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ABSTRACT: Deep mutational scanning (DMS) is a high-throughput
experimental technique that measures the effects of thousands of mu-
tations to a protein. These experiments can be performed on multiple
homologs of a protein or on the same protein selected under multiple
conditions. It is often of biological interest to identify mutations with
shifted effects across homologs or conditions. However, it is chal-
lenging to determine if observed shifts arise from biological signal or
experimental noise. Here, we describe a method for jointly inferring
mutational effects across multiple DMS experiments while also identi-
fying mutations that have shifted in their effects among experiments.
A key aspect of our method is to regularize the inferred shifts, so
that they are nonzero only when strongly supported by the data. We
apply this method to DMS experiments that measure how mutations
to spike proteins from SARS-CoV-2 variants (Delta, Omicron BA.1, and
Omicron BA.2) affect cell entry. Most mutational effects are conserved
between these spike homologs, but a fraction have markedly shifted.
We experimentally validate a subset of the mutations inferred to have
shifted effects, and confirm differences of >1,000-fold in the impact
of the same mutation on spike-mediated viral infection across spikes
from different SARS-CoV-2 variants. Overall, our work establishes a
general approach for comparing sets of DMS experiments to identify
biologically important shifts in mutational effects.
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Deep mutational scanning (DMS) is a high-throughput1

experiment that measures the effects of thousands of2

mutations to a protein (1, 2). It has been used to study a3

wide variety of proteins, helping to map how mutations af-4

fect phenotypes such as binding, catalysis, stability, and viral5

replication, among others (1–11). An additional application6

of DMS is to perform it on different homologs of the same pro-7

tein (12–19), or on the same homolog under different selective8

conditions (20–27). In such cases, comparing the results can9

reveal how much the effects of specific mutations have shifted10

between homologs (due to epistasis) or between conditions11

(due to distinct selective pressures).12

However, when comparing DMS experiments, a key chal-13

lenge is determining whether observed differences in muta-14

tional effects are due to real biological signal or the noise15

inherent in any high-throughput experiment. Previous studies16

have addressed this challenge by separately inferring muta-17

tional effects in each experiment, and then trying to identify18

mutations with differences between experiments that are signif-19

icantly larger than the experimental noise (12). However, this20

approach does not consider certain aspects of the data that21

are informative. First, most mutations have similar effects22

across protein homologs or selective pressures, with only a 23

small fraction of mutations typically having large shifts in their 24

effects (12–17, 20–25, 28). Second, differences in measured 25

mutational effects across homologs or conditions are more 26

likely to represent true biological shifts than noise when the 27

measurements for a mutation have higher confidence (such 28

as when the mutation is present in more unique variants in 29

the experimental libraries). If one infers mutational effects 30

for each experiment independently, this fails to directly use 31

these two features of the data when assessing whether the 32

differences represent real shifts or noise. 33

Here, we present an approach that jointly infers mutational 34

effects across multiple experiments, and also assesses how 35

much the effect of each mutation has shifted across homologs 36

or conditions. As part of this approach, the inferred shifts 37

in effects are regularized, encouraging their values to be zero 38

unless nonzero shift values are strongly supported by the data. 39

Therefore, our approach effectively allows all experiments to 40

inform a shared set of mutational effects, while also allow- 41

ing a subset of these effects to be shifted across homologs or 42

conditions when the data strongly support it. Our statisti- 43

cal methods apply sparse estimation techniques, a family of 44
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tein, or on the same protein selected under different conditions.
We use this approach to compare experiments performed on
three homologs of SARS-CoV-2 spike, identifying mutations
that have shifted in their effect on spike-mediated viral infection
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methods—most notably the lasso—for inferring compressed45

or structured models (29).46

We implement this approach in an open-source Python47

package called multidms and use it to compare DMS experi-48

ments of three homologs of SARS-CoV-2 spike. We find that49

most mutations have similar effects among the homologs, but50

that a few have large shifts in their effects. The sites with51

large shifts in mutational effects span several regions of spike,52

including the N-terminal domain (NTD), receptor-binding do-53

main (RBD), and regions involved in conformational dynamics54

and inter-protomer packing. These sites tend to cluster near55

each other in spike’s 3D structure, but are often far away from56

non-identical sites that differ in amino-acid sequence between57

homologs, suggesting that many shifts are due to long-range58

epistasis. We experimentally validate a subset of the inferred59

mutational shifts, identifying some mutations that differ in60

their effect on spike-mediated viral entry by >1,000-fold be-61

tween homologs.62

Results63

Model summary. We assume the DMS data report an experi-64

mentally measured functional score for each protein variant65

from each homolog or condition, where a variant corresponds66

to a unique protein sequence covering the entire mutagenized67

region. This requirement is usually satisfied by DMS exper-68

iments that either sequence the entire length of the mutag-69

enized gene, or use barcoding to link full gene sequences to70

barcodes (8, 30). Each mutation may be present in one or more71

variants, potentially in combination with other mutations.72

Given data from multiple DMS experiments, we devised73

a custom version of a global-epistasis model (31) to infer74

mutational effects in one of the experiments — defined as a75

reference experiment — and shifts in mutational effects in each76

of the other experiments relative to the reference (Figure 1).77

We present our model with formal notation in Materials and78

Methods, and summarize it informally here. Each variant v79

from each experiment d is modeled to have a latent phenotype:80

ϕd(v) = β0 + αd +
∑
m∈v

(βm + ∆d,m) ,81

where β0 is the latent phenotype of the wildtype (i.e., un-82

mutated) sequence from the reference experiment, αd is an83

experiment-specific offset parameter described below, βm is the84

latent effect of mutation m in the reference experiment, and85

∆d,m is the shift in the mutation’s latent effect in experiment86

d relative to the reference experiment. We fix ∆d,m = αd = 087

when d is the reference experiment. The summation term88

adds the effects of all mutations that separate v’s sequence89

from the reference experiment’s wildtype sequence. Thus, all90

variants from all experiments are modeled relative to the ref-91

erence experiment’s wildtype sequence. If the experiments92

have different wildtype sequences (i.e., were performed on93

different homologs of a protein), then the model treats wild-94

type sequences from non-reference experiments as variants95

with mutations, and models them based on the effect of each96

mutation separating the homologs. The same logic is used97

for mutant variants from such non-reference experiments. If98

one or more of the mutations separating homologs are not99

included in the DMS libraries (e.g., indel mutations), then100

the individual βm and ∆d,m parameters for these mutations101

cannot be inferred from the data, in which case we remove102

𝛽m

Δd,m

mut. variant from ref. experiment

wildtype sequence
(same for both experiments 
in this example)

latent phenotype

fu
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na
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Fig. 1. Approach to model multiple DMS experiments with a single global-epistasis
model. One experiment is chosen to be a reference experiment, and the wildtype
sequence from that experiment (black dot) has an inferred latent phenotype. The
phenotypes of all variants from all experiments are defined relative to this wildtype
sequence. Mutations to the wildtype sequence change its latent phenotype in an
additive fashion. For each mutation m, the model infers the latent effect of m in the
reference experiment as βm. For each non-reference experiment d, it also infers the
shift in the mutation’s effect in d relative to the reference experiment as ∆d,m. Lasso
regularization is used to drive inferred shifts ∆d,m to zero unless they are strongly
supported by the data, as symbolized by the tan rubber band. The model also infers
a global-epistasis function (grey curve), which maps changes in latent phenotype to
predicted changes in functional score. The blue dot shows the inferred location of a
variant from the reference experiment with a single mutation m with effect βm. The
red dot shows the inferred location of the same mutant variant from a non-reference
experiment d. These variants have different predicted functional scores, which in the
model is due to the inferred shift ∆d,m. If this nonzero shift greatly improves model fit
it will be resistant to regularization. This example assumes that the two experiments
have the same wildtype sequence and differ in the selection conditions; the situation
is slightly more complicated if the two experiments differ in the wildtype sequence of
each homolog, which is described in the main text.

them from the summation term and use a single parameter αd 103

to infer their combined effect. This parameter can be fixed to 104

zero if all relevant mutations have DMS measurements. The 105

SI Appendix describes the above logic in greater detail. 106

Next, the model uses a global-epistasis function (31) to map 107

latent phenotypes to predicted functional scores: 108

ŷd(v) = g (ϕd(v)) , 109

where g is a monotonically increasing nonlinear function, such 110

as the sigmoid in Figure 1, which allows mutations to have 111

nonadditive effects on functional scores, and helps to model 112

saturation effects from global (i.e. nonspecific) epistasis or 113

experimental limits of detection (31–35). Previous studies have 114

explored a variety of functions for mapping latent phenotypes 115

to functional scores (11, 25, 31, 36–38), ranging from functions 116

that are more flexible (e.g., splines) to ones that are more 117

constrained (e.g., sigmoids), and multidms allows the user to 118

select among various options for g. In this study, we used the 119

following sigmoidal function: 120

g(z) = θ0 + θ1

1 + e−z
, 121

where the θ parameters allow the sigmoid to be fit to the range 122

of observed functional scores. We chose a sigmoid since more 123

flexible functions did not improve model fit (data not shown). 124

To estimate the above model parameters, we minimize an 125

objective that combines a loss term (measuring the difference 126
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between predicted and experimentally measured functional127

scores), and a lasso regularization term that encourages the128

inferred shifts to be zero. Specifically, for each shift parameter,129

the lasso term adds a penalty that scales linearly with the130

absolute value of the shift. If a shift in the effect of a specific131

mutation is strongly supported by the experimental data, then132

inferring a nonzero shift for this mutation will decrease the133

loss term enough to overcome the regularizing effect of the134

lasso term. How strongly a shift is supported by the data135

is influenced by multiple factors, including whether the shift136

substantially minimizes the loss term for an individual variant,137

an example of which is illustrated in Figure 1, and whether it138

does so repeatedly across many unique variants. The strength139

of the lasso penalty can be tuned so that it is strong enough140

to drive shifts to zero if they are only weakly supported by the141

data, helping reduce the impact of experimental noise, but not142

so strong that it prevents the model from learning authentic143

signal.144

We implemented the model described above in a Python145

package called multidms. See https://github.com/matsengrp/146

multidms for the code; see https://matsengrp.github.io/multidms/147

for the documentation.148

Inferring shifts in mutational effects between SARS-CoV-2149

spike homologs. We applied the above approach to infer shifts150

in mutational effects between three homologs of the SARS-151

CoV-2 spike protein: Delta, Omicron BA.1, and Omicron152

BA.2. The Delta and BA.1 homologs are separated by 43153

amino-acid mutations and indels (97% identity), while the154

two Omicron homologs are separated by 27 mutations (98%155

identity). Given the high percent identity, we expected most156

mutations to have similar effects among homologs.157

As input to our analysis, we used previously published158

DMS data on how mutations to the spikes of Delta and BA.1159

affect spike-mediated viral entry in the context of pseudotyped160

lentiviruses (39), as well as comparable data for the spike of161

BA.2 that we generated in new experiments performed for162

the current study. The DMS experiments used spike mutant163

libraries that each contained ∼66,000 to 139,000 variants, with164

an average of ∼2 to 3 amino-acid mutations per variant (Figure165

S1A), and with each amino-acid mutation seen in an average of166

∼10 variants (Figure S1B). As described in (39), these libraries167

were designed to largely include only amino-acid mutations168

that are observed among the millions of sequenced natural169

SARS-CoV-2 isolates, which excludes many highly deleterious170

mutations. Functional scores were calculated based on the171

ability of each spike variant to mediate pseudovirus infection of172

cells expressing ACE2, as described in (39), and then truncated173

at a common lower bound across all experiments based on174

the dynamic range of the assay (see Materials and Methods).175

For each homolog, the DMS experiment was performed with176

at least two biological replicates starting from independently177

generated libraries. The functional scores were only moderately178

correlated among variants that were present in both replicate179

libraries for a given homolog (Pearson R ∼0.5-0.9; Figure180

S2A), indicating a non-trivial level of noise in the data.181

We fit a single multidms model for the three homologs,182

using just one of the DMS experiments for each homolog. We183

used BA.1 as the reference because it had the lowest level of184

noise (Figure S2A), but found that the results correlated well185

between choices of reference (Figure S3). In fitting the model,186

we tested a wide range of lasso penalty strengths, choosing one187

that was strong enough to reduce signs of overfitting, but not 188

so strong that it prevented the model from learning apparent 189

signal in the data (see Materials and Methods; Figure S4). To 190

gauge reproducibility, we repeated the entire fitting procedure 191

on a separate set of replicate DMS experiments, using one 192

experiment per homolog as above. 193
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Fig. 2. Inferred mutational effects. (A) Distribution of inferred mutational effects in
BA.1 (βm) averaged between replicates and partitioned by categories: nonsynony-
mous mutations, in-frame codon-deletion mutations, and mutations to stop codons.
In panels A and C, βm values are clipped at a lower limit of -5. (B) Corresponding
distributions of inferred shifts in mutational effects (∆d,m) for Delta or BA.2 relative
to BA.1, averaged between replicates. (C) Correlation of mutational effects in BA.1
between replicates. r reports the Pearson correlation coefficient. (D) Correlation of
shifts in mutational effects for Delta (left) or BA.2 (right) between replicates. (E) and
(F) are similar to C and D, but show results from separately fitting a single model to
each homolog’s DMS experiment, instead of the joint-fitting approach. Panel E shows
the correlation of mutational effects inferred from replicate BA.1 experiments, clipped
at a lower limit of -10. Panel F shows the correlation of shifts for either Delta or BA.2
relative to BA.1 as inferred from a given set of replicate experiments, where shifts are
computed by subtracting the mutational effect inferred for either Delta or BA.2 by the
mutational effect inferred for BA.1.

Most mutational effects are conserved between homologs, but 194

a subset have large shifts. We analyzed the inferred mutational 195

effects, focusing on the 5,934 mutations seen at least once 196

across all three homolog DMS experiments. Because we used 197

BA.1 as the reference, the inferred βm parameters quantify the 198

effects of mutations in BA.1, while the inferred shift parameters 199

quantify shifts in effects in Delta or BA.2 relative to BA.1. 200

Figure 2A shows the distribution of inferred mutational 201

effects in BA.1, averaged between the two models indepen- 202
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dently fit to different replicate datasets. Nearly all mutations203

to stop codons had strongly deleterious effects, indicating they204

greatly impaired spike-mediated viral entry as expected. Most205

nonsynonymous and in-frame codon-deletion mutations had206

roughly neutral effects, while a subset had deleterious effects.207

These patterns are expected given that the library-design208

strategy targeted amino-acid mutations observed in natural209

SARS-CoV-2 sequences, most of which are expected to be well210

tolerated.211

Figure 2B shows the distribution of inferred shift parame-212

ters for either Delta or BA.2 relative to BA.1, also averaged213

between the independent fits to different replicates. Nearly all214

mutations to stop codons had shifts of zero, which is expected215

since these mutations should be equally deleterious in each216

homolog. Most nonsynonymous and codon-deletion mutations217

also had small shifts near zero, indicating that most muta-218

tional effects are conserved between homologs. However, a219

small fraction of mutations had large shifts in effects between220

BA.1 and Delta or BA.2 (Figure S5), suggesting that the221

effects of these mutations are influenced by strong epistatic222

interactions.223

Both βm and shift parameters were well correlated between224

the independent fits to different replicates (R ∼0.7 for shift225

parameters; Figure 2C and D), showing that estimates were226

reproducible for the entire experimental/computational work-227

flow. For comparison with the joint model, we separately fit228

a single global-epistasis model to each homolog’s DMS data229

and then computed shifts by subtracting the inferred muta-230

tional effects between homologs. While mutational effects231

inferred for BA.1 were still well correlated between replicate232

fits (Figure 2E), the inferred shifts had a much lower corre-233

lation (R ∼0.4-0.5; Figure 2F), showing that the regularized234

shifts inferred by the joint model were much more reproducible235

across noisy experiments, and so more likely to reflect real236

biological signal.237

Shifted mutations occur in multiple domains of spike. Sites238

with shifted mutational effects occurred across the length of239

spike (Figure 3). Several trends were apparent. If a mutation240

was strongly shifted, then at least a few other mutations at241

the same site or neighboring sites also tended to be shifted in242

the same direction, which could indicate a common epistatic243

mechanism underlying the group of shifts. This clustering244

of mutations with shifted effects results in punctuated pat-245

terns of shifts across primary sequence. The shifts in Delta246

were mostly positive, as further discussed below. BA.2 had247

a mix of positive and negative shifts, with negative shifts248

concentrated in the NTD and positive shifts concentrated249

in other domains. Many shifts were unique to either Delta250

or BA.2, though some shifts were similar in both (e.g., sites251

568-572; Figure S6), suggesting that some mutations were252

uniquely shifted in BA.1 relative to both Delta and BA.2.253

See https://matsengrp.github.io/SARS-CoV-2_spike_multidms/254

spike-analysis.html#shifted-mutations-interactive-altair-chart for255

an interactive heat map that enables more detailed analyses256

of the mutational shifts.257

Experimental validation of mutational shifts. We experimen-258

tally validated the inferred shifts in mutational effects using259

spike-pseudotyped lentiviral particles (40). Specifically, we260

generated luciferase-expressing lentivirus pseudotyped with261

spikes carrying individual mutations inferred to have large262

shifts in mutational effects in the above analysis. We then 263

measured the viral titer of these spike-pseudotyped lentiviruses 264

in ACE2-expressing 293T cells and compared the titers of each 265

mutant to the titers of an unmutated spike for each homolog, 266

performing each experiment in triplicate (Figure 4). 267

As expected, some mutations inferred to have undergone 268

large shifts in their effects caused large changes in viral titer 269

in some homologs (Figure 4A). In general, the changes in 270

viral titers for different homologs were well correlated with 271

the inferred shifts from the joint modeling of the DMS data 272

(Figure 4B). 273

The most striking shift was for mutation A419S, which is 274

highly deleterious in BA.1 and BA.2 (causing a >1,000-fold 275

drop in titer), but is nearly neutral in Delta. The mechanistic 276

basis of this shift is easily understood: A419S introduces an N- 277

linked glycan at 417 in BA.1 and BA.2 (which have N417), but 278

not in Delta (which has K417). This glycan greatly reduces 279

ACE2 affinity (16, 17), making A419S highly deleterious in 280

BA.1 and BA.2 but not Delta. 281

The other validated mutations showed a similar pattern, 282

where each mutation was highly deleterious in at least one 283

homolog and substantially less deleterious in at least one other, 284

with specific patterns differing by mutation. In nearly all cases, 285

the inferred shifts in latent phenotype matched the experimen- 286

tally measured shifts in effects on viral titer. These mutations 287

occur in multiple regions of spike. D142L is in one of multiple 288

loops in the NTD that form an antigenic supersite (41) and 289

help modulate the efficiency of spike-mediated cell entry (42). 290

The A570D and K854N mutations are both within a region 291

in spike’s structure that regulates the balance between the 292

up and down conformations of the RBD (Figure 5A) (43). 293

The A570D mutation was proposed to be a key mutation that 294

altered this up/down balance in the Alpha variant (43). The 295

T1027I mutation is in the central helix, which forms part of 296

spike’s trimerization interface. The mechanistic basis of these 297

other validated shifts is less clear to us. But, together, they 298

suggest that there have been large shifts in mutational effects 299

relating to multiple functional and structural properties of 300

spike. 301

The validated mutations were often deleterious in BA.1 302

and considerably less deleterious in Delta due to large positive 303

shifts. In general, shifts in Delta tended to be positive (Fig- 304

ure 3), and the corresponding shifted mutations tended to be 305

deleterious in BA.1 (Figure S7), suggesting that Delta might 306

be more mutationally tolerant than BA.1. Indeed, BA.1’s 307

spike, and the monomeric version of its RBD, were found to be 308

substantially less stable than those from the original D614G 309

strain (44), which could lead to a lower tolerance for muta- 310

tions (32). However, at least part of this bias could come from 311

experimental artifacts (e.g., purifying selection was weaker in 312

Delta’s DMS experiments than BA.1’s and BA.2’s; Figure S2). 313

In an effort to further validate the inferred shifts, we com- 314

pared our inferences to ones that we computed from other 315

studies, including DMS experiments of RBD homologs measur- 316

ing mutational effects on ACE2 binding and RBD expression 317

on the surface of yeast (16, 17), and a computational study 318

that estimated mutational effects by analyzing millions of se- 319

quenced SARS-CoV-2 genomes from nature (45). Mutational 320

effects in BA.1 and shifts in Delta and BA.2 relative to BA.1 321

were correlated between our study and these studies (Figure 322

S8), lending additional support to our inferences. The other 323
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Fig. 3. Distribution of shifts in spike’s primary sequence. Panels (A) and (B) show shifts for Delta and BA.2, respectively, relative to BA.1. The scatter plots show the values
of all shift parameters at each site across spike’s primary sequence, with each dot corresponding to a parameter for a single mutation. Triangles at top mark the location of sites
that differ in amino-acid identity in the homolog (Delta or BA.2) relative to BA.1. The diagram above the Delta’s scatter plot shows spike’s domain architecture. Heat maps show
the shift parameters for individual mutations in key regions of spike with large shifts, with the color scale truncated at lower and upper limits of -2 and 2. Boxes with an “x” in the
heat maps indicate the BA.1 amino-acid identity at a site. If the Delta or BA.2 wildtype amino acid differs from the BA.1 wildtype amino acid, then boxes with a circle indicate the
Delta or BA.2 identity. A grey box indicates that the mutation was not observed in at least one of the three homolog DMSs; this is the case for many mutations as the libraries
were largely designed only to include mutations observed among sequenced SARS-CoV-2 sequences (39).
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Fig. 4. Experimental validation that a set of mutations inferred to have shifted ef-
fects indeed have different impacts on spike-mediated viral infection. (A) Titers of
lentiviruses pseudotyped with the given spike variant, in relative light units (RLU)
per µL of virus. The points represent at least three independent replicates for each
variant, and are colored by the spike homolog (Delta, BA.1, or BA.2). (B) Correlation
of the predicted effect of each mutation in each spike homolog versus the actual ex-
perimentally measured impact of that mutation on spike-mediated viral infection. Each
panel shows data for a different mutation. The y-axis shows the fold change in viral
titer (from panel A) caused by the mutation relative to the unmutated spike homolog.
The x-axis shows the inferred latent mutational effect of each mutation in each genetic
background, expressed as the mutation’s effect in the reference background (βm)
plus the mutation’s shift (∆d,m).

studies also suggest that Delta might be more mutationally324

tolerant than BA.1 (Figure S7).325

Distribution of shifts in spike’s structure. Sites with strongly326

shifted mutations tended to cluster in three-dimensional space327

(Figure 5A and B). We hypothesized that this clustering was328

occurring near sites that are non-identical between homologs,329

since differences in wildtype amino acids could lead to shifts at330

neighboring sites from short-range epistatic interactions. Sur-331

prisingly, although some sites with large shifts were structurally332

adjacent to non-identical sites, many were not (Figure 5C),333

suggesting that many shifts are due to long-range epistatic in-334

teractions between a shifted site and one or more non-identical335

sites. Thus, during spike’s evolution, mutations to one part of336

the protein can change its mutational tolerance elsewhere in337

the protein in unpredictable ways. A similar trend was seen338

in a study of shifts in mutational effects between homologs of339

HIV’s envelope protein (14). Both SARS-CoV-2 spike and HIV340

envelope are highly complex and conformationally dynamic341

proteins, which may facilitate such long-range interactions.342

Discussion343

We describe a general method for jointly fitting a single model344

to multiple DMS experiments to identify mutations that have345

shifted effects across homologs or selective conditions. Algo- 346

rithmically, the method is essentially an extension of global- 347

epistasis models (31) to multiple experiments, which is useful 348

because it allows the model to directly assess whether apparent 349

shifts are strongly supported by the data from each experiment. 350

We show the method can be used to identify shifts in muta- 351

tional effects among three homologs of SARS-CoV-2 spike. 352

The inferences in the model validate extremely well in experi- 353

ments, with some mutations having effects on spike-mediated 354

viral infection that differ by >1,000 fold between homologs. 355

We also demonstrate that the shifts inferred using the joint- 356

modeling approach are more consistent between replicates 357

than ones inferred by separately modeling each experiment, 358

suggesting that the joint-modeling approach is more effective 359

at extracting real biological signal from noisy experiments. 360

Our method does make several assumptions. First, the 361

joint-modeling approach assumes that most mutations have 362

similar effects between experiments. This approach would 363

not make sense if many mutations are expected to have large 364

shifts, which can occur when comparing highly divergent ho- 365

mologs (18, 19). Second, by modeling all experiments on the 366

same global-epistasis curve, the approach assumes that func- 367

tional scores are directly comparable between experiments. 368

This is not guaranteed. For instance, enrichment ratios are 369

usually computed relative to the wildtype sequence from a 370

given experiment. If the experiments have different wildtype 371

sequences, the resulting enrichment ratios will systematically 372

differ between experiments, which poses a problem if the wild- 373

type sequences have large fitness differences. This did not 374

appear to be a significant issue when comparing the spike 375

homologs in this paper, perhaps because each wildtype spike 376

homolog is roughly equally proficient at supporting the entry 377

of pseudoviruses into cells (Figure 4A). However, in future 378

use cases where this might be an issue, the SI Appendix and 379

online documentation for multidms suggest strategies for nor- 380

malizing functional scores between experiments to help make 381

them comparable. 382

Despite the above assumptions, we envision that our 383

method could be applied to many future studies comparing 384

DMS experiments. Most DMS experiments have appreciable 385

levels of noise, necessitating a method to account for noise 386

when comparing them. Our method enables the use of global- 387

epistasis models to analyze libraries with multiple mutations 388

per variant, but is also compatible with libraries that only have 389

a single mutation per variant (see SI Appendix). Further, we 390

developed an open-source software package with comprehen- 391

sive documentation so that others can easily use our method. 392

Altogether, this method could greatly accelerate future use of 393

DMS to identify mutations with biologically interesting shifts 394

in effects. 395

Materials and Methods 396

Data and code availability and reproducibility. The multidms Python 397

package is available via the Python Package Index (PyPI). It pro- 398

vides tools for processing functional scores from DMS data, fitting 399

a multidms model to the data, and generating plots for analyz- 400

ing the results. The core models and optimization algorithms are 401

implemented using the JAX and JAXopt packages, enabling auto- 402

matic differentiation and just-in-time compilation for high per- 403

formance on CPU and GPU (47, 48). The source code is avail- 404

able and maintained at https://github.com/matsengrp/multidms, and 405
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A B

C

Fig. 5. Distribution of shifts in spike’s three-
dimensional structure. (A) The trimeric
ectodomain of spike with a single RBD in the up
conformation (PDB 7TL9 (46)). The surface of the
structure is colored by the maximum absolute value
of all shift parameters at a given site, with the top
and bottom images showing data for Delta and
BA.2, respectively. Text indicates the location of
the two NTDs and one RBD that are readily visible
from this angle, as well as the up/down-modulating
region that includes sites 568-573 and 843-856
from Figure 3. Images created using dms-viz
(https://github.com/dms-viz). (B) We analyzed
data across three different structures of spike with
either zero, one, or two RBDs in the up confor-
mation (PDB 7TF8, 7TL9, 7TGE (46)). For each
pair of sites in spike’s primary sequence, we com-
puted the minimum distance between those sites in
the above structures, considering all heavy atoms
from the corresponding residues. In the plots, each
dot corresponds to an individual site, where the y-
axis shows the maximum absolute value of all shift
parameters at a given site and the x-axis shows
this value averaged across all neighboring sites,
where sites are considered neighbors if the mini-
mum distance between them is less than 5Å. The
left and right plots show data for Delta and BA.2,
respectively, and r and p report the Pearson cor-
relation coefficient and corresponding p-value. In
each plot, the data are positively correlated, indi-
cating that sites with large shifts tend to occur near
other sites with large shifts. (C) Same as panel
B, but the x-axis now shows the minimum distance
of a given site to the nearest non-identical site be-
tween BA.1 and the given homolog, clipped at a
maximum value of 50Å.

carries an MIT license. For further details on installation, inter-406

face, how to contribute and more, see our package documentation407

(https://matsengrp.github.io/multidms/).408

For the full analysis pipelines used to generate functional scores409

from raw DMS data for a given spike homolog, see:410

• Delta (39): https://dms-vep.github.io/SARS-CoV-2_Delta_spike_411

DMS_REGN10933/412

• BA.1 (39): https://dms-vep.github.io/SARS-CoV-2_Omicron_BA.1_413

spike_DMS_mAbs/414

• BA.2 (from this study): https://dms-vep.github.io/SARS-CoV-2_415

Omicron_BA.2_spike_DMS/416

We created a GitHub repository (https://github.com/matsengrp/417

SARS-CoV-2_spike_multidms) with all code used to curate the above418

DMS data, fit multidms models to these data, and make all fig-419

ures in the paper. The code, as well as a step-by-step expla-420

nation of the analysis pipeline, is in a single Jupyter Notebook,421

an HTML version of which can be viewed at https://matsengrp.422

github.io/SARS-CoV-2_spike_multidms/ (49). The repository also in-423

cludes all input data, key ouptut files, and instructions for run-424

ning the notebook. Finally, we make the shift parameters (∆d,m)425

accessible at https://matsengrp.github.io/SARS-CoV-2_spike_multidms/426

spike-analysis.html#shifted-mutations-interactive-altair-chart as an inter-427

active version of Figure 3 made using Altair (50).428

Jointly modeling multiple DMS experiments. We now define notation429

and introduce our model more formally. Let M ∈ N denote the430

number of distinct mutations, and represent a given variant v ⊂431

M ≡ {1, . . . , M} as an index set of the mutations it contains (v is in432

the set of subsets of the M mutations, i.e. v ∈ V ≡ 2M, where 2M433

denotes the power set of M). We depart from the informal main434

text notation and represent a variant v as an indicator (one-hot)435

vector xv ∈ {0, 1}M where [xv ]i = 1 if i ∈ v and [xv ]i = 0 otherwise.436

We will express the model in vector/matrix notation, rather than437

the element-wise notation used in the main text model summary438

(we use column vectors by convention).439

Let D ∈ N be the number of experiments (the letter D is 440

used as a mnemonic for DMS) and write 1D for the D-vector of 441

ones. We introduce an additive latent phenotype model jointly for D 442

experiments via a family of affine maps ϕ(β0,α,β,∆) : {0, 1}M → RD 443

defined by 444

ϕ(β0,α,β,∆)(x) = β01D + α + (1Dβ⊺ + ∆)x, x ∈ {0, 1}M , [1] 445

where the family is parameterized by intercept β0 ∈ R and muta- 446

tional effects β ∈ RM that are shared by all D output dimensions, 447

global offset α ∈ RD, and shift matrix ∆ ∈ RD×M . We require 448

that the first row of ∆ is the zero M-vector and the first element 449

of α is zero, so that the reference experiment (indexed 1 WLOG) 450

has no shifts, and β is then interpreted as the vector of mutational 451

effects in the reference experiment, with the intercept β0 represent- 452

ing the latent phenotype of the wildtype sequence in the reference 453

experiment. 454

Next, we introduce a global-epistasis function via a family of 455

strictly monotone maps gθ : R → R that we use to take latent phe- 456

notypes to predicted functional scores. This family is parameterized 457

by θ ∈ Rr for some r ∈ N. For the results presented in this study, 458

we use the sigmoid function 459

gθ(z) = θ0 +
θ1

1 + e−z
, z ∈ R, [2] 460

with r = 2 parameters, which allows us to adapt the output range of 461

the global-epistasis function (the interval (θ0, θ0 + θ1)) to the range 462

of our functional score data, but is otherwise a fixed link function 463

(imposing a gauge on our latent phenotype model parameters). We 464

finally compute the predicted functional score in experiment d ∈ 465

{1, . . . , D} of a variant v ∈ V with one-hot encoding xv ∈ {0, 1}M 466

as 467

ŷd(xv) = gθ

([
ϕ(β0,α,β,∆)(xv)

]
d

)
. [3] 468

Inferring model parameters from the DMS data. Our data consist of 469

sets of one-hot encoded variants and their associated functional 470

scores from each of D experiments. Denote these as Dd ⊂ {0, 1}M × 471
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R for d = 1, . . . , D. We minimize an objective of the form472

f(β0, α, β, ∆, θ) =
D∑

d=1

∑
(x,y)∈Dd

ℓ(y, ŷd(x)) + λ∥∆∥1,1, [4]473

where ℓ : R×R → R is a Huber loss function measuring the difference474

between a predicted and an observed functional score, λ ∈ R is the475

lasso penalty weight, and ∥ · ∥1,1 denotes the entrywise L1 norm476

(not to be confused with the matrix 1-norm ∥ · ∥1). Note that the477

parameters (β0, α, β, ∆, θ) appear in the loss function via Eq. (3),478

but are suppressed in Eq. (4) for notational compactness. Note479

also that by taking λ = 0, the loss term of the objective becomes480

separable over the D experiments, so marginal inference is recovered481

as a special case.482

For a general global epistasis function gθ, the objective Eq. (4) is483

in general non-convex. However, with the simple sigmoid function484

Eq. (2), it is bi-convex in (β0, α, β, ∆) and θ. This can be seen485

by noting that, for fixed θ, the prediction model takes the form486

of a generalized linear model with a sigmoid link function, and487

for fixed (β0, α, β, ∆), the model parameterized by θ is a linear488

regression problem. The objective Eq. (4) has a smooth loss term489

and a non-smooth penalty term. We minimize it using the Nesterov-490

accelerated proximal gradient method with backtracking line search491

(51), taking gradient steps using the smooth term, and applying a492

proximity operator associated with the non-smooth term.493

Deep mutational scanning of SARS-CoV-2 spike. Delta and BA.1494

full spike DMS libraries were designed as described previously495

in (39). BA.2 full spike deep mutational scanning libraries were496

designed using the same methods as BA.1 libraries except using497

BA.2 spike as a template sequence. The sequence of BA.2 spike498

can be found at https://github.com/dms-vep/SARS-CoV-2_Omicron_499

BA.2_spike_DMS/blob/main/library_design/reference_sequences/3332_500

pH2rU3_ForInd_Omicron_sinobiological_BA2_B11529_Spiked21_T7_501

CMV_ZsGT2APurR.gb. In each library, a random 16-nucleotide502

barcode was included downstream of the stop codon of each spike503

variant, such that each variant is associated with a unique barcode.504

Long-read PacBio sequencing was used to acquire reads spanning505

the entire spike gene and barcode, allowing a variant’s genotype to506

be associated with its barcode, as described in (39). Many spike507

variants appeared multiple times in a given library, associated with508

multiple unique barcodes.509

DMS functional selections were performed as described previ-510

ously in (39). In brief, 1 million HEK-293T-ACE2 cells were infected511

with 0.6-1 million spike-pseudotyped library variants or 5 million of512

VSV-G pseudotyped variants. 12-15 hours post infection, cells were513

trypsinized, washed with PBS, and non-integrated viral DNA was514

extracted using QIAprep Spin Miniprep Kit. Extracted DNA was515

used to prepare PCR amplicon libraries for Illumina sequencing.516

Libraries were sequenced using NextSeq 2000 P2 and P3 reagent517

kits. The resulting data provided counts for each 16-nucleotide518

barcode in each sample.519

For each experiment, a functional score was com-520

puted for each barcoded variant as a log-enrichment ratio:521

log2([nv
post/nwt

post]/[nv
pre/nwt

pre]), where nv
post gives the number of522

deep-sequencing counts for variant v in the post-selection library523

(from cells infected with spike-pseudotyped viruses), nv
pre gives524

counts for v in the pre-selection library (from cells infected with525

VSG-G-pseudotyped viruses), and nwt
post and nwt

pre give these same526

counts but for the wildtype homolog from a given experiment. A527

pseudocount of 0.5 was added to each of these counts to avoid528

dividing by zero. Negative functional scores indicate that a given529

variant was depleted relative to wildtype, while positive functional530

scores indicate that the variant was enriched relative to wildtype.531

Fitting a multidms model to the spike DMS data. To start, we curated532

functional scores described in the above section in the following533

ways. To reduce noise, we discarded data for all barcoded variants534

with fewer than 100 pre-selection counts. Due to experimental batch535

effects, the range of functional scores differed between experiments536

(data not shown). For instance, variants with stop codons tended537

to have more negative functional scores in the BA.1 and BA.2538

experiments compared with Delta. To help make scores more539

comparable between homologs, we truncated all functional scores540

from all experiments at a lower bound of -3.5 and an upper bound 541

of 2.5 (Figure S2B). The lower bound of -3.5 roughly corresponds to 542

the lower end of the dynamic range of the assay. Although functional 543

scores can go below this number, how negative a functional score 544

can get is partially determined by experiment-specific factors such 545

as deep-sequencing depth. 546

The DMS experiments were performed with at least two biologi- 547

cal replicates per homolog, where each replicate experiment used 548

an independently synthesized barcoded variant library. Each of the 549

Delta and BA.2 replicate experiments were performed with two 550

technical replicates, and we combined all functional scores between 551

pairs of technical replicates into a single dataset. For variants 552

associated with multiple unique barcodes in a single biological repli- 553

cate dataset, we averaged the variant’s score across all barcodes. 554

This averaging step increased the speed of model fitting without 555

substantially changing the final results (data not shown). 556

Some sites in the spike protein were mutated in one or two of the 557

homolog DMS libraries, but not all three. For instance, due to indels, 558

some sites that are present in one homolog are completely missing 559

in another. Since it is not possible to compute shifts across all 560

homologs at such sites, multidms automatically discards all variants 561

with mutations at any of these sites. 562

We fit a single multidms model to one biological replicate dataset 563

per homolog, using BA.1 as the reference, and using 30,000 proximal 564

gradient iterations to allow the Huber loss term to converge (Figure 565

S9). We then independently fit a second model to a second set 566

of biological replicate datasets. Figure S10A shows the sigmoidal 567

global-epistasis function inferred in each replicate fit at a regulariza- 568

tion weight of λ = 5 × 10−5 (the next section describes our logic for 569

choosing this weight). Most data fit to the lower end of the sigmoid, 570

suggesting the model is capturing saturating effects of deleterious 571

mutations. Observed functional scores from the training data were 572

well correlated with predicted scores for each experiment from each 573

replicate (Figure S10B). 574

Choosing a regularization weight. The Results section reports data 575

from multidms models fit using a regularization weight of λ = 576

5 × 10−5. Below, we describe our strategy for choosing this weight. 577

We tested several weights that ranged between zero and 0.001, 578

fitting one model per weight. As expected, increasing the weight 579

tended to shrink the inferred shift parameters, with some parameters 580

shrinking more rapidly than others. Figure S4A shows examples 581

of this pattern for different sets of mutations. The red lines show 582

patterns for mutations to stop codons. The effects of these mutations 583

are not expected to be shifted between homologs as they should 584

be equally deleterious in each. At very small weights, some stop 585

mutations were inferred to have large non-zero shifts, presumably 586

due to experimental noise in the data. However, as the weight 587

is increased, these shifts are driven to zero, with nearly all shifts 588

reaching zero by the time the lasso weight reaches λ = 5 × 10−5 589

(Figure S4B). In contrast, there are some shifts that are not driven 590

to zero for this value of λ. For example, the five nonsynonymous 591

mutations that we experimentally validated to have large shifts are 592

only driven to zero by much larger weights (see colored lines). Such 593

shrinkage patterns of the validated mutations were highly consistent 594

between replicates. 595

We also compared weights based on the model’s ability to predict 596

experimentally measured functional scores in the training data, as 597

quantified by the loss function used to train the model, not including 598

the lasso term (Figure S4C). As expected, the loss increased as the 599

lasso weight increased. At lower weights, this increase was gradual, 600

before becoming steeper at intermediate weights and leveling out at 601

the highest weights. The steepest increases came for λ > 5 × 10−5. 602

Together, the above results show that a lasso weight of λ = 5×10−5 603

was needed to drive shifts for stop codon mutations—a rough proxy 604

for noise—to zero, but that higher weights resulted in substantially 605

worse loss, suggesting over-regularization. 606

We also quantified the correlation of shift parameters between 607

the replicate model fits as a function of lasso weight (Figure S4D). 608

In each fit, the model from one replicate has never seen the data 609

used to fit the model from the second replicate, and vice versa. The 610

correlation in shift parameters tends to increase as λ is increased 611

from 0 to 5 × 10−5. This pattern is consistent with the hypothesis 612

that the shift parameters from each replicate are overfit to their 613

corresponding datasets at low weights, and that increasing the 614
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weight tends to reduce overfitting, leading to a higher correlation. Of615

note, at the highest tested weights, mutations that we experimentally616

validated to have large shifts were inferred to have shifts near zero,617

indicating that these weights are too strong. The correlation of618

βm parameters between replicate fits remained high across all λ619

values, showing that increases in λ can dramatically improve the620

correlation for shift parameters while retaining a high correlation621

for βm parameters (Figure S4D).622

In all, the above lines of evidence suggest that a lasso penalty623

λ = 5 × 10−5 was sufficient to suppress noise, while preserving624

biologically relevant signal.625

Experimental validation. Spike genes with desired mutations626

were introduced using PCR with overlapping mutation-carrying627

primers followed by HiFi assembly. Plasmids used as628

Delta, BA.1 and BA.2 spike templates can be found629

at https://github.com/dms-vep/SARS-CoV-2_Omicron_BA.2_spike_DMS/630

tree/main/library_design/plasmid_maps. Pseudoviruses were generated631

using a method described previously (40) with the following changes:632

pHAGE6_Luciferase_IRES_ZsGreen was used as the backbone633

for which only Gag/Pol helper plasmid and the spike expression634

plasmid are required to generate a virus. Produced pseudoviruses635

were titrated on HEK-293T-ACE2 by performing duplicate serial636

dilutions and virus titers were measured 48 hours after infection637

using Bright-Glo Luciferase Assay System (Promega, E2610).638
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