage, among 

others (21, 22). Consequently, a myriad of omics-level data acquisition techniques could 

potentially facilitate the identification of virus-induced hypomorphs (VIHs) and subsequently 

their SL partners, which could serve as host-based therapeutic targets. To examine this, we 

developed a computational pipeline to integrate data from various omics data sources, 

identify potential VIHs, and predict their prospective SL partners as antivirals (Figure 1B). 

Here, we define VIHs as gene products with impaired function, irrespective of whether the 

identified molecular species rise or fall in abundance following viral infection, as protein or 

pathway functionality may be compromised in either scenario. 

For each omics data category, we selected individual datasets from as many applicable 

studies as were available in the literature which led to the inclusion of one to 14 datasets per 

omics data class (Table 1). We aimed to encompass a large variety of infection conditions 

(varying cell lines, virus strains, infection multiplicity, and timeline) cited in the literature and 

thus adopted an aggregate approach incorporating all available datasets within each data 

class. Following this, we applied a filtering methodology to identify the candidate SL genes 

with the highest likelihood of successful experimental validation (Figure 1). 

Initial identification of putative VIHs was achieved by finding molecular species (transcripts, 

protein abundance, or PTMs) that exhibited significant alterations following SARS-CoV-2 

infection. Subsequently, the SL partners of these VIHs were identified within the SynLethDB 

resource (54), a public repository of SL pairings developed for cancer research. Since 

genome-wide CRIPSR KO screens in the setting of viral infection should contain SL genes 

due to reduced viability of cells with SL gene knockouts, we used depleted CRISPR KO gene 

pools to quantify the power of each omics data class for predicting SL targets.  These 

measures included enrichment of candidate SL targets as well as specificity, sensitivity, and 

precision statistics. Finally, we used the same depleted CRISPR KO gene pool as a filter to 
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further prioritize candidate SL targets. This step also filtered out the genes in the CRIPSR KO-

depleted gene set that might not be in SL relationships such as antiviral genes and genes 

that are essential for cell growth and survival.  

The remaining proteins represent candidate SL targets that have led to decreased cell 

viability when knocked-out during viral infection compared to infection alone in CRISPR-

based KO screens in at least one published viral infection scenario. 

Data selection 

We curated datasets from published research focusing on SARS-CoV-2 and influenza viruses 

due to their ongoing global health and pandemic implications. Given the intensive research 

on these viruses and their relatives, a considerable number of datasets describing various 

aspects of gene functionality for orthomyxo- and coronaviruses are available, which is ideal 

for an exhaustive exploration of the most accurate predictors for virus-specific SL targets 

from a practical perspective. In total, we compiled 56 omics datasets from 22 distinct studies 

on SARS-CoV-2 infection, which analyzed a wide spectrum of cellular changes (Table 1). The 

datasets depict host interactors of viral proteins and RNA (32, 42, 44–53, 77) infection-

induced alterations in host gene expression (31–33, 35, 78) and protein abundance (32, 36–

38, 40), changes in translation rates (40), as well as alterations in post-translational 

modifications (32, 39), cleavage (41), and the RNA-binding proteome (RBP) (51), comprising 

ten VIH data classes in total. Host interactors of viral proteins were further split based on 

technology: affinity purification (AP) or a proximity-based approach with tagged target 

proteins (BioID), both combined with mass spectrometry (MS) (Table 1). Both techniques 

used individual viral open reading frames (ORFs) as bait to identify interacting host proteins. 

However, published BioID-MS data were derived from cells both with and without viral 

infection. AP-MS was predominantly employed to capture virus-host multi-protein 

complexes (79), whereas BioID-MS (80) serves as a complementary method to examine 

transient interactions based on physical proximity, a frequent occurrence throughout the 

viral infection cycle (81). 

Synthetic lethal target prediction 

Identification of VIHs and their SL partners from omics data stemming from virus-infected 

cells.  Our pipeline's initial step (Figure 1B) involved the identification of potential VIHs by 
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selecting gene products significantly impacted by viral infection, as evident from the ten 

omics data classes outlined in Table 1. For VIH identification, we relied on the significance 

criteria stipulated in each dataset's corresponding publication. We sub-categorized VIHs 

based on the increase or decrease in molecular species abundance post-infection for 

transcriptomics, proteomics, RNA-binding proteomics, and translatomics data. For 

phosphoproteome, ubiquitome, and protein cleavage data, we ascertained the total absolute 

change for each protein based on the aggregate changes reported for all pertinent peptides. 

Following VIH identification from each data class, we narrowed down the VIHs to those also 

present in the commonly utilized SynLethDB version 2.0, and then identified the SL partners 

of putative VIHs (Figure 1B, Table 2). SynLethDB (54) comprises a collection of SL pairs 

procured from diverse sources, including confirmed SL pairs from the literature based on 

genome-wide siRNA, CRISPR KO screens, or bi-specific SL shRNA screens, in addition to 

predictions from computational algorithms, text mining, and SL pairs from other similar 

databases. The SynLethDB version utilized in this study contains 35,943 human SL pairs, 

encompassing 9,855 unique SL genes. On average, each gene is in a SL relationship with 

three other genes. 

Overall, across all data classes, we identified a total of 15,183 unique VIHs and a total of 

9,643 unique SL partners for those VIHs (Table 2). The number of unique VIHs and SL partner 

targets identified using each data class differed substantially (Table 2, Figure 2). The 

maximum numbers of VIHs and SL partners were derived from transcriptomic, PPI, and 

proteomic studies, while the minimum were derived from translatome and cleavage studies. 

We found significant correlations between the number of datasets in a class and the total 

number of predicted VIHs (Pearson coefficient = 0.80, P-value = 0.006) as well as their 

predicted SL partners (Pearson coefficient = 0.83, P-value = 0.003). This provides evidence, as 

anticipated, of the poor overlap between individual datasets within each data class, resulting 

from the broad spectrum of different infection scenarios we included. The higher numbers of 

predicted VIHs stem from the fact that each additional dataset adds new and different 

altered genes to the overall VIH gene pool when datasets don’t agree very well.  We chose 

this strategy because it provided us with a suitably comprehensive list of candidate SL 

targets from a larger variation of potentially relevant infection scenarios for further 

evaluation. 
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VIHs and SL targets inferred by transcriptomics encompass nearly all genes predicted across 

omics data classes.  To ensure our synthetic lethality prediction pipeline did not overlook 

valid SL targets, we examined whether consolidating predictions from multiple omics data 

classes would identify more valid targets compared to employing any single data class. In 

other words, we explored whether the combined usage of multiple omics data classes would 

result in a more sensitive prediction of valid SL targets, given that different classes probe 

different facets of infection and might yield non-overlapping predictions. However, our 

findings showed that 95% of all the VIHs predicted across data classes were included in the 

predictions derived from transcriptome data, and 98% of all the SL targets predicted across 

classes were covered (Figure 2). Therefore, within the scope of the data classes we explored, 

transcriptome data provides a near-maximal level of sensitivity in predicting SL targets. The 

downside is that the transcriptome data class, as elaborated below, demonstrated the lowest 

statistical precision, i.e., the highest proportion of false-positive predictions, among the data 

classes (Table 4). 

We anticipated that the directional changes documented in omics datasets (e.g., upregulated 

versus downregulated transcription) would identify mutually exclusive VIHs. While this was 

predominantly the case, a considerable number of gene products were predicted to both 

increase and decrease in abundance. This can be attributed to the fact that a gene product 

might be overexpressed in one dataset but downregulated in another within the same data 

class depending, for example, on the viral effect on a particular cell line used in a specific 

experiment. 

Convergence of different omics data classes on predicted SL targets despite low agreement for 

VIHs.  Different omics data classes under investigation represent unique perspectives of a 

virus's impact on cellular processes, with an uncertainty surrounding the level of agreement 

across molecular species impacted by varied mechanisms in response to viral infection. Our 

study examined the overlap of predicted VIHs and synthetic lethality targets across these 

different omics data classes. By iteratively pairing each data class with others, we calculated 

the Jaccard index for predicted VIHs. Although the alignment between data classes for 

predicted VIHs was typically low, a significantly higher degree of congruence was observed 

for predicted SL targets derived from VIHs (Figure 3). This indicates that despite disparate 

VIH predictions, subsets of data classes still converged on common sets of SL targets. Our 
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analysis revealed two primary clusters of data classes showing high agreement in SL 

predictions, with the first encompassing ubiquitinome, phosphoproteome, transcriptome, 

proteome, and virus-host protein-protein interaction (PPI) classes, while the second included 

the translatome, cleavage, virus-host RNA-protein interaction (RPI) and RNA binding protein 

(RBP) classes. Within this second cluster, a high similarity was observed between virus-host 

RPI and RBP classes, both based on RNA binding. Not surprisingly, the closest agreement for 

SL partners existed between virus-host PPIs derived from AP and BioID in the first cluster. 

Performance of Omics Data Classes in Predicting Valid Synthetic Lethal Targets 

A central aim of our study was to evaluate the predictive accuracy of each data class in 

identifying legitimate, experimentally verified SL targets. Unfortunately, a universally accepted 

gold standard for validating SL targets is currently unavailable. To create a representative pool 

of SL targets, that could serve as a surrogate gold standard bolstered by adequate 

experimental evidence, we aggregated depleted genes from multiple, diverse CRISPR 

knockout (KO) screens. However, we note the unknown percentage of false negatives such as 

antiviral and potentially some essential genes associated with these data. Moreover, there were 

no genes that exhibited universal depletion across all CRISPR KO datasets, potentially due to 

variable cell type selection among other experimental variables. As with our omics datasets, 

we opted to pool depleted genes from multiple disparate CRISPR screens to ensure 

representation of diverse SARS-CoV-2 infection scenarios. With these caveats, we used the list 

to assess the performance of each data class for predicting SL targets in SARS-CoV-2 infection. 

Performance measures included hypergeometric enrichment tests as well as sensitivity, 

specificity, and precision metrics. 

 

Our analysis confirmed enrichment of SL targets among genes depleted in CRISPR KO 

studies, regardless of the employed omics data class (Table 4). This validates prior research, 

demonstrating that genes depleted in CRISPR KO studies indeed encompass authentic SL 

targets which, upon disruption, selectively diminish the viability of infected cells (27). We 

observed that SL targets predicted using BioID-MS virus-host PPI data showed the highest 

enrichment in CRISPR KO-depleted genes. When directional changes were considered, 

enrichment scores among SL targets derived from sets of gene products that were decreased 

in abundance outperformed those with increased levels. However, both RNA and protein 
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abundance changes in either direction resulted in highly significant CRISPR KO-depletion 

enrichment, suggesting that either could create VIHs in an infected cell, thereby sensitizing 

the cell to SL disruption. 

Sensitivity and specificity scores spanned a broad range across data classes, with the highest 

sensitivity observed in the transcriptome, virus-host PPI and proteome classes and the 

highest specificity within the translatome, RNA-binding proteome and cleavage data classes 

(Table 4, Supplementary Figure S1). However, the statistical precision of all data classes for 

the prediction of SL targets was less than or equal to 0.20 (Table 4), indicating that only a 

proportion of predicted SL partner targets were valid. We hypothesized that limiting 

predicted SL targets to those identified across multiple data classes might improve the 

statistical precision of our predictions without compromising sensitivity. However, we found 

that the maximum precision achievable with this approach was 0.22 and required SL targets 

to be predicted in 90% of data classes, at the cost of reducing prediction sensitivity to 0.05. 

Overall, this implies that predicting SL targets from any omics data class investigated here 

requires further filtering of candidate SL targets through data from studies validating the 

impact of target disruption on cell viability (such as CRISPR KO and/or siRNA data), as a 

critical step of our pipeline.  

We also probed whether the number of data sets compiled for each omics data class 

correlated with the different metrics collected using the ‘gold standard’ CRISPR-depleted 

gene set. Although this correlation was not significant for hypergeometric enrichment scores 

(Pearson coefficient = 0.55, P-value=0.10), it significantly correlated with sensitivity (Pearson 

coefficient = 0.79, P-value = 0.007), specificity (Pearson coefficient = -0.83, P-value = 0.003), 

and precision (Pearson coefficient = -0.67, P-value = 0.03). 

Upon examining the pattern of positive predictions for SL candidate genes that were also 

CRISPR KO-depleted SL targets, we identified two distinct data class clusters (Figure 4). These 

clusters largely reflected the groupings observed in our Jaccard index analysis (Figure 3), 

further illustrating a convergence in predicted SL targets. The two primary clusters share 

overlapping SL targets but differ in the number of SL targets predicted. Overall, the cluster 

consisting of transcriptome, virus-host PPI, phosphoproteome, proteome, and ubiquitinome 

classes predicted a greater number of valid SL targets than the second cluster consisting of 
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virus-host RPI, RBP, cleavage, and translatome data classes. While this second cluster 

identified a smaller number of candidate SL targets (lower sensitivity), its members predict a 

higher proportion of true positives (higher precision) (Table 4). 

Our results highlight a substantial proportion of CRISPR-depleted genes that were not 

predicted to be SL partners by any omics data class (28%; N=294; Tables 2 and 4, Figure 4), 

primarily due to their absence in SynLethDB. These genes might hold undiscovered SL 

relationships with VIHs in the context of SARS-CoV-2 infection or might represent antiviral 

genes whose disruption enhances viral propagation. The remaining 738 genes are higher-

confidence SL targets in the context of viral infection, substantiated by three lines of 

evidence forming part of our pipeline: 1) experimental evidence of depletion in a CRISPR 

screen of virus-infected cells, indicating that their disruption adversely affects cell survival 

specifically in virus-infected cells; 2) evidence of being in a negative genetic relationship with 

a gene shown to undergo significant alteration due to viral infection; and 3) evidence of 

being part of a SL pair in the alternate context of altered cellular states due to cancer. 

Functional profiling of high-confidence SL targets 

We performed GO:biological process and Reactome enrichment analyses to identify the 

cellular pathways and functions associated with the 738 high-confidence SL targets 

mentioned above. There were 264 GO:biological process classes enriching for the SL targets, 

and they were primarily associated with the cell cycle, nucleic acid processing (including RNA 

splicing/processing and many rRNA-related processes), metabolism, chromosome 

organization, intracellular localization/transport as well as organelle biogenesis 

(Supplementary Table S1). Reactome pathways showing enrichment (N=209) were primarily 

associated with mitotic processes, DNA repair, RNA splicing/processing, translation, 

infectious disease processes, RNA polymerase II transcription, signal transduction, 

autophagy, transport mechanisms, organelle biogenesis, metabolism, and stress responses 

(Supplementary Table S2).  

Overall, these findings align well with those of Pal et al. in associating cellular stress 

responses, RNA splicing/processing, DNA repair, and translation with SL targets (27). 

However, because our results are based on larger and more diverse datasets, they revealed a 

broader array of biological functions associated with SL targets in the context of SARS-CoV-2 
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infection and, importantly, included multiple GO terms and pathways corresponding to viral 

infection themes that included the entire viral life cycle. 

Identification of common SL targets for SARS-CoV-2 and Influenza viruses 

If pan-viral SL targets exist, we would expect that some of the synthetic lethal targets we 

predicted using SARS-CoV-2 omics data, would also be present in CRISPR-depleted genes 

derived from cells infected with other viruses. We chose influenza viruses because they are 

another global viral threat and also quite different from coronaviruses. For example, 

coronaviruses have a continuous dsRNA genome, bind to ACE2 for cell entry and conduct 

replication and transcription in the cytoplasm (82). Influenza viruses use 

sialyloligosaccharides as their main entry receptors, have a unique segmented genome, and 

replicate in the host cell nucleus (83). Hence, we assembled a pool of 1,693 unique genes 

that were significantly depleted in three influenza CRISPR KO studies and determined 

whether our SARS-CoV-2 SL targets were significantly enriched among these genes (Table 5). 

We found that, although enrichment scores were substantially lower than for SARS-CoV-2 

CRISPR-depleted genes, half the data classes showed significant scores (transcriptome, virus-

host PPI, proteome and phospho-proteome). Similar to SARS-CoV-2 predictions, precision 

based on influenza CRISPR KO depleted genes was uniformly low. Sensitivity and specificity 

values indicated that predictions were not substantially more accurate than would be 

expected by chance.  

However, fifty-three percent of the influenza CRISPR KO-depleted genes were predicted as 

SL targets by one or more data classes utilizing the SARS-CoV-2 omics data-based 

predictions (Figure 5). Given this substantial overlap as well as the significant enrichment of 

candidate SARS-CoV-2 SL targets for half the omics data classes in influenza CRISPR KO data, 

we reasoned that there may be a group of SL targets common to both viral infections. We 

therefore examined the overlap between the significantly depleted genes in both the SARS-

CoV-2 and influenza CRISPR KO data and found 99 shared genes of which 71 (72%) were 

predicted to be SL targets. These 71 genes may therefore represent broad viral SL targets. 

GO:biological process terms enriched for these 71 genes included ribosomal biogenesis, 

ncRNA processing (including rRNA), translation, regulation of sister chromatid cohesion, and 

DNA replication (Supplementary Table S3). Enriched Reactome pathways largely fell within 

the same categories but also included influenza/HIV infection, starvation responses, amino 
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acid/protein metabolism, DNA synthesis/repair, nonsense-mediated decay, transcription, 

mRNA splicing/processing, and TP53-mediated transcriptional regulation. (Supplementary 

Table S4). 

Three of the broadly antiviral candidates were also predicted by Pal, et al. as SL targets for 

SARS-CoV-2 including RPP25 (Ribonuclease P And MRP Subunit P25), a protein involved in 

tRNA and rRNA processing as well as mRNA metabolism, PCBp1 (Poly(RC) Binding Protein 1), 

which controls certain steps of pre-mRNA processing, translation, and ferroptosis as well as 

the initiation of viral replication and viral translation, and MTBP (MDM2 Binding Protein) a 

protein involved in the initiation of DNA replication, mitotic progression and chromosome 

segregation, as well as in cell migration and the suppression of invasive behavior due to its 

interaction with MDM2.  

The 71 broadly antiviral candidate SL targets need to be further scrutinized and prioritized 

before undergoing experimental testing. For example, researchers may wish to deprioritize 

targets that have high functional interconnectivity risking off-target consequences, such as 

those referenced in the MoonDB database (71). Other candidate targets that might better be 

avoided are genes that have documented essentiality in a specific cell line of interest or in 

multiple cell lines, because their disruption would be expected to kill both infected and 

uninfected cells (72). Candidate SL genes with numerous paralogs may also warrant careful 

consideration; if paralogs provide too much functional redundancy, they might prevent 

efficient synthetic lethality-based killing. However, pairs of genes that are paralogs of each 

other have been demonstrated to be in SL relationships more frequently than by chance (84). 

VIH-SL pairs may be prioritized based on any or all these criteria and final candidate SL 

genes may be chosen for experimental testing based on druggability and availability of 

drugs or ligands (Table 6).   

 

DISCUSSION 

This study is part of an on-going effort to examine the concept of synthetic lethality as a 

means to discover novel host-based antiviral therapeutics. A critical step in this effort is the 

establishment of a computational pipeline for predicting SL targets. Since synthetic lethality 

is a type of genetic interaction relatively unexplored in infectious diseases, such a pipeline, 
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once fully established, would expand the number of antiviral drug targets as well as add to 

the knowledge base of pathogen biology. Our goal is that our pipeline will ultimately 

generate a plethora of SL targets to be examined, prioritized, and experimentally validated. 

This study addresses several critical research issues that arose during the process. 

Our pipeline generated a list of potential SL targets that are enriched with genes depleted in 

CRISPR KO studies specific to SARS-CoV-2 infection. These targets were predicted by reusing 

an array of available omics datasets, which were specific for virus-infected cells, in 

combination with a synthetic lethality database. One assumption we made was that the SL 

partners of genes undergoing significant changes in virus-infected cells would be depleted in 

CRISPR KO screens, thus potentially serving as SL targets. Our results supported this 

assumption. An approach that would further aid in the prediction of SL targets from CRISPR 

KO screens is the addition of viral replication measurements in addition to cell viability, a 

practice not typically adopted for genome-wide functional screens. 

We also investigated whether different classes of omics data would differ in their ability to 

accurately predict SL targets by measuring whether SL prediction by some data classes was 

better supported by CRISPR KO screens than others. Exploring various omics classes, each 

interrogating different facets of host-virus biology, we observed that despite varying VIH 

predictions, there was substantial overlap in the SL vulnerabilites predicted from different 

omics classes. This also indicates that a common set of biological pathways and functions 

may be altered upon SARS-CoV-2 infection. Our findings demonstrate that valid SL targets 

can indeed be derived from different omics data types. Furthermore, we speculate that omics 

datasets describing other ways in which viral infection alters normal gene and protein 

functions, such as changes in RNA splicing or additional post-translational modifications, 

might also be beneficial for SL prediction, but they are currently fewer in number. 

Analyzing the high-confidence SL targets predicted by different omics classes, we identified 

two primary clusters. The larger cluster included classes associated with transcription and 

translation, post-translational modifications, and host-viral protein interactions. The second 

cluster included classes associated with translation rate, cleavage, and RNA-binding 

behavior. We found that each data class varied in sensitivity and specificity in predicting SL 

targets based on functional assays such as CRIPSR KO screens (Figure S1), indicating that 
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some omics data classes might be more suitable than others for accurate SL prediction.  The 

fact that overall statistical precision was low across all data classes (Table 4), also emphasizes 

the need to reduce false positives. One way to do so is to limit predicted SL targets to those 

found depleted in CRISPR KO studies. 

Recent findings by Pal et al. (27) confirmed that transcriptomic data alone could be used to 

predict SL target genes leading to reduced viral replication and cell death in SARS-CoV-2-

infected cells when depleted. However, the authors reported a relatively modest difference in 

cell viability between infected and uninfected cells for at least half of their 26 top candidates. 

We noted substantial overlap in enriched cellular pathways and functions between our study 

and theirs, but also identified additional pathways that may become vulnerable in the virus-

infected cellular state, such as metabolic and transport processes, autophagy, biogenesis and 

maintainance of organelles, and polymerase II mediated transcription, that may contain 

significant SL targets.  Furthermore, our 738 high-confidence SL targets were enriched for 

multiple Reactome and GO terms associated with viral infection, confirming the relevance of 

the targets within the infection context. Our data suggest that inclusion of many diverse 

omics datasets as well as multiple CRISPR studies generates a large pool of SL candidate 

genes for further prioritization and validation. 

Broadening our investigation, we identified SL targets that may be pan-viral. Even with their 

distinct life cycles and biology, both coronaviruses and influenza viruses shared common 

host SL targets. While only eleven of our 71 targets were enriched in virus-associated 

pathways, our data suggest that the number of pan-viral targets based on synthetic lethality 

might be substantially larger. One known example is 60S ribosomal protein L28 (RPL28) 

which plays a role in negatively regulating an influenza A virus encoded peptide for antigen 

presentation, thus potentially modulating immunosurveillance (85). Another candidate SL 

target, charged multivesicular body protein 2A (CHMP2A), is a member of the endosomal 

sorting complex required for transport (ESCRT)-III machinery (86) and interacts with SARS-

CoV-2 Orf9b. Furthermore, CHMP2A has been shown to contribute to the budding of a 

variety of viruses, including HIV (87) , equine infectious anemia virus (EIAV) 401 , and murine 

leukemia virus (88) , suggesting a critical role for virus release and thus a potential role as 

pan-viral SL target. 
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Thus, our discovery significantly widens the future exploration scope for therapeutic 

strategies against multiple viruses, using combined drug regimens that could target two or 

more host genes at otherwise subtherapeutic levels, potentially minimizing off-target effects. 

It is important to note that our methodology, while promising, is not without limitations. We 

recognize that no single dataset or database can predict or validate virus-specific SL targets 

with absolute accuracy. For example, CRISPR KO depleted genes are not a true “gold 

standard” for SL prediction, but they currently provide the best available type of data suitable 

for assessing performance in support of a gene’s SL candidacy.  Additionally, the SynLethDB 

database used here contains synthetic lethal gene pairs derived primarily from cancer cell 

lines and tumors (54).  Thus, while it includes many SL interactions that are relevant in both 

cancer and viral infection states, it will contain some SL targets that are irrelevant in the 

virus-infected cellular state. It also may lack some targets that are important in viral 

infections. Yet, when available data are combined in the manner demonstrated in our study, 

they can predict a significant number of candidate SL genes that can be further constrained 

and validated in laboratory settings using virus-infected cell lines and animal models. 

For example, to prioritize targets, fold-change values in omics (27)and CRISPR data sets 

could be used to rank virus-impacted host proteins (VIHs) and functional depletion, 

respectively. The “SL statistics” score provided by SynLethDB and the number of VIH partners 

paired with a predicted SL target (27) could provide additional measures. Arguments that 

have been shown to enrich for SL interactions in a more generic manner include pairing 

paralogs (84) as well as co-regulated or mutually exclusive gene pairs (89, 90), in addition to 

pairing genes that exhibit certain network topology features (91). Some of these data-driven 

algorithms are part of SL-Cloud (90), a new platform that was developed for the cancer field 

but is essentially agnostic and can be utilized for infectious disease research. Any of the 

above metrics alone or in combination could be integrated into our pipeline upon laboratory 

confirmation of their usefulness in the viral infection context, enhancing precision and virus-

specificity.  

To summarize, our research has demonstrated that virus-specific SL targets can be predicted 

from various omics data classes, with varying levels of predictive power. Furthermore, these 

SL genes are highly enriched in depleted CRISPR KO data from virus-infected cells. Thus, our 
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pipeline allows for a new application of many already existing high-throughput infectious 

disease datasets which are often under-utilized. In human cells, each VIH was seen to form 

SL interactions with an average of three genes ; in yeast, every gene is in at least one 

synthetic lethal relationship across different growth conditions (10, 92).  Hence, it was not 

surprising that our study found many candidate SL targets for the two viruses investigated, 

all having the potential to specifically kill virus-infected cells. These candidate SL targets add 

substantially to the number of potential host-based antiviral targets previously described in 

the literature. With further validation, our presented strategy for identifying SL targets has 

the potential  to identify additional SL targets for other viruses and cell-dependent 

pathogens, leading to new specific and broadly-targeting host-based therapies against 

infectious diseases. 
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TABLE AND FIGURE LEGENDS 

Table 1. Omics data classes and datasets used to identify candidate synthetic lethal targets 

based on viral-induced hypomorphs. Table includes experimental methods and tissue/cell 

type used as well as the multiplicity of infection (MOI) and hours post infection (HPI). 

Table 2. Number of viral-induced hypomorphs (VIHs) identified among omics data classes, 

VIHs in SynLethDB, and synthetic lethal (SL) partners. Data classes are ordered by the 

number of unique SL partners they predicted. 

Table 3. CRISPR KO datasets used for validating predicted synthetic lethal targets. 
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Table 4. Metrics of performance among omics data classes for predicting valid synthetic 

lethal targets against SARS-CoV-2 infection. The total number of CRISPR-depleted non-

redundant candidate SL targets is 738. 

Table 5. Metrics of performance for predicting valid synthetic lethal targets against influenza 

infection using omics data from SARS-CoV-2 infections. The total number of non-redundant 

CRISPR-depleted candidate SL targets is 892. 

Table 6. Characteristics of candidate pan-viral synthetic lethal targets potentially useful for 

prioritizing their confirmation.  

 

Figure 1. Strategy for identifying antiviral synthetic lethal targets. A) Synthetic lethality in 

virus-infected cells: In uninfected cells, disrupting one member of an SL pair (A-B) does not 

impact viability. In infected cells, where one of the SL partners is hypomorphic, disrupting its 

SL partner can compromise cells, or cause cell death. That is, protein B suppresses the 

negative consequences of A becoming a viral-induced hypomorph when cells are infected. 

Conversely, protein A suppresses the negative consequences of drugging B in uninfected 

cells. However, the combination of a viral-induced hypomorph and targeting its SL partner 

with a drug has no recourse from these negative consequences and results in lethality. B) 

Workflow used for validating predicted SL targets from various omics data classes. SL: 

synthetic lethal; VIH: viral-induced hypomorph. 

Figure 2. Percentage of predicted viral-induced hypomorphs and synthetic lethal targets for 

individual omics data classes. For each class, bar width indicates the percentage of VIHs 

(blue) and SL targets (yellow) predicted out of the combined set of all predictions across data 

classes. For directional omics data, results are shown for gene products that increased (“up”) 

or decreased (“down”) in abundance. The numbers at the ends of the bars indicate absolute 

number of VIHs and SL targets identified. 

Figure 3. Heatmaps showing pairwise overlap of predicted viral-induced hypomorphs and SL 

partners across omics data classes. For each data class pairing, the degree of overlap of 

predicted hypomorphs (left) and synthetic lethal partners (right) was quantified using the 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 16, 2023. ; https://doi.org/10.1101/2023.08.15.553430doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.15.553430
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 
 

Jaccard index with darker purple indicating more significant overlap. The dendrograms on 

both axes indicate similar groupings of overlapping genes between omics data classes. 

Figure 4. Candidate synthetic lethal targets across omics data classes depleted in SARS-CoV-

2 CRISRP KO studies. Binary heatmap showing which of the 1,032 genes in the SARS-CoV-2 

CRISPR-depleted gene pool (rows) were predicted to be SL targets for each omics data class. 

Predicted targets  are indicated in blue (refer to Supplementary Tables S6 and S7 for gene 

names). Grey cells indicateCRISPR-depleted gene products not predicted to be an SL target. 

Rows are sorted by number of omics data classes predicting the product as an SL target. 

Figure 5. Candidate synthetic lethal targets across omics data classes depleted in Influenza A 

CRISRP KO studies. Binary heatmap showing which of the 1,693 genes in the influenza 

CRISPR-depleted gene pool (rows) were predicted to be SL targets for each omics data class. 

As in Figure 4, predicted targets are indicated in blue (refer to Supplementary Tables S8 and 

S9 for gene names). Grey cells indicate CRISPR-depleted products not predicted to be an SL 

target. Rows are sorted by number of data classes predicting the product as an SL target. 
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Table 1 

 
 
  

 

Data class Study Cell line Tissue/cell type MOI HPI Significance  

Transcriptome – RNA-seq 
(5 studies/14 datasets) Blanco-Melo, et al. Calu-3 bronchial epithelial 2 24 |log2FC| > 1 & FD     
 Blanco-Melo, et al. A549 alveolar basal epithelial 2 24 |log2FC| > 1 & FD     
 Blanco-Melo, et al. A549ACE2 alveolar basal epithelial 0.2 24 |log2FC| > 1 & FD     
 Blanco-Melo, et al. A549ACE2 alveolar basal epithelial 2 24 |log2FC| > 1 & FD     
 Blanco-Melo, et al. NHBE - primary cells bronchial epithelial 2 24 |log2FC| > 1 & FD     
 Blanco-Melo, et al. clinical - lung tissue alveolar & bronchial epithelial NA NA |log2FC| > 1 & FD     
 Stukalov, et al. A549ACE2 alveolar basal epithelial 2 6, 12, 24 |log2FC| > 1 & FD     
 Huang, et al. NHBE - primary cells lung epithelial 5 24, 96 |log2FC| > 1 & FD     
 Lieberman, et al. clinical - nasal swabs nasal epithelial & immune cells low/high NA |log2FC| > 1 & FD     
 Xiong, et al. clinical - BALF alveolar macrophages (mostly) NA NA |log2FC| > 1 & FD     

Proteome – Mass-spectrometry 
(5 studies/12 datasets) Appleberg, et al. Huh7 liver epithelial-like 1 48, 72vs488 |log2FC| > 0 & FD     
 Akgun, et al. clinical - nasal swabs nasal epithelial & immune cells NA NA |log2FC| > 0 & FD     
 Bojkova, et al. Caco2 colon epithelial 0.01 2, 6, 10, 24 |log2FC| > 0 & FD     
 Stukalov, et al. (glob&indiv) A549ACE2 alveolar basal epithelial 2 6, 12, 24 |log2FC| > 0 & FD     
 Weingarten-Gabbay, et al. A549ACE2/TMPRSS2 alveolar basal epithelial 3 24 |log2FC| > 0 & FD     
 HEK293TACE2/TMPRSS2 embryonic kidney epithelial 3 24 |log2FC| > 0 & FD     

RBP remodeling (RNA binding proteome) - cRIC 
(1 study/2 datasets) Kamel, et al. Calu3 bronchial epithelial 1 8, 24 log2FC| > 0 & FD     

Translatome - Mass-spectrometry    
(1 study/4 datasets) Bojkova, et al. Caco2Spec bronchial epithelial 0.01 2, 6, 10, 24 log2FC| > 0 & FD     

Phospho-proteome - Mass-spectrometry (MDLC-MS/MS) 
(2 studies/ 4 datasets) Klann, et al. Caco2 colon epithelial 1 24 |log2FC| > 1 & FD     
 Stukalov, et al.  A549ACE2 alveolar basal epithelial 2 6, 12, 24 |log2FC| > 1 & FD     

Ubiquitome - Mass-spectrometry 
(1 study/3 datasets) Stukalov, et al. A549ACE2 alveolar basal epithelial 2 6, 12, 24 log2FC| > 1 & FD     

Cleavage - Mass-spectrometry (neo-N-termini) 
(1 study/1 dataset) Meyer, et al. A549ACE2 alveolar basal epithelial 1 24 |log2FC| > 0 & St   

value <= 0.05 

Virus-host protein-protein interaction (BioID-MS) 
(6 studies/6 datasets) Liu, et al. tet-inducible HEK293T embryonic kidney epithelial  

NA              significant interacto    
 Samavarchi-Tehrani, et al. A549 alveolar basal epithelial  
 St-Germain, et al. HEK 293 Flp-In T-REx embryonic kidney epithelial NA 
 Meyers, et al. HEK293T embryonic kidney epithelial  
 Laurent, et al. HEK 293 Flp-In T-REx embryonic kidney epithelial  
 May, et al. A549 alveolar basal epithelial  

Virus-host protein-protein interaction (AP-MS) 
(5 studies/5 datasets) Gordon, et al. HEK293T embryonic kidney epithelial  

NA              significant interacto    
 Stukalov, et al. A549 alveolar basal epithelial  
 Zhou, et al. Caco2 colon epithelial NA 
 Li, et al. HEK 293 Flp-In T-REx embryonic kidney epithelial  
 Liu, et al. tet-inducible HEK293T embryonic kidney epithelial  

RNA-protein interaction – ChIRP-MS, vRIC, RAP-MS 
(3 studies/5 datasets) Flynn, et al. Huh 7.5 liver epithelial-like 0.01 24, 48 log2FC| > 0 & FD     
 Kamel, et al. Calu3 bronchial epithelial 1 8, 24 log2FC| > 0 & FD     
  Schmidt, et al. Huh 7 liver epithelial-like 10 24 log2FC| > 0 & FD     
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Table 2 

 
 
Table 3 

 
 
  

 

Data class N VIHs N VIHs in 
SynLethDB 

N SL partners 
of VIHs 

Cleavage 77 60 520 
Phosphoproteome 2448 1753 4491 
Proteome (down) 1244 798 3463 
Proteome (up & down) 2100 1334 5048 
Proteome (up) 994 621 3206 
RBP (down) 107 86 440 
RBP (up & down) 217 175 784 
RBP (up) 111 90 496 
Transcriptome (down) 11263 6632 9267 
Transcriptome (up & down) 14360 7774 9484 
Transcriptome (up) 6423 3111 6280 
Translatome (down) 49 26 148 
Translatome (up & down) 56 31 167 
Translatome (up) 7 5 25 
Ubiquitinome 224 176 2800 
Virus-host PPI (AP) 2076 1419 5273 
Virus-host PPI (BioID) 4191 2877 6184 
Virus-host RPI 312 251 1175 
Total unique genes 15,183 8,213 9,643 

 

 

 

Study Cell line Library Virus strain MOI DPI 
N depleted 

gene products 

SARS-CoV-2 
Biering Calu3ACE2/TMPRSS2 Brunello USA-WA1/2020 0.05 4 0 
Baggen Huh7 Brunello USA-WA1/2020 2.5, 0.1 41, 22 0 

Daniloski A549ACE2 GeCKOv2 
A&B USA-WA1/2020 1 6 0 

3 6 0 

Rebendenne Caco2ACE2 Brunello BetaCoV/France/IDF0372/2020 0.005 10-13 206 
Calu3 Gattinara BetaCoV/France/IDF0372/2020 0.005 10-13 0 

Schneider  Huh7.5 at 33°C Brunello USA-WA1/2020 0.01 5 63 
Huh7.5 at 37°C 0.1 5 73 

Wang Huh7.5ACE2/TMPRSS2 GeCKO USA-WA1/2020 0.01 12 3 

Zhu A549ACE2 Brunello SARS-CoV-2/human/CHN/SH01/2020 
(nCoV-SH01) 3 7+ 12 

Hou A549ACE2 H1 rec. 2019-nCoV/USA_WA1 5 2 84 

Grodzki 
HEK239ACE2 – initial infect 

Brunello UF-1 
 

0.01 (40% CPE) 
627 HEK239ACE2 - reinfect 0.01 (40% CPE) 

HEK239ACE2 - reinfect 0.1 (40% CPE) 

Israeli Calu3 Brunello B.1.1.7 (Alpha), B.1.351 (Beta), 
B.1.617.2 (Delta) 0.02-0.04 7-9 7 

Hoffmann Huh7 .5 at 33°C custom$ USA-WA1/2020 0.25 7 19 
Huh7 .5 at 37°C 0.25 11 21 

Influenza 

Han J, Cell Rep., 2018 A549 GeCKO H5N1 (VNO4LOW) 5 2(rd 2) 0 
5 2 (rd 5) 0 

Yi C, Cell Rep., 2022 A549 GeCKO H7N9 H7N9 
(A/chicken/Guangxi/97/2017) 0.01 10 (after 2 rds) 26 

Tran V, Synthego, 2020 A549 

GeCKO H1N1 (IAV-G, pseudotyped 
A/WSN/1933 strain) 0.3 20-21 (rd 1) 1 

GeCKO H1N1 (A/WSN/1933) 0.3 40-42 (rd 2) 2 

Brunello H7N7 (SC35M Flu-GFP; 
A/seal/Massachusetts/1-SC35M/1980) 0.1 63 (after 7 rds) 1669 

 
Significance cut-offs: L2FC < 0, FDR < 0.05 (Biering, Baggen Daniloski, Wang, Zhu, Hou, Grodzki, Israeli) or z-score < -1.96 (Rebendienne, Schneider, 
Hoffman) 
$ “Human SARS-COV-2 host protein interactome CRISPR library” including sgRNAs targeting 332 host factor proteins interacting with SARS-COV-2 
proteins and control sgRNAs 
# Influenza-virus infected cells were generally allowed to expand after each round of infection 
MOI: multiplicity of infection; DPI: days post-infection, rd(s): round(s) of infection 
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Table 4 

 
 
Table 5 

 
 
  

 

Data class 
N candidate SL targets 
also CRISPR-depleted 

Enrichment of SL targets in 
CRISPR-depleted genes 

-log10(FDR-adjusted P-value) 
Sensitivity Specificity Precision 

Virus-host PPI (BioID) 600 85.79 0.58 0.72 0.1 

Virus-host PPI (AP) 526 74.7 0.51 0.76 0.1 

Transcriptome (down) 732 71.69 0.71 0.58 0.08 

Transcriptome (up & down) 736 68.6 0.71 0.57 0.08 

Proteome (up & down) 490 63.63 0.47 0.77 0.1 

Transcriptome (up) 555 60.68 0.54 0.72 0.09 

Proteome (down) 378 58.08 0.37 0.85 0.11 

Virus-host RPI 188 48.94 0.18 0.95 0.16 

Phosphoproteome 418 46.26 0.41 0.8 0.09 

Proteome (up) 330 43.45 0.32 0.86 0.1 

RBP (up & down) 125 31.78 0.12 0.97 0.16 

RBP (down) 90 31.02 0.09 0.98 0.2 

Ubiquitinome 268 28.68 0.26 0.87 0.1 

Cleavage 93 27.41 0.09 0.98 0.18 

RBP (up) 74 17.15 0.07 0.98 0.15 

Translatome (up & down) 17 2.43 0.02 0.99 0.1 

Translatome (down) 15 2.21 0.01 0.99 0.1 

Translatome (up) 4 1.5 0 1 0.16 

 

 

 

Data class 

Enrichment of SL targets in 
CRISPR-depleted genes 

-log10(FDR-adjusted P-value) Sensitivity Specificity Precision 
Transcriptome (down) 3.07 0.51 0.54 0.09 
Transcriptome (up & down) 3.07 0.52 0.53 0.09 
Virus-host PPI (BioID) 2.22 0.34 0.69 0.09 
Proteome (up & down) 1.9 0.28 0.75 0.09 
Proteome (up) 1.83 0.18 0.84 0.1 
Transcriptome (up) 1.83 0.34 0.69 0.09 
Proteome (down) 1.43 0.19 0.83 0.09 
Virus-host PPI (AP) 1.43 0.29 0.74 0.09 
Phosphoproteome 1.34 0.24 0.78 0.09 
Ubiquitinome 0.9 0.15 0.86 0.09 
RBP (up & down) 0.81 0.05 0.96 0.1 
RBP (up) 0.77 0.03 0.98 0.1 
RBP (down) 0.71 0.03 0.98 0.1 
Cleavage 0.63 0.03 0.97 0.1 
Virus-host RPI 0.63 0.06 0.94 0.09 
Translatome (up) 0.14 0 1 0.08 
Translatome (down) 0.09 0.01 0.99 0.07 
Translatome (up & down) 0.09 0.01 0.99 0.07 
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Table 6 

 
 

 

 

 

Gene EMF 
gene 

Essential in 
N cell lines 

N 
paralogs Targeting drug (DrugBank ID) 

ACAD9 no 5 14  
ATXN7L3 no 3 4   
CHERP yes 9 0   
CHMP2A no 10 4  
COX4I1 no 9 1 DB02659; DB04464 
CPSF2 no 10 3  
DDX10 no 6 38  
DDX11 no 2 3  
DDX21 no 10 38  
DDX49 no 10 38  
DHX8 no 10 18  
DNAJC19 no 1 1  
DRAM1 no 0 4  
EEF2 no 10 18 DB02059; DB03223; DB04315; DB08348; DB11823; DB12688 
EIF2S3 no 8 18 DB04315 
F2R no 0 16 DB00086; DB05361; DB09030; DB11300 
FDX2 no 0 1  
GOLGA8O no 0 18  
GPN2 no 9 2  
ISCA2 no 5 1  
KDM2A no 4 4  
LIG3 no 2 2 DB00290 
MRPL43 no 8 0  
MRPS14 no 9 0  
MRPS21 no 5 0  
MTBP no 4 0  
MTIF2 no 7 18  
MYBBP1A no 10 0  
NBR1 no 1 0  
NOL10 no 10 0  
P4HB no 0 13 DB01593; DB03615; DB09130; DB11638; DB14487; DB14533; DB14548 
PCBP1 no 9 12  
PDE4DIP no 9 1  

PDPK1 yes 3 5 DB00482; DB01863; DB01933; DB01946; DB02010; DB03777; DB04522; 
DB06932; DB07033; DB07132; DB07300; DB07456; DB07457; DB12010 

PLEKHF2 no 0 13  
POLD1 no 5 3  
POLR2A no 10 2  
POLR2J no 0 3  
PPP2R1A no 9 2 DB02506; DB06905 
PRPF8 no 10 0  
PTRH1 no 1 0  
PWP2 no 10 0  
RAD51 no 10 6 DB04395; DB12742 
ROS1 no 0 53 DB11986; DB12010 
RPL11 no 10 0 DB02494; DB07374; DB08437 
RPL18 no 10 0 DB11638 
RPL28 no 0 0  
RPL3 no 8 1 DB02494; DB04865; DB07374; DB08437; DB09092 
RPL36 no 7 0  
RPLP1 no 6 2  
RPP25 no 2 1  
RUVBL1 no 10 1  
SBNO1 no 9 1  
SERINC3 no 0 4  
SLX4 no 1 0  
SMAD6 no 0 7  
SMC2 no 10 7  
SMC5 no 8 1  
SUPT4H1 no 5 0  
TAF6 no 10 1  
TP53RK no 9 0  
TPT1 no 7 0 DB11093; DB11348; DB14481 
TRRAP no 10 5   
TSR3 no 1 0   
TUBB4B no 0 23 DB00518; DB00643; DB01873; DB03010; DB04910; DB05147; DB12695  
TXN no 5 4 DB12695  
U2AF1L4 no 0 2   
UBE2I yes 9 24   
UFD1 yes 0 0   
VPS25 no 10 0   
WAPL no 0 0   

 

EMF: Extremely multi-functional (MoonDB 2.0). The 16 highlighted genes are not EMF, are essential in ≤ 3 cell lines and 
have ≤ 5 paralogs. However, we recommend that each gene be examined on a wider range of merits and/or by possible 
ranking algorithms, before testing on the bench.  While we consider these to be important characteristics, no 
characteristic alone indicates a high-level SL target. 
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Figure 1 - Strategy for identifying antiviral synthetic lethal targets. 
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Figure 2 - Percentage of predicted viral-induced hypomorphs and synthetic lethal targets for 
individual omics data classes.  
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Figure 3 - Heatmaps showing pairwise overlap of predicted viral-induced hypomorphs and 
SL partners across omics data classes.  
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Figure 4 - Candidate synthetic lethal targets across omics data classes depleted in SARS-
CoV-2 CRISRP KO studies.  
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Figure 5 - Candidate synthetic lethal targets across omics data classes depleted in Influenza 
A CRISRP KO studies.  
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