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ABSTRACT

This study proposes a novel approach to studying SARS-CoV-2 virus mutations through sequencing data comparison.
Traditional consensus-based methods, which focus on the most common nucleotide at each position, might overlook or obscure
the presence of low-frequency variants. Our method, in contrast, retains all sequenced nucleotides at each position, forming a
genomic matrix. Utilizing simulated short reads from genomes with specified mutations, we contrasted our genomic matrix
approach with the consensus sequence method. Our matrix methodology accurately reflected the known mutations and true
compositions, demonstrating its efficacy in understanding the sample variability and their interconnections. Further tests using
real data from GISAID and NCBI-SRA confirmed its reliability and robustness. As we see, the genomic matrix approach
offers a more accurate representation of the viral genomic diversity, thereby providing superior insights into virus evolution and
epidemiology. Future application recommendations are provided based on our observed results.

Introduction

In conventional approaches to sequencing the genome of viruses, a consensus sequence is determined1, 2. The consensus
sequence represents the most frequent nucleotide at each position following short-read alignment. There have been attempts to
align a large number of consensus sequences with each other, thus obtaining frequencies assignable to each position.3 However,
one sequence alone does not necessarily accurately represent the composition of the sample, as it represents only a single
sequence. Meanwhile, a sample comprises a population of many viruses, with different variants potentially carrying various
mutations. This form of reduction results in a loss of information, potentially distorting sample similarity when comparing
consensus sequences, and neglecting the "within-host diversity" that characterizes the viral population within a host.
Numerous strategies have been developed to maintain this variety.4 Notably, most efforts are documented in the HIV literature,
referring predominantly to an approach known as profile sampling. The common factor in these methods is that they assign a
frequency to each nucleotide (or codon) following read alignment, creating what constitutes the patient’s HIV profile. The
effectiveness of this approach can be enhanced by creating multiple samples from a single frequency table and determining the
within-host distribution using these developed profiles through repeated sampling.5 The thinking here goes beyond consensus,
shifting away from focusing on specific strains. However, we utilize one sample per patient, with our primary interest lying in
the relations between these samples, rather than the distribution of strains within a sample.
To address this, we aim to explore how a more accurate depiction of the relationship between individual genomic sequences can
be achieved. In this method, the comparison of genome matrices forms the basis for determining the degree of similarity, as
opposed to consensus sequences that represent only a single sequence. Each row of the genome matrix represents a genomic
position, while the columns indicate the frequency of individual nucleotides. As we have increased the number of dimensions
in this approach (since each base now has its own), we expect to lose less information in the comparison process.
We will examine the efficacy of the two methods using simulated sequencing results, then compare the findings and examine
which scenario provides a more accurate picture of the known relationships. Finally, we will conduct similarity studies
according to the two methods using actual coronavirus sequencing data.

Materials and Methods
Bioinformatic analysis of the simulated reads
First, we generated synthetic samples based on the Table 1. In each sample, we precisely defined the mutations that define the
variants present in the simulation6, as well as the coverage of each variant. For this, we used the randomreads.sh tool
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sample cheesy glorious mushroom perfume slinky
1 50 100 150 200 250
2 250 50 50 10 10
3 30 20 100 150 70
4 10 200 40 30 10
5 100 100 100 100 100
6 10 20 15 500 5
7 40 120 0 10 200
8 30 500 70 0 20

Table 1. The table represents the true composition (coverage) of the simulated sample mixtures

from BBMap.7 We used FASTA files prepared based on the individual variants as reference genomes, generating paired-end
reads with a length of 150 base pairs and the desired coverage value. We combined the paired-end reads into a single
file. The sequence. f asta file is the reference genome of SARS-CoV-2, which we indexed with BWA (Version: 0.7.17-r1188),
and aligned the generated FASTQ files.8 We transformed the resulting .sam file into a .bam file using the samtools view
-Sb command.9 Then we sorted the .bam file using the samtools sort command and indexed it using the samtools
index command, creating the .bai files. The consensus sequence was created by using bcftools consensus. Firstly,
we generated the mpileup file using the bcftools mpileup - Ou -f tool with the reference genome and the .bam
file. Afterwards, we utilized the command ‘bcftools call –ploidy 1 -mv -Oz -o‘ to generate the ‘vcf‘ file. This file was then
employed to create the consensus using the command ‘bcftools consensus -f‘.10

The idea for the genome matrix was given by the Position Probability Matrix used for characterizing sequential motifs.11

We used the Biostrings, GenomicAlignments, tidyverse packages in R for the .bam files.12–14 Essentially, the
genome matrix made a .csv file from the .bam files, where each row contained the counted number of nucleotides aligned at the
given positions.

Sources of the real data
In addition to the simulations, we also carried out the comparison on real data. For this, we had to find samples for which the
raw FASTQ file can be found in the NCBI-SRA database15 and the consensus in the GISAID database16 as shown in Table 2.
We selected the reads in such a way that there should be at least 20-fold coverage in at least 0.95 of the genome. Additionally,
we worked with paired-end sequencing WGS data. From the SRA, we aligned the reads downloaded with the SRA Toolkit

GISAID ID SRA ID
1. EPI_ISL_584662 ERR4692877
2. EPI_ISL_584663 ERR4693014
3. EPI_ISL_584664 ERR4693156
4. EPI_ISL_664742 ERR4892128
5. EPI_ISL_665153 ERR4891061
6. EPI_ISL_665157 ERR4890337
7. EPI_ISL_665158 ERR4891869
8. EPI_ISL_665166 ERR4890532
9. EPI_ISL_665169 ERR4891959
10. EPI_ISL_665198 ERR4890285
11. EPI_ISL_665199 ERR4892877
12. EPI_ISL_665203 ERR4891675
13. EPI_ISL_665231 ERR4891211
14. EPI_ISL_665232 ERR4893062
15. EPI_ISL_665233 ERR4892295
16. EPI_ISL_665636 ERR4892461
17. EPI_ISL_665848 ERR4891212

Table 2. Real data in different databases

prefetch to the reference COVID genome using the bowtie2 tool.17 We use the bowtie2-build command to index
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the reference genome, then we align the reads (paired-end) and thus obtain .sam files. The samtools view -Sb command
converts the .sam file into binary .bam format, which we similarly sorted and then indexed as in the case of synthetic reads. The
genome matrix was also obtained here based on the .bam files by counting the nucleotides per position.

Comparing the effectiveness of the two methods
The question was to determine whether the relationships or similarities between the samples could be better determined
by comparing consensus sequences or by comparing genome matrices. For this, we created distance matrices between the
consensus sequences for the 8 samples, similarly for the genome matrices. We first aligned the consensus sequences with each
other in R using AlignSeqs(), and to visualize this we used BrowseSeqs(). Then, we determined the distance matrix
for this with the DECIPHER DistanceMatrix() function.18 We used the default parameters, that is, we calculated with
Euclidean distance. We determined the distance matrix from the genome matrices in Python using the scipy.spatial
distance.euclidean() function.19 The Di, j matrix element contains the distance between the i-th and j-th genome
matrices. We use Euclidean distance as a metric. Accordingly, the distance between two matrices, i.e., an element of the
distance matrix, is obtained with the following formula:

Di, j =

√√√√ 4

∑
k=1

l

∑
g=1

(G(i)
k,g −G( j)

k,g)
2 (1)

In the above formula, the notations G(i)
k,g and G( j)

k,g represent the values of the i-th and j-th genome matrices at the k-th base and
g-th position.
We also created a distance matrix for the true compositions, the result of which also became an 8x8 matrix. This way, we
obtained three 8x8 distance matrices. However, before comparing these, we normalized them. We calculated the Frobenius
norm20 as follows:

∥A∥F =

√
m

∑
i=1

n

∑
j=1

|ai j|2 (2)

where A is a matrix of size m×n, and ai j are the elements of the i-th row and j-th column of matrix A.

Comparison of the distance matrices
For the comparison of the different methods, we used the distance matrices as a basis. Firstly, we determined the distance
(Euclidean) between the distance matrices pairwise, as shown below.

d(A,B) =

√
n

∑
i=1

m

∑
j=1

(Ai j −Bi j)2 (3)

Where A and B are two n×m dimensional distance matrices, Ai j and Bi j are elements in the same position.
Secondly, we determined the Pearson correlation between the distance matrices pairwise, which measured the linear relationship
between the data, but not necessarily the causal relationship. In Python, we imported the necessary packages using the
command from scipy.stats import pearsonr, and calculated the degree of correlation between each pair of
distance matrices.19 However, before that, we ’flattened’ the matrices for analysis using the flatten() function. The
pearsonr function not only provides the correlation coefficient but also a number called a ’p-value’, which indicates
the probability of whether the correlation between the two samples is real or just a result of chance. In addition, we
visualized the relationships expressed by the distance matrices with heat maps and dendrograms. For the heat maps, we
used the Python seaborn and matplotlib packages. We used the dendrogram and linkage functions from the
scipy.cluster.hierarchy module to create dendrograms, based on the already prepared distance matrices.

The role of entropy in the search for polymorphisms
In a large portion of the genome, there is a nucleotide that occurs significantly more frequently at a given position than the
others.21 In these cases, the frequency of the other nucleotides is typically non-zero, possibly due to statistical or sequencing
errors. It’s crucial to note the distortion when normalizing the genome matrix, assigning relative frequencies to each base.
Therefore, a variant with high AF at a highly covered position is characterized identically to potential noise at a less covered
spot. Hence, there is a need for deep sequencing data to distinguish noise from low AF variants. A valuable adjunctive method
involves generating an entropy sequence for the genome matrix, providing the "information" content in different parts of the
sequence. The entropy of the genome sequence at certain positions indicates how varied the bases are, i.e., how likely we are
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to encounter a given base at that position. Calculating entropy helps identify conservative and diverse areas of the genome
sequence. Entropy can be calculated using the following formula:

H =−∑
i

pi log2 pi (4)

where H is the entropy, and pi is the probability (frequency) of the i-th base at a certain position.
In the present case, the entropy can be calculated as follows:

1. First, calculate the probability of occurrence (normalized frequency) of each base along the rows, i.e., at every position:

pi =
ni

∑ j n j
(5)

where ni is the number of occurrences of the i-th base, and summation is carried out over all possible bases ( j). We
already had these values during the normalization of the genome matrix.

2. Calculate the entropy based on normalized frequencies using (4) .

Results and discussion
Simulation
We denoted d(DGM,Dcons) as the distance between the distance matrix of the genome matrices and the distance matrix of
the consensuses. d(DGM,Dtrue) represents the distance between the distance matrix of the genome matrices and the distance
matrix of the true compositions per sample. Finally, d(Dtrue,Dcons) denotes the distance between the distance matrix of the true
compositions and the distance matrix of the consensus sequences. Using these notations, the following results were obtained:

d(DGM,Dcons) = 0.468
d(DGM,Dtrue) = 0.232
d(Dcons,Dtrue) = 0.454

It can be seen that in terms of distances, the reality is better captured by the genome matrix than the consensus-based approach.
The results of comparing our matrices gave us the following in terms of Pearson correlation.

r(DGM,Dcons) = 0.780
r(DGM,Dtrue) = 0.888
r(Dcons,Dtrue) = 0.791

The ’p-value’ is not specifically mentioned because in every case it was less than 10−15.

Figure 1. Visualization of the three approaches. The numbers on the axes refer to the order of the simulated sequencing
samples listed in Table 1.

As seen in Figure 1, compared to the true compositions, the consensus approach oversimplifies the results. Seeing the
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composition of the outlier sample based on Table 1, we can see that in this sample, the variant with the fantasy name
perfume is dominant. The variant definitions show that there are two deletions among the mutations defining the variant,
in addition to the SNPs. Their locations are 11287 (G after deletion of GTCTGGTTTT), and 22298 (A after deletion of
AGAAGTTATTTGACTCCTGGTG). Variants that did not contain deletions were cheesy, glorious. Hence, it logically follows
that sample 6 manifests the most significant deviation from those samples (2,4,7,8) in which these deletion-free variants were
predominantly observed. Only in the case of sample 6 did the deleted section make it into the consensus sequences. This is
clearly visible at the locations of deletion in Figure 2.
Despite every sample containing a variant that had one of the deletions alongside the SNPs, this only appeared in the consensus

(a) Deletion around position 11290 (b) Deletion around position 22300

Figure 2. Deletions around the genome marked with ’-’ in purple

sequence of sample 6. The reason for this is that this variant was present with a sufficiently high AF in that sample. In the case
of the genome matrix approach, as we could see on the heatmaps, sample 6 was less of an outlier compared to the others. From
this, we concluded that the genome matrix is able to take into account deletions with lower AF during comparison.
A dendrogram is a tree-structured diagram that applies hierarchical clustering as seen in Figure 3. In this case, the synthetically

Figure 3. Visualization of the dendrograms of the genome matrix, consensus-based approach, and the true composition’s
distance matrices. It can be seen that compared to the true composition, the consensus-based approach amplifies or smoothens
the differences, whereas based on genome matrices, we do not obtain such outliers in the relationships.

created mixed samples are placed on the horizontal axis (x-axis), while the distances can be seen on the vertical axis (y-axis).
From Figure 3 we can make the following observations.

• According to the dendrogram of the true compositions, two main clusters can be observed. This is understandable if we
look at the known composition ratios (Table 1), as in the case of samples 6 and 8, one variant accounts for more than 0.8
parts of the sample.

• According to the true compositions diagram, despite their differences, the samples are at most 0.4 distance from each
other. The genome matrix approach slightly amplified this, while the consensus-based procedure nearly doubled it.

• The genome matrix approach performs much better than the consensus-based approach, according to the dendrograms, if
a dominant variant contains a deletion segment. In the case of samples 7 and 3, such a variant is dominant in the sample.
The consensus-based approach "leveled out" the differences in these samples, resulting in a falsely decreased distance.
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• The genome matrix and the consensus-based approach provide similar results in the case where the dominant variants in
the samples do not contain a deletion and the other variants are relatively evenly represented. Sample 2 was also like this.

• When a variant containing a deletion segment is dominant, and the other variants (with or without deletions) occur in
the sample with a low AF, the consensus method distorts the dendrogram. This is particularly noticeable in the case of
sample 6, where the genome matrix does not show such early branching, which is in line with our true composition
observations.

Real data
We downloaded prepared FASTA files from the GISAID database, so it was not necessary to create a consensus sequence from
the raw reads as in the case of simulation data. As the sequence lengths in GISAID do not necessarily match, we first performed
the MSA on the 17 sequences and the reference genome in R before determining the distance matrix. Both distance matrices
were normalized in a similar way for comparability, using Frobenius normalization. Subsequently, we determined the distance
and Pearson correlation coefficient of the two distance matrices, similar to the simulations, with the difference that now we did
not have the "ground truth" composition distance matrix available.

Distance: d(DrealGM,DGIS) = 0.335
Pearson correlation: r(DrealGM,DGIS) = 0.759

Comparing this with the simulation results, we see that the distance, in this case, is a tenth smaller, but the Pearson correlation
between the two matrices is similar. To get a more precise picture of the relation between the two methods, we also compared
the two distance matrices using heatmaps (Figure 4).

Figure 4. Visualization of the similarity of real data using heatmaps

We saw a similar pattern in the simulation results (Figure 1) as in Figure 4. There was also a tendency that distances were smaller
in the case of genome matrices, thus the differences between individual samples. On the other hand, in the consensus-based
approach, some samples were very separated from others. According to the lesson of the simulation, this was due to variants
containing dominant deletions. In Figure 4, a standout sequence (16th sample: EPI_ISL_665636, ERR4892461) can be
seen based on the distances from the consensus-based approach.

Figure 5. contains several deletion sections (5), only one of which is present in other samples. Furthermore, the other samples
do not contain a deletion section that can only be detected in it.
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Figure 5. Deletions along the EPI_ISL_665636 genome marked with ’-’ in purple

We also looked at these regions based on the genome matrix results. Two trends seemed to be moving on the chart, so we
made 2 columns in Figure 6. It is observable that the genome matrix methodology also detects comparable deletion sections,
like the consensus-based approach. However, it’s important to note that the frequency of nucleotide hits at these locations
doesn’t reduce to a complete zero. This is well visible in the right column as well. In the positions of deletion, an opposite
trend appears in this column. In these positions, the number of individual nucleotide hits increases among the lower number of
hits. This can also mean that in addition to mis-sequencing, a significant increase can be found in these positions in terms of
"secondary" nucleotides. There won’t be much difference between the most common and the second most common nucleotide,
as each is relatively low compared to the genomic environment.
This may mean that in addition to the variant containing a large AF deletion, there are several variants with smaller AFs and

these genomic positions are more variable in the sample. However, before we search for these high entropy genomic regions
from an information theoretical point of view, we examine the relationship between the samples with dendrograms on Figure 7.

Entropy sequences
When detecting deletions, and plotting the total number of nucleotides, we get similar figures as in Figure 6. In such instances,
it’s easier to notice low AF variants because they suddenly become dominant as the variant with the highest AF contains some
mutation. In the case of normalized genome matrices, these low AF variants also appear, but in a distorted form, since these are
relative ratios. Therefore, we used the concept of entropy for a more effective exploration of polymorphisms along the genome,
as this method was applicable regardless of alignment. Entropy allows for the measurement of variability and distribution
of nucleotides within certain sections, making it easier to identify low AF variants. These could potentially be linked to key
features of the examined genome.

For the real data, a low entropy value indicates that there is little variability at a given position, and the bases are likely to
be the same with a high probability. High entropy values indicate that the bases are diverse and their probabilities are more
evenly distributed. Examining entropy values allows for the mapping of the conservative and diverse areas of the sequence. Our
data clearly show that for sample 16, around 11300, a higher entropy (higher information content) section is indeed noticeable,
which is present in this sample to this extent only. This defining mutation might also be present in others, though this is not
clear from the consensus. However, according to the information sequences formed from genome matrices, it is there with low
AF. The increased entropy along the genome section in question indicates this.
Figure 8 shows that the entropy of the ERR4693014 sample is outstandingly high throughout the genome compared to the
other genomes. The reason for this could be that it likely contained a mixture of several variants in almost equal measure at
the time of sequencing. In this case, even if several strains are present, the consensus sequence will be a single one, making
it understandable why it is located so far from the ERR4892461 sample on dendrograms (Figure 7). In the latter case, the
distribution of information content along the genome is less uniform. This could indicate that a dominant strain was present
in the sample, whose consensus sequence differed from that of the ERR4693014 sample, which uniformly incorporated a
mixture of many strains.

In the simulation, we utilized complete knowledge of sample compositions and mutations. We compared consensus se-
quences and genome matrices, both reliant on Euclidean distance matrices. After Frobenius normalization, we found the
genome matrix method superior to the consensus-based approach.

7/11

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2023. ; https://doi.org/10.1101/2023.08.03.551784doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.03.551784
http://creativecommons.org/licenses/by/4.0/


Figure 6. Zooming into the deletion sites within the ERR4892461 genome. In the left column, it can be seen that "holes"
appear in the number of nucleotides at the deletion sites. On the right, zooming into these positions, we can see that there are
also alternative nucleotides here, which however, stand out from the noise of the non-deletion sites.

The key takeaways are the following:

• The genome matrix’s distance matrix was more alike the ’ground truth’, hence more realistic.

• The Pearson correlation between the genome matrix and the true composition distance matrix was higher than that with
the consensus, indicating a stronger connection between initial and post-processing data.

• Visualization via heatmaps (Figure 1.) showed that the consensus approach overemphasizes inhomogeneities in mixing
ratios, potentially skewing phylogenetic tree generation. No similar distortion was observed in genome matrices.

High entropy denotes high variability, indicating a surprising or high-information content base type. Visualizing entropy values
unveils a base entropic background due to sequencing errors or statistical noise. Polymorphisms, with their peaks rising in high
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Figure 7. The 16th sample greatly differs from the others, but according to the genome matrix, it shows similarity with several
samples. The consensus-based approach organizes the samples into fewer clusters. Accordingly, we concluded here, similar to
what was observed in simulations where the true composition was known, that the representation of variability decreases when
using consensus.

Figure 8. Entropy sequences along the entire genome: visualization of the information content of genomes.
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entropy, differentiate from this background. The method’s advantage lies in its applicability to various mutation types, be it
SNP or deletion/insertion.

This method enables efficient identification of genome anomalies, with the genome matrix approach playing a pivotal role.
This allows for more realistic sample comparisons even without precisely determining specific variants and their ratios. It
contributes to accurately unveiling phylogenetic and evolutionary correlations in the realm of viruses, thereby increasing the
efficiency and reliability of such research.
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