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Abstract

Recombination is an ongoing and increasingly important feature of circulating lineages of
SARS-CoV-2, challenging how we represent the evolutionary history of this virus and giving rise
to new variants of potential public health concern by combining transmission and immune eva-
sion properties of different lineages. Detection of new recombinant strains is challenging, with
most methods looking for breaks between sets of mutations that characterise distinct lineages.
In addition, many basic approaches fundamental to the study of viral evolution assume that re-
combination is negligible, in that a single phylogenetic tree can represent the genetic ancestry
of the circulating strains. Here we present an initial version of sc2ts, a method to automati-
cally detect recombinants in real time and to cohesively integrate them into a genealogy in the
form of an ancestral recombination graph (ARG), which jointly records mutation, recombination
and genetic inheritance. We infer two ARGs under different sampling strategies, and study their
properties. One contains 1.27 million sequences sampled up to June 30, 2021, and the second
is more sparsely sampled, consisting of 657K sequences sampled up to June 30, 2022. We find
that both ARGs are highly consistent with known features of SARS-CoV-2 evolution, recovering
the basic backbone phylogeny, mutational spectra, and recapitulating details on the majority of
known recombinant lineages. Using the well-established and feature-rich tskit library, the ARGs
can also be stored concisely and processed efficiently using standard Python tools. For example,
the ARG for 1.27 million sequences—encoding the inferred reticulate ancestry, genetic variation,
and extensive metadata—requires 58 MB of storage, and loads in less than a second. The ability to
fully integrate the effects of recombination into downstream analyses, to quickly and automatically
detect new recombinants, and to utilise an efficient and convenient platform for computation based
on well-engineered technologies makes sc2ts a promising approach.

1 Introduction

Recombination via template switching is a common feature of the evolution of coronaviruses (Graham
and Baric, 2010; De Klerk et al., 2022), including SARS-CoV-2 (VanlInsberghe et al., 2021; Jackson
et al., 2021; Ignatieva et al., 2022). By bringing together mutations carried by different lineages, recom-
bination plays an important role in generating genetic diversity, with recombinant lineages associated
with adaptation to new host species and with the production of more immune evasive variants (Gra-
ham and Baric, 2010; De Klerk et al., 2022; Tamura et al., 2023). Early in the COVID-19 pandemic,
the levels of genetic diversity were too low to enable the detection of distinctive recombinant strains.
By late 2020, however, the appearance and spread of variants of concern (VoC), designated into classes
such as Alpha and Delta which harboured multiple characteristic mutations, created the conditions
required to detect recombinant strains and their onward transmission (Jackson et al., 2021). More re-
cently, the high prevalence of Omicron, with multiple co-circulating deeply divergent lineages (BA.1 to
BA.5), has accelerated the rate of coinfection and the potential for recombination (Bal et al., 2022). In
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early 2023, multiple recombinant lineages have successfully established and spread to high frequency,
and accounting for recombinant ancestry is now essential in understanding the ongoing evolution of
SARS-CoV-2.

Detecting recombination in SARS-CoV-2 is difficult and identifying new recombinant strains is
a time-consuming, manual process (Smith et al., 2023). Most genomic surveys for SARS-CoV-2 re-
combinants search for mosaic genomes that combine specific subsets of characteristic mutations from
different lineages (e.g., Vanlnsberghe et al., 2021; Jackson et al., 2021; Wertheim et al., 2022; Sekizuka
et al., 2022) and as a result can only identify inter-lineage recombination events. Turakhia et al. (2022)
presented a phylogeny-based approach (“RIPPLES”) to identify putative recombinants among over ten
million SARS-CoV-2 genomes, without pre-specifying sets of characteristic mutations. RIPPLES finds
candidate recombinants by using an existing phylogeny (built assuming no recombination) and finding
potential recombinants by scanning for branches containing many mutations. It then determines if
these candidates would be better explained by recombination by exhaustively breaking each sequence
into segments and attempting to find more parsimonious placements for each segment on the phy-
logeny. If such placements are found, the sequence is identified as a putative recombinant. Although
it enables rapid searches for genomic evidence of recombinants, RIPPLES relies on a SARS-CoV-2
phylogeny that accounts for only mutations, treats recombinants post hoc, and is an incomplete repre-
sentation of the reticulate evolutionary history of SARS-CoV-2. As noted by the authors, a post hoc
treatment of recombination is possible when recombinant lineages are rare and leave few descendants.
However, the proliferation of recombinant lineages is making this increasingly untenable; for example,
more than half of the sequences sampled in February 2023 are from the recombinant strain XBB and
its descendants (Chen et al., 2022). This also means that future evolution of SARS-CoV-2 is likely to
involve multiple sequential recombination events on top of existing recombinant lineages, creating a
highly reticulated genealogy.

It is well known that recombination distorts phylogenies (Schierup and Hein, 2000) and affects
the results of downstream analyses, such as inference of selection (Anisimova et al., 2003). Standard
phylogenetic methods do not account for recombination (e.g., Ronquist et al., 2012; Minh et al.,
2020; Guindon and Gascuel, 2003), and there is no standard method for incorporating the effects of
recombination into phylogenetic analyses. Ancestral Recombination Graphs (ARGs) are a means of
describing such network-like ancestry (Griffiths, 1981; Gusfield, 2014), but until recently lacked software
support and sufficiently scalable inference methods to be of practical use. However, approaches to infer
ARGs now exist that can scale to tens of thousands of human genomes and beyond (Speidel et al., 2019;
Kelleher et al., 2019; Schaefer et al., 2021; Zhang et al., 2023), dealing with levels of recombination far
in excess of those seen in viral phylogenies. The “succinct tree sequence” is an ARG data structure
which has led to significant computational advances across a range of applications (Kelleher et al.,
2016, 2018, 2019; Ralph et al., 2020; Wohns et al., 2022), and the supporting tskit software library is
now widely used in population genetics applications. The methods in tskit have been developed to
support millions of whole human genomes (Kelleher et al., 2019), and so it is particularly well suited
to representing large SARS-CoV-2 genealogies, which currently encompasses over 15 million sequences
in the GISAID database (Shu and McCauley, 2017). See Section 4.1 for more details on ARGs and
the succinct tree sequence data structure.

Here we present a preliminary version of sc2ts, a novel method for inferring ARGs for SARS-CoV-
2 at pandemic scale, in real time. Building on the open-source tskit library, the method explicitly
reconstructs genealogies with both mutation and recombination, which can be conveniently and ef-
ficiently analysed using standard Python data science tools. As illustrated in Figure 1, inference is
based on incrementally adding batches of sequences based on their collection dates and proceeds in
three phases. First, possible paths connecting each sample to the current ARG are inferred (allowing
for recombination) using the Li and Stephens (LS) model (Figure 1A, B); the LS “copying process”
is a Hidden Markov Model (HMM) approximating the effects of mutation and recombination, widely
used in large-scale genomics (Section 4.2). Then, since many samples in a batch can share an attach-
ment path, we infer phylogenetic trees for each of these clusters separately using standard methods
(Figure 1C; Section 4.3). Finally, we attach the trees for these sample clusters to the current ARG
and apply some parsimony-based heuristics to address issues introduced by the inherent greediness of
this strategy (Figure 1D, E; Section 4.4). Using the current preliminary version of sc2ts, we infer
two large ARGs (with 1,265,685 and 657,239 samples, respectively) and study the properties of these
ARGs to illustrate the power of the method and to inform subsequent development. We find that
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Figure 1: A schematic of the sc2ts method. The genetic relationships among SARS-CoV-2 genomes
is reconstructed by using the Li and Stephens model to infer attachment paths for samples to an
existing ARG (curved lines). Each daily iteration involves three stages: attachment of new samples to
the growing ARG (A, B); reconstruction of trees relating the samples under each attachment node (C);
and parsimony-based tree topology adjustments (D, E). In the absence of recombination, sc2ts infers
an ARG that is a single tree relating the samples (A). When recombination is detected, sc2ts infers
an ARG that concisely encodes a sequence of local trees relating segments of the sample genomes (B).
Additionally, mutation-collapsing nodes (D) and reversion-push nodes (E) are inserted to make more
parsimonious placements of mutations that should be shared or should not be immediately reverted,
respectively.
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Wide ARG Long ARG
Sample filtering collection < 2021-06-30 collection < 2022-06-30
max-delay=30 max-delay=30
max-daily=1000
Nodes 1,453,347 783,231
Node type
Sample 1,265,685  (87.09%) 657,239  (83.91%)
Daily sample cluster tree 102,709  (7.07%) 51,807 (6.61%)
Reversion push 40,538  (2.79%) 34,358 (4.39%)
Mutation collapse 40,292 (2.77%) 37,749  (4.82%)
Recombination 4123  (0.28%) 2,078 (0.27%)
Mutations 1,231,193 1,062,072
Per node per genome 0.83 +1.40 1.36 £1.72
Per sample per genome 0.77 +1.39 1.38 +£1.77
Per site per ARG 41.23 +108.16 36.10 £80.03
Compressed size (inc metadata) 58MB 37MB
Bytes/sample (exc metadata) 8.29 10.83
Load time 0.9s 0.5s

Table 1: Summary of the inferred ARGs. Nodes are classified as either samples or by the inference
process that produced them (see Sections 4.3, 4.4 and 4.5 for details). The mean and standard deviation
(%) are reported for the number of mutations per node, sample and site.

these ARGs accurately capture known phylogenetic relationships (Section 2.2) and mutational spectra
(Section 2.3), and automatically identify the majority of known recombinant lineages (Sections 2.4 and
2.7) with a high level of precision in the genomic location of recombination breakpoints (Section 2.5)
and relationship between parental sequences (Section 2.6). We hope that these benefits of accurate
joint estimation of genetic inheritance with mutation and recombination will generate community in-
terest and development of the sc2ts method, and more generally in applying the efficient and mature
software of the tskit ecosystem to pandemic-scale SARS-CoV-2 data.

2 Results
2.1 Inferred ARGs

The goals of this preliminary study are to illustrate the utility of sc2ts and to investigate the properties
of the inferred ARGs to inform subsequent development. We work with a representative subset of the
available data, limited to inferences that can be performed on a single server in a few weeks (see
below for further details on timings and computer hardware used). The cut-off dates for sampling are
arbitrary. We inferred two ARGs, which we refer to as the “Wide” and “Long” ARGs throughout. The
Wide ARG is densely sampled but time-limited and includes 1.27 million sequences collected up to
June 30, 2021 which pass some quality-control filters (Section 4.7) and have a maximum delay between
sampling and submission dates of 30 days (Section 4.8). For the Long ARG, we randomly sub-sample
a maximum of 1,000 genomes per day (again restricting the delay between sampling and submission
to 30 days) and include an additional year’s worth of samples (to June 30, 2022).

The properties of the inferred ARGs are summarised in Table 1. The majority of the nodes in
the ARGs represent sample genomes (Wide ARG: 87%, Long ARG: 84%), with the remainder mostly
representing the ancestral sequences inferred from daily sample clusters (Section 4.3) and parsimony
heuristics (Section 4.4). Both ARGs contain 29,422 sites (Section 4.7), and a large number of mutations.
The average number of mutations per site is high, although some of this may be explained by outlier
sites with artefactually high mutation counts (see Figure 4). Despite this, however, the number of
mutations per node is small. In the Wide ARG, for example, we have a mean of 0.77 mutations
per sampled genome, demonstrating that most added samples fit into the ARG parsimoniously. See
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Section 2.3 for more analysis of the patterns of inferred mutations. Recombination plays a relatively
minor role, with < 0.3% of nodes in the ARGs representing inferred recombination events. Of these
recombination nodes, the majority are ancestral to only one sample (Wide ARG: 63.1%, Long ARG:
63.3%). We analyse signals of recombination in Sections 2.4, 2.5, 2.6, and 2.7.

Table 1 also summarises some of the computational properties of the inferred ARGs. The ARGs
are encoded as a “succinct tree sequence” using the tskit library, which provides an extensive suite
of operations for constructing and analysing ARGs (Section 4.1). For example, the Wide ARG which
contains complete genomes (with imputed missing data) for around 1.2 million samples, along with
extensive sample and debugging metadata, requires only 58MB of space (compressed using the tszip
utility). The majority of this space is used by the metadata, which when discarded results in an encod-
ing that requires an average of only 8.29 bytes per SARS-CoV-2 genome stored. Loading these ARGs
takes less than a second, and they can be interactively analysed using Jupyter notebooks (Kluyver
et al., 2016) on a standard laptop. The majority of the analyses in this preprint can be carried out in
seconds with the tskit Python API, using a few gigabytes of RAM.

Inferring these ARGs does require substantial computation. The Wide ARG required 17 days to
infer on a server with 128 threads and 512 GB RAM (2x AMD EPYC 7502 @ 2.5GHz). The Long
ARG required 23 days on a (much older) machine with 40 threads and 256 GB RAM (2x Intel(R)
Xeon(R) CPU E5-2680 v2 @ 2.80GHz). The majority of the time is spent on running the LS HMM
(Section 4.2) to find the copying path for each sequence, and the process is therefore highly amenable
to distributing across multiple machines. We therefore anticipate that further development of the
inference methods and scaling out across multiple servers will enable inferences at the full pandemic
scale.

2.2 Backbone phylogeny

Compared to organisms like humans that recombine in every generation, recombination is relatively
rare in SARS-CoV-2, with recombination nodes accounting for <0.3% of the inferred ancestry (Table 1).
As a result, relationships between strains can often be represented by a single phylogenetic tree,
particularly when looking at a subset of strains. We expect ARGs to be particularly treelike early in
the pandemic, when co-infection was less likely and divergence between lineages relatively low.

A classic tree-based summary of SARS-CoV-2 ancestry is provided by the Nextstrain project (Had-
field et al., 2018). The trees available from Nextstrain are based on small subsamples of the dataset,
and early in the pandemic tend to be restricted to a sample of strains that were not thought to be
recombinants. For validation purposes, we compare our ARGs with a downloaded Nextstrain tree,
restricted to the time period covered by each ARG. To enable this, we “simplify” (Kelleher et al.,
2018) the sc2ts ARGs to a backbone containing only those samples present in the Nextstrain tree.
This results in a small set of shared samples (Wide ARG: 180, Long ARG: 88), none of which are
assigned to Pango recombinant lineages by Nextclade (see Section 2.7).

The sc2ts backbone phylogenies for these Nextstrain subsamples contain small amounts of recom-
bination, with 7 recombination nodes in the Wide ARG backbone (8 for the Long ARG backbone).
However, the recombination events involve minor, local topological rearrangements where recombina-
tion only occurs between close relatives. (The majority of these recombinations are likely false-positives,
as discussed in Section 2.8.)

Figure 2 compares the backbone phylogeny of the Wide ARG with a GISAID global “all-time”
tree from Nextstrain. We illustrate the backbone phylogeny by visualising a single tree in the middle
of the viral genome, although other regions of the genome show almost identical topologies. It is
clear that the backbone topology of the sc2ts tree shows very close agreement with the Nextstrain
tree. The sample genomes cluster by their assigned Pango lineage status, and many variants and
their descendants form identical monophyletic clades in both the trees (e.g., the Alpha and Delta VoC
clades, labelled). Figure S1 shows the same comparison for the Long ARG, with similar results.

Figure 2 also reveals some notable differences between the trees. Firstly, the sc2ts tree is generally
less well resolved, particularly in early 2020 when sampling density was much lower than later in the
pandemic. Resolution early in the pandemic could be improved by using a tree inferred using classical
phylogenetic approaches for the first few months of the pandemic, before the scale of data began to
overwhelm these methods. Indeed, this is the approach taken by UShER (Turakhia et al., 2021). Using
a pre-existing tree for the early stages of the pandemic would be straightforward in sc2ts, and the
main reason we did not do this for the initial version under consideration here was to evaluate the
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Figure 2: Tanglegram comparing a local tree from the Wide ARG (sampled to mid-2021) and an
“all-time” global Nextstrain tree (downloaded on 2023-01-21). Phylogenies are pruned down to those
samples present as tips in both datasets, with the horizontal axis representing time (tips end at the
sample collection date). Light grey lines match the corresponding samples between the two trees; black
circles indicate identical sample partitions between the two trees. Terminal branches are colour-coded
according to the Pango lineage status assigned to the tip samples. The tanglegram was generated
using the Neighbor-Net algorithm (Scornavacca et al., 2011) implemented in Dendroscope version
3.8.5 (Huson and Scornavacca, 2012). See Figure S1 for the equivalent cophylogeny for the Long ARG.
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Figure 3: (A) Mutational spectrum in the Wide ARG compared to Yi et al. (2021). Mutations are
categorised by type (i.e., inherited state > derived state). The percentages of each mutation type
from the Wide ARG are represented by blue bars and the percentages from Yi et al. by orange bars,
with the darker colours representing one direction (e.g., C>U) and the lighter colours the reverse (e.g.,
U>C). (B) Summary of mutations in the Long and Wide ARGs. Private mutations occur on terminal
branches. Insertions are mutations in which the inherited state is the gap state “-” and the derived
state is a nucleotide, and vice versa for deletions. See Section 4.1 for precise definitions of mutations,
and the recurrent and reversion classifications.

algorithm’s performance with sparse data. Given the simplicity of the algorithm, tree inference for
the early pandemic is surprisingly good. The second difference between the sc2ts and Nextstrain
trees that we would like to highlight are a few non-identical sample partitions near the tips (e.g. criss-
crossing assignments within the Alpha clade). It is unclear what particular differences between the
phylogenetic reconstruction algorithms are driving these differences, and more study is required to
characterise and address them. Finally, some branch lengths differ substantially between the sc2ts
and Nextstrain trees. As discussed in Section 4.6, the dating of nodes other than samples in sc2ts
is currently quite crude, but there are likely straightforward expedients that would yield substantial
improvements.

2.3 Mutational spectrum

The ARGs inferred by sc2ts and represented using the tskit library (Section 4.1) are a joint estimate
of the genealogy with recombination and mutation. Unlike most approaches to phylogenetic analysis,
mutations are included in the tskit data model alongside the topological representation of genetic
inheritance. This has many advantages, for example allowing us to compute statistics of the observed
sequences efficiently (Kelleher et al., 2016; Ralph et al., 2020) and to provide high levels of data
compression (Kelleher et al., 2019). The same idea has recently been used to represent SARS-CoV-2
data in UShER’s “mutation annotated tree” format (Turakhia et al., 2021).

The properties of the mutations inferred in the Wide and Long ARGs are summarised in Figure 3B.
In both cases we have a large number of mutations, and a majority of these (Wide ARG: 62.55%, Long
ARG: 72.23%) are private to a single sample, i.e. on terminal branches. Although the average number
of mutations per sample is small (Wide ARG: 0.77, Long ARG: 1.38; Table 1), the average number per
site is large in both ARGs (Wide ARG: 41.23; Long ARG: 36.10; Table 1). However, a lower median
count (Wide ARG: 14; Long ARG: 13), suggests that these high mutation counts are partly driven
by some hypermutable sites (e.g., site 28,271 has over 7,000 mutations in the Wide ARG; Figure 4),
which may be artefactual.

The current version of sc2ts infers a large number of “reversion” mutations, with 5.99% of all mu-
tations in the Wide ARG (Long ARG: 4.54%) reverting the state change of the immediately ancestral
mutation (see Section 4.1 for precise definitions). These are symptomatic of both data quality issues
such as “time travellers” (Section 4.8) and problematic sites (e.g., 28,271 as discussed in Section 2.5;
see also Figure S7 for an example of multiple reversions at this site), as well as indicating opportunities
for improvement in tree building heuristics (Section 4.4). For example, the current “reversion push”
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Group Sequences Method Interval Parent lineages
A (XA) 4 Jackson  21,256-21,615 B.1.177+B.1.1.7
sc2ts 21,256-22,228 B.1.177.184-B.1.1.7
B 2 Jackson 6,529-6,955 B.1.36+B.1.1.7
sc2ts 6,529-6,955 B.1.36+B.1.1.7
C 3 Jackson  25,997-27,443 B.1.1.7+B.1.221
sc2ts 25,997-27,973 B.1.1.7+B.1.221
D 3 Jackson 21,576-23,064 B.1.36.17+B.1.1.7

sc2ts 22,445-23,064 B.1.36.39+B.1.1.7

Table 2: Comparison of recombination breakpoint intervals and parent lineages for Groups A-D re-
ported by Jackson et al. (2021) with the corresponding recombination events in the Wide ARG. The
second column gives the number of sequences in the group, limited to the samples considered by Jack-
son et al. (2021). The 3SEQ (Boni et al., 2007) coordinates reported by Jackson et al. have been
altered as follows: we add one to both left and right coordinates to correspond to the tskit definition
of inheritance on either side of a breakpoint, and add one to the right coordinate to make the intervals
right-exclusive. See Section 4.5 for a precise definition of sequence inheritance at recombination events
and the corresponding breakpoint intervals. Details for all 16 sequences are given in Table S1.

operation only eliminates reversions in the newly added portion of the tree and not reversions around
earlier nodes created by this algorithm.

Despite the presence of some artefactual mutations, the properties of the mutations inferred by
sc2ts largely follow established results. In Figure 3A we compare the mutational spectrum in the Wide
ARG to the results of Yi et al. (2021), who reconstructed a SARS-CoV-2 phylogeny of over 350,000
genomes sampled globally from 2019-12-24 to 2021-01-12 and classified the mutations occurring along
the phylogeny. We categorised all single nucleotide mutations in the Wide ARG by type (defined by
the inherited and derived states), excluding mutations inherited by only a single sample (which are
more likely to be sequencing errors). Similarly, we took the data for single nucleotide mutations from
Yi et al. (2021, https://github.com/ju-lab/SC2_evol_signature), excluding mutations occurring
along terminal branches, and tallied them up by type. Figure 3A shows that the mutational spectrum
from the Wide ARG (based on 448,825 mutations) matches that reported by Yi et al. (2021, based on
92,344 mutations). In both spectra, C-to-U mutations and G-to-U mutations occur more frequently
than U-to-C and U-to-G, respectively. Similar results are obtained when including the mutations
inherited by only a single sample or those occurring on terminal branches (data not shown).

2.4 Early recombinants

RNA viruses are known to recombine at high rates when cells are co-infected (Simon-Loriere and
Holmes, 2011), and recombination has been widely documented to be commonplace in animal and
human coronaviruses (Su et al., 2016). While recombination in SARS-CoV-2 was shown early on to
be frequent in-vitro (Gribble et al., 2021), the relatively slow accumulation of genetic diversity early
in the pandemic hampered efforts to detect recombinant strains. A number of early studies relying on
analysing patterns of linkage disequilibrium and searching for mosaic genomes carrying characteristic
mutations of different lineages either failed to detect recombination or posited that this occurred at
low rates (e.g., Nie et al., 2020; Tang et al., 2020; VanInsberghe et al., 2021; Varabyou et al., 2021).
The first clear evidence of recombinant lineages was presented by Jackson et al. (2021), who performed
a careful analysis of sequences circulating in the UK in late 2020 to early 2021 and found evidence
of multiple independent recombination events and onward transmission. By searching for samples
combining genomic segments from Alpha (B.1.1.7) and from the parental lineage B.1.1 based on a list
of 22 Alpha-defining mutations, they found 16 recombinant sequences from 8 putative origins (groups
A to D and four singletons). These findings are closely replicated in both the Wide and Long ARGs.

The Wide ARG contains 15 of these 16 recombinant sequences (sample MILK-103C712 was removed
during preprocessing; see Section 4.7). Table 2 shows the groups of sequences identified by Jackson
et al. as likely independent recombination events with onward transmission. In each case we have
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Figure 4: Distribution of recombination breakpoints and mutations along the genome in the Wide
ARG. Top panel shows the intervals for 1,769 breakpoints associated with 1,522 recombination nodes
with at least two descending samples, plotted along the genome as line segments (coloured by interval
width). The inset histogram shows the distribution of these interval widths (truncated at 10kb). The
bottom panel shows the number of intervals that span each site along the genome (left axis, orange)
and the number of mutations per site (right axis, blue). The top-ten sites by mutation count are
annotated. See Figure S2 for the equivalent plot for the Long ARG.

a corresponding recombination node in the Wide ARG, from which all the sequences in the group
descend. The parent lineages and breakpoint intervals agree closely (see Section 2.5 for more details
on breakpoint intervals). For groups B, C and D, these recombination nodes form clades consisting
only of the identified sequences. Group A sequences were subsequently given the Pango XA designation
following onward transmission, and there are 44 XA designated samples in the Wide ARG (including
the 4 sequences analysed by Jackson et al.). The Group A recombination node forms a monophyletic
clade of these 44 samples. Table S1 shows the details for each of the 16 sequences individually and
showing generally a strong concordance in mosaic structure and parent lineages (including sample
CAMC-CB7AB3, which is inferred to have two breakpoints under both methods).

The Long ARG contains 5 of the sequences: two each from groups A and B and sample QEUH-
1067DEF. These cluster under three recombination nodes, as expected, and have identical breakpoint
intervals and parental lineage assignments to those of Wide ARG. The recombination nodes for Group
B and sample QEUH-1067DEF are ancestral only to the sequences involved. The recombination node
for group A forms a monophyletic clade of all 5 XA samples present in the Long ARG (Figure 6A)

2.5 Recombination breakpoint intervals

It is rarely possible to be precise about the position on the genome at which a recombinant sequence
switches from inheriting from one parent to another. Even if we observe the recombinant sequence
before subsequent divergence occurs (during onward transmission), there is no way to identify the
exact breakpoint if the two parent sequences are similar. Here we define the interval within which
a particular breakpoint may have occurred as the genome coordinates over which the sequences for
the left and right parent nodes are identical. The right-hand extreme of the breakpoint interval is
chosen by the LS HMM Viterbi algorithm (Section 4.2), and the left endpoint is then derived by
directly comparing the parent sequences. See Section 4.5 for a precise definition of breakpoints and
their intervals.

Figure 4 shows the distribution of breakpoint intervals and patterns of recurrent mutation along
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the genome in the Wide ARG (see Figure S2 for the same information for the Long ARG). We focus
on the Wide ARG here as it covers roughly the same time period as the analyses of Turakhia et al.
(2022), facilitating comparisons of the results. To reduce the effect of artefactual recombinants, we
consider only the breakpoints associated with the 1,522 recombination nodes that are ancestral to
more than one sample. The mean length of these intervals is 1,685 bases (median 962), and the length
distribution is summarised in the inset histogram in Figure 4.

Although further work is required to filter out spuriously inferred recombination events (see Sec-
tion 2.8) we can draw some preliminary conclusions from Figure 4. The number of intervals spanning
a site (orange curve) is lower at the ends of the genome, as expected due to the lack of information
about recombination with few flanking sites. In addition, the number of intervals spanning a site often
drops near the beginning of a gene. This is particularly apparent at the ORF8/N gene interface, with
the N gene containing fewer potential recombination breakpoints than other genes, in agreement with
the results of Turakhia et al. (2022). Noticeable declines in the number of spanning intervals are also
seen near the beginning of S, M, ORF7a, and ORF8. These declines are sometimes associated with
hypermutated sites (e.g., 27,384 and 28,271 near the beginning of ORF7a and N, respectively), as ex-
pected because sites that undergo mutation at high rates are more likely to differ between the parents
of a recombinant and so provide information about the location of a breakpoint. This pattern may,
however, also be an artefact of sequencing errors causing sites to appear different between the parents
when they are not (see the discussion of potential errors at site 28,271 below). In other cases, however,
the drop in intervals does not appear to coincide with hypermutability and may reflect shifts in the
actual rate of recombination between genes. Indeed, template switching is known to occur at hotspots,
which often involve transcription-regulatory sequences preceding genes in SARS-CoV-2 (Yang et al.,
2021). The rate of recombination may also depend on the relative abundance of different subgenomic
RNA intermediates that span different genes, affecting the availability of templates and influencing
the rate of homologous recombination (Kim et al., 2020; Zou et al., 2021).

It is important to note that the precise endpoints of intervals can be somewhat arbitrary, because
they are defined by the sequence differences that happen to be present in the recombinant’s parents.
Thus, breakpoint intervals will tend to be truncated at sites that are hypermutable, either due to
increased information about parentage or spurious inferences caused by sequencing errors. It is there-
fore helpful to compare the number of intersecting intervals with the number of mutations per site
(Figure 4). For instance, position 28,271 (located in the ORF8-N intergenic region) has the largest
number of mutations and appears as an endpoint of 66 intervals. The 7,572 mutations (including
5,782 insertions and 1,605 deletions) at this site are an indicator that this homopolymeric region may
be prone to sequencing errors and potentially should be included in the list of “problematic sites”
that are excluded from analysis (Section 4.7). On the other hand, 58 of the breakpoint intervals have
endpoints within one base of site 27,972, which has undergone 770 mutation events (including 425
C>T, 314 T>C). The C>T mutation has the effect of truncating ORFS8, and it has been posited that
the truncation is neutral or advantageous for transmission, and disadvantageous within-host (Jungreis
et al., 2021), suggesting that the high rate of recurrent mutation at this site may be due to selection.

2.6 Divergence between recombinant parents

In this section we explore the detailed ancestral relationships between recombinant parents by inves-
tigating the patterns of divergence between them. We focus on the Long ARG because it covers time
periods where substantial recombination is known to have occurred and contains samples from 33
Pango X lineages (i.e., those inferred to have recombinant ancestry; see Section 2.7 for further analy-
sis). Figure 5 shows the estimated date of the most recent common ancestor (MRCA) of the parent
nodes for each recombination breakpoint, plotted against the divergence between these parents (i.e.,
the total branch length from the parents to their MRCA in the trees to the immediate left and right of
the breakpoint). As in Section 2.5, in these plots we exclude breakpoints associated with “singleton”
recombination nodes (those ancestral to only one sample). Larger points distinguish those breakpoints
which occur in nodes ancestral to 5 or more samples, comprising 316 breakpoints from 291 recombi-
nation nodes. The criterion of 5 descendants matches the minimum number required to designate a
new Pango lineage (Rambaut et al., 2020). Note that as each plotted point represents a breakpoint,
a recombination node with more than one breakpoint (e.g., with 3 or more parents, comprising ~10%
of the recombination nodes in Figure 5) will be represented by several points.

The date of the MRCA of recombinant parents is concentrated in several banded rows in Figure 5.
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Figure 5: Date of common ancestry between the parents on either side of recombination breakpoints,
as a function of the divergence time between the parents. MRCAs of parents associated with Pango
designated recombinants (XA, etc) are identified in orange. Larger symbols represent breakpoints in
recombination nodes ancestral to five or more samples. Horizontal dotted lines show the four most
common MRCA nodes, which tend to be associated with major outbreaks and with many immediate
children. The stacked histogram shows the distribution of parental divergence times, ranging from
parents that have diverged only a few days ago, to much more divergent parent lineages. See Figure S3
for equivalent plots broken down by parental VoC classification.
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These are largely due to a few MRCAs shared by many recombinants (the top four are indicated in the
figure). These shared MRCAs lie near the root of large expansions, and the majority are associated
with large polytomies, likely indicating a rapid and under-sampled expansion of a clade (e.g. major
Delta and Omicron waves).

Figure 5 shows that there is a large range in divergence times among parents of detected recombi-
nants, with a broad spread of times from about 10 to 80 weeks prior to the recombination event and a
minor additional peak involving recombination between lineages that diverged ~95 weeks ago, corre-
sponding to common ancestors which trace back to early 2020. This latter group should contain, for
example Delta-Omicron recombinants. More widely, we can further classify the breakpoints by the VoC
combinations of their parent lineages. Considering only the Alpha, Delta, and Omicron VoC classes,
such a classification reveals that the majority of breakpoints have two Delta or two Omicron parents,
and that Omicron and Delta are the variants associated with the most recombination (Figure S3). This
may reflect either sampling intensity, the prevalence of cases (which increases the chance of coinfection
and recombination), or possible heterogeneity in recombination probabilities among lineages.

The time estimates in these figures should be treated with a degree of caution, because non-sample
nodes are crudely dated in the current version of sc2ts (see Section 4.6, in particular for discussion of
how these dates might be improved using existing methods). Nevertheless, it is clear that sc2ts can
identify recombination between lineages that are only a few weeks diverged.

2.7 Recombinant Pango lineages

In this section we focus on the detailed ancestry of samples that have been previously identified as
recombinants, i.e., designated as belonging to a Pango lineage with a name starting with an “X”.
We focus primarily on the Long ARG which contains many more recombinants (the status of Pango
X lineages in the Wide ARG is briefly summarised in Section 2.7.4). Designation of samples to
Pango lineages is not a straightforward task, and there can be significant variation between methods
(De Bernardi Schneider et al., 2023). Here, we consider two different assignments of Pango lineages
to samples in the Long ARG, those provided by Nextclade and by GISAID. Using the Nextclade
assignments, the Long ARG contains 749 samples from 33 Pango X lineages (711 samples from 33
lineages when we remove singleton recombinants). In contrast, using the GISAID designations we have
515 samples from 38 X lineages (511 samples from 35 lineages when we filter singleton recombinants).
Of the GISAID designations, 28 are shared with Nextclade (26 after filtering singletons). This variation
in classifications highlights the uncertainty that exists when assigning Pango X lineages to samples,
and is important to keep in mind when interpreting the results here.

We focus here on the 749 Nextclade-designated recombinant samples. There are two samples
designated XP which do not descend from a recombination node, and a likely explanation for the
absence of a corresponding recombination event in the Long ARG is that the characteristic multibase
deletion for XP (https://github.com/cov-lineages/pango-designation/issues/481) is masked
during our preprocessing (see Section 4.7 for details and potential improvements). Of the remaining
X designated samples, 38 are singleton recombinants, descending from recombination nodes that are
ancestral only to that sample (10 are labelled XZ; 6 are XE; 3 each from XN and XK; 2 each from
XC, XS, XV, XQ and XAB; and 1 sample from each of XB, XM, XJ, XAF, XAH and XAlJ). Such
samples are likely to be enriched for sequencing errors and lineage designation artefacts, and so we
exclude them from further analysis in this section. A further 79 samples (XN: 53, XZ: 16, XAJ: 6,
XE:1, XAD: 1, XAH: 1, XAK: 1) trace back to a most recent recombination node that is likely to be
a false positive (row C in Table 3, see Section 2.8). For simplicity these samples are likewise excluded
from further analyses.

The remaining 630 samples (31 Pango lineages) trace back to 50 different most recent recombination
nodes, summarised in Table S2. These fall into three classes: single origin, multiple origin, and multiple
nested origins, which we discuss in the following sections.

2.7.1 Single origin

In the absence of genealogical information, a reasonable initial assumption is that all sequences assigned
to a given Pango X lineage are descendants of a single recombinant sequence, arising as a result of a
mixed infection followed by onward transmission. We would expect our ARGs to reveal evolutionary
histories of this nature, where all the samples assigned to a given recombinant lineage trace back to
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Figure 6: Examples of non-nested Nextclade Pango X lineages. (A) Subgraph for XA in the Long
ARG: all five samples designated as XA by Nextclade, together with their ancestral lineages, are shown
outwards to the nearest sampled viral genome; dotted lines show ARG continuation. Vertical position
of nodes does not show absolute time, but relative rank (parents above children). Nodes are coloured
by Nextclade Pango designation; smaller symbols are non-sample nodes inserted by sc2ts, whose
Pango status is imputed. Genomic regions inherited by the recombination node are shown; breakpoints
correspond to the rightmost breakpoint position inferred by sc2ts. (B) Equivalent subgraph for the 17
XAG samples in the Long ARG, with abbreviated labelling. Where non-XAG samples are ancestral to
further unplotted samples, the number of unplotted descendant samples is marked as “+17, “47”, etc.
(C) Equivalent subgraphs for both origination events involving the four XD samples in the Long ARG.
Details of the mutations and sample node identities for all three plots are provided in supplementary
Figures S4, S5, and S6, which also provide alternative GISAID Pango designations.

one recombination node, representing a single originating recombination event. In the Long ARG, 16
of the 31 Pango recombinants lineages identified by Nextclade fall into this category (Table S2)

One of the simplest examples is XA, corresponding to group A of Jackson et al. (2021) as discussed in
Section 2.4. Figure 6A shows the exact relationships inferred by sc2ts as a subgraph of the Long ARG.
Here, paths have been traced from all Nextclade-identified XA samples (in red) to the closest other
sample nodes in the ARG. Sample nodes are plotted as larger circles, but the subgraph also includes
intermediate, non-sample nodes (i.e., inserted by sc2ts, see Sections 4.3 and 4.4). Dotted lines show
where this subgraph links to the rest of the ARG. Above recombination nodes, only ancestral nodes
are shown, meaning that the subgraph is not extended to show additional descendants of recombinant
parents.

It is clear from the XA subgraph that all the samples labelled XA by Nextclade trace to a single
originating recombination node, whose genome is a composite of a B.1.177.18 lineage on the left of the
genome and a B.1.1.7 lineage on the right. In the subgraph we show the rightmost genomic position
for the recombination breakpoint, here at position 22,227 (corresponding to a breakpoint strictly less
than 22,228, see Table 2)

A more complex single-origin case is XAG, illustrated in Figure 6B. Here, the XAG samples all
trace back to the same most recent recombination node (combining BA.1 on the left and BA.2.9 on the
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right), but we infer this recombination event to also be the originating event for all the recombinant
samples designated XA A, and some, but not all, of those identified as XAB, XQ, and XU by Nextclade.

The classification of originating recombination events is dependent on accurate designation of Pango
lineages to samples. It is therefore important to note that if the GISAID Pango designations are used,
many of the samples marked here as XAB are reclassified as BA.2 and XAG becomes fully monophyletic
(although still not an immediate descendant of the originating recombination node, see Supplementary
Figure S5). This is an independent confirmation of the uncertainty in designation of these XAG-related
samples.

Six of the 16 Nextclade designated lineages (XA, XAC, XAE, XF, XK, and XS) are of the basic
(XA) type with no other Pango designations among their descendants. The remaining ten are of
the XAG type with multiple Pango designated lineages as additional descendants of the originating
recombination event. In some cases, these may, however, be a result of erroneous Pango designations.
Table S2 also shows the official Pango designated parent lineages and sc2ts inferred parent lineages,
which extensively agree (although sc2ts provides a more precise parent designation).

2.7.2 Independent multiple origins

The sc2ts inference process has no pre-defined knowledge of Pango X lineage assignments, and there is
therefore no particular requirement that all the samples assigned to a given lineage must trace back to
a single recombination event. Using Nextclade designations, 15 Pango X lineages are inferred to have
multiple recombinant origins, such that their samples trace to more than one most recent recombination
node in the ARG. Of these, 11 are cases where the recombinants are independent rather than nested
(i.e., there is no overlap in the list of descendant samples for each recombination node). Most have a
single “main” recombination event from which the majority of the corresponding recombinant samples
descend and which agrees with the official Pango designated parent lineages (see Table S2, but note
that in XJ and XU there are too few Pango X samples to decide on a “main” clade).

Figure 6C shows a simple multiple-origin example, consisting of the 4 samples labelled XD by
Nextclade in the Long ARG. The left hand subgraph (containing three XD samples, all sampled
in France) has an earliest sample (strain France/HDF-biopath-7747831001/2022) dated 2022-02-26,
while the right hand subgraph has a single XD sample (strain Turkey/HSGM-F12594/2021) dated
2021-12-30. Both involve an Omicron lineage being inserted into the middle of a Delta genome,
but the breakpoints in each case are slightly different: the start of the Omicron insertion in the
French samples has an estimated rightmost position of 21641bp (and a leftmost of 21619, not shown)
with the insertion end occurring at a rightmost position of 25584 (and a leftmost of 25470). By
contrast, the Omicron insertion in the Turkish sample is inferred to have occurred from position
2161922578 to position 23605-24130. The breakpoint difference, the different geographical locations,
the time between the samples, and the fact that the two samples differ at 23 nucleotide positions,
suggests that these may indeed represent independent Delta—Omicron recombinants. The canonical XD
definition is based entirely on samples from northern Europe, particularly France (https://github.
com/cov-lineages/pango-designation/issues/444) so it seems plausible that the earlier Turkish
sample has been mislabelled as XD by Nextclade. Indeed, GISAID does not label any of these samples
XD (see Figure S6 which gives exact mutations and sample identifiers). Investigation of other multiple-
origin examples reveals somewhat similar patterns, suggesting that most of the simple multiple origin
examples are due to incorrect Pango labelling.

2.7.3 Nested recombinant origins

As well as cases where Pango X lineage origins are attributed to independent recombination events,
four Pango X lineages in the Long ARG have Nextclade-designated samples whose ancestry involves
further recombination events (marked by t in Table S2; the most complex appears to be XAB). Figure 7
plots the earliest example, XB, which is present in both the Wide and Long ARGs. The subgraph
shows a recombination between a B.1 sample and B.1.627 sample that leads not only to all the XB-
labelled samples but also to a “hairball” of further recombination nodes whose descendants are often
not identified as recombinants by Nextclade (plotted on the left, in blue). A similar pattern is seen
when examining XB in the Wide ARG (see discussion below).

Note that in the Long ARG, the nested recombination events account for only one XB sample
(pink upper left, with 7 mutations above it); moreover, this sample is not identified as XB by GISAID
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Figure 7: A subgraph of the Long ARG showing nested recombination events involving Pango lineage
XB. All XB samples trace to a single recombination node (top centre), but three further recombinations
also descend from this node. The samples descending from these nested recombinations include 9 that
are assigned by Nextclade to various non-recombinant pre-Alpha lineages (blue).

(Figure S7) indicating some uncertainty in lineage assignment in this part of the ARG. Also note
that the number of mutations on the lineages immediately above and below the recombination node
(totalling 184-2) is rather large, suggesting that the sampled recombinant which induced the recombi-
nation node in the Long ARG is only distantly related to the true originating recombinant. This could
account for complex and potentially artefactual relationships around these nodes and is likely to be
due to undersampling of the XB outbreak. Investigating examples of nested recombinant origins, and
identifying which (if any) of the nested recombination events may be artefactual, is an important area
of future research.

2.7.4 Wide ARG

Because the Wide ARG is restricted to data collected prior to mid-2021, it contains samples from
only three Pango-designated recombinant lineages: XA, XB, and XC. Both Nextclade and GISAID
designate 44 samples as XA, while 237 samples are designated as XB by Nextclade (231 by GISAID),
and 6 as XC by Nextclade (none by GISAID). After removing singleton recombinants, XA numbers
remain unchanged, but XB is reduced to 235 Nextclade-designated samples (229 GISAID) and XC is
reduced to 4 (none in the GISAID designations). We confirm that all samples designated as XA, XB,
or XC by any method have one or more recombination nodes in their ancestry.

As in the Long ARG, all XA samples in the Wide ARG trace back to a unique originating recombi-
nation node, consistent with Figure 6A. This is the product of a recombination between a B.1.177.18
sample (specifically the strain Wales/ALDP-115BF41/2021) which contributed the majority of the
genome from the start to a rightmost position of 22227, and an unknown (inserted) node with imputed
Pango lineage B.1.1.7, which contributed the remaining right hand portion. The recombination node
has five immediate children: four sample leaves (strains Wales/ALDP-11CF93B/2021, Wales/ALDP-
125C4D7/2021, Wales/LIVE-DFCFFE/2021, and Wales/ALDP-130BB95/2021) and a inserted node
which is the ancestor of all other XA samples in the dataset. The geographical clustering inferred by
sc2ts for these samples matches the findings of Jackson et al. (2021).

For XB, all samples trace back to an originating node which is the product of a recombination
between a B.1 sample (specifically the strain England/CAMB-7B47D /2020, which contributed the
majority of the genome from the start up to a rightmost position of 23604bp), and two UPGMA
nodes with imputed Pango lineages B.1.627 (up to a rightmost position of 27389bp) and B.1.36.8 (the
remaining fragment of the genome). Figure 7 shows that in the Long ARG the equivalent recombination
node has only 2 parents, with no involvement of B.1.36.8; it is possible that the third parent in the
Wide ARG is artefactual. As in the Long ARG, additional non-X-designated samples such as B.1.634
also descend from this recombination, and there are also a small number of nested recombination
nodes. However, all but one of these nested recombinations are unimportant, being ancestral to
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Strain Descendants Lineage Rank in lineage HMM Cost
A Germany/HH-RKI-I-061284/2021 178,405 B.1.617.2 3 /12829 17
B India/ILSGS00961/2021 177,649 B.1.617.2 8 /12829 25
C Denmark/DCGC-281594/2021 127,227 BA.2.9 1 /10897 32
D USA/NJ-GBW-EWR000001/2021 127,230 BA.3 1/15 25

Table 3: False positive recombination events. Details show are for the top four recombination nodes
in the Long ARG ordered by number of descending samples. See the text for details on the remaining
columns. Rows are labelled A, B, C and D for ease of reference.

negligible fractions of the Nextclade-designated XB samples. The one exception accounts for about
17% of the designated XB nodes and involves a recombination between descendants of the originating
XB recombination. More specifically, strain USA/TX-HMH-MCoV-43092/2021 is inferred to be a
recombinant between an XB grandparent and its XB grandchild, involving an intermediate UPGMA
node. It seems likely to be an artefactual recombination event caused by undersampling, but it could
also reflect true recombination between closely related lineages.

For the few XC-labelled samples, the Wide ARG identifies more than one originating recombination
node. However, as none of the samples designated as XC by Nextclade are designated as XC by
GISAID, these patterns could be due to mislabelling, and a greater number of XC samples would be
needed to draw reasonable conclusions.

2.8 False positive recombinants

The Long and Wide ARGs both contain several recombination nodes that are ancestral to a large
number of samples. These inferences of recombination may well be artefacts caused by the appearance
of new variants of concern carrying more than the expected number of mutations (Otto et al., 2021).
Table 3 shows details of four recombinants in the Long ARG that are likely false positives and have come
to be the ancestors of a large number of samples. These are the top-four recombinants from the Long
ARG in terms of numbers of descendant samples (the fifth-largest has substantially fewer, at 14,869
descendant samples), labelled A-D. For each row, we show the sample’s Pango lineage designation
and the temporal rank of that sample out of all samples with that designation. Thus, rows C and D
are the earliest samples seen in the Long ARG from the BA.2.9 and BA.3 lineages, and A and B are
respectively the third and eighth earliest samples among 12829 samples assigned by Nextclade to the
B.1.617.2 lineage (Delta VoC). Also shown is the overall “cost” of the Viterbi solution computed by the
LS HMM (Section 4.2), which is 3x number of recombinations + number of additional mutations (for
a mismatch ratio of k = 3). This column shows that each of these samples was a large “distance” from
the current ARG when it was added. The mean HMM cost over all 2,078 recombinants in the Long
ARG is 8.39 (median: 7), and the mean cost for the 763 non-singleton recombinants is 8.5 (median:
7). Thus, the recombinants in Table 3 are in the tail of this distribution.

Occasional evolutionary leaps, in which a large number of mutations are acquired in sudden jumps,
is a signature feature of SARS-CoV-2 (Corey et al., 2021; Otto et al., 2021; Nielsen et al., 2023). Such
“saltations” naturally present challenges to sc2ts and the current HMM parameterization of three
mutations per recombination (mismatch ratio). The first few sequences from these new lineages will
be a poor match to the existing ARG, and the HMM will therefore search for ways to reduce the
number of mutations required by recombining segments. This appears to be the case for the Delta
VoC, corresponding to rows A and B of Table 3, which emerged and quickly rose to high prevalence
in early-mid 2021, carrying 30 characteristic mutations compared to the reference sequence (McCrone
et al., 2022), including nine mutations in the S gene not seen in earlier VoCs. The origins of the Delta
VoC are are illustrated in Figure S8, which shows the large numbers of mutations involved, and the
multiple closely related recombinations inferred before tree-like behaviour is resumed at the ancestor
of 90% of Delta samples (node tsk261771). Similar patterns around the emergence of Delta are seen
in the Wide ARG (not shown).

Given these considerations, it is important to note that the number of ultimate descendants is
not an entirely reliable indicator of the quality of inferred recombinants. Further study is required
to systematically identify such false positive recombinants, and to update the topology with a more
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parsimonious explanation of the data.

3 Discussion

Although the COVID-19 pandemic is no longer considered a global emergency by the WHO, the
prevalence of SARS-CoV-2 continues to be high worldwide. This fuels proliferation of many variants,
with more than 600 Pango-designated lineages circulating globally in the last three months (January
to March, 2023; https://gisaid.org/; accessed on 2023-03-27). High prevalence increases the risk
of coinfection, providing opportunities for new phenotypically distinct recombinants to emerge and
spread. Phylogenetic approaches have been central to responses to the pandemic thus far (Attwood
et al., 2022; Bloom and Neher, 2023; Abbas et al., 2022; McLaughlin et al., 2022). However, with
the rise to high frequency of recombinant lineages (e.g. XBB; Tamura et al., 2023), it is imperative
that these methods are updated to incorporate the effects of recombination, so that future public
health interventions are not based on incomplete and potentially biased evolutionary models. Here
we have introduced the first method to infer an evolutionary history that jointly estimates genealogies
with both mutation and recombination at pandemic scale and illustrated how this single structure
accurately captures results derived by many different means.

Nonetheless, sc2ts is currently “alpha” quality software, and we caution against over interpreting
current results. As we have sought to illustrate throughout, there are some clear areas for improvement.
The pipeline used to identify and mask erroneous sites in the input alignments is simplistic, and,
among other issues, results in multi-base indels being marked as missing data (Section 4.7). A more
sophisticated approach (e.g., Aksamentov et al., 2021) would likely yield significant improvements and
reduce the effect of sites with artefactually high levels of mutation (e.g., site 28271; Section 2.5). Using
a pre-existing tree built using state-of-the-art phylogenetic methods for the early stages of the pandemic
(Section 2.2), and minor adaptations to standard node-dating methods (Section 4.6) should help resolve
the most notable issues with the inferred backbone phylogeny (Figure 2). Trees constructed from daily
sample clusters have a surprisingly large influence on the overall ARG topology (Section 4.3), and so
using a more sophisticated tree building approach should yield clear improvements. The unrealistically
large number of reversion mutations (Section 2.3) may be reduced by improvements to the current
parsimony heuristics (Section 4.4). A major source of errors are the “time-traveller” samples, whose
recorded collection dates are months (or years) too early (Section 4.8). While it is unclear how we
might solve this problem in general, some simple solutions such as filtering out sequences that exceed
a given cost in the LS HMM (i.e., number of mutations and recombination switches) may work well in
practice. Such an approach would also reduce the impact of sequences with high levels of sequencing
error (which currently contribute a large number of mutations). Taken together, these and other
relatively minor improvements should enable inference over much larger subsets of the dataset and
give a clearer picture of the combined processes of recombination and mutation over the pandemic so
far.

An attractive feature of sc2ts is that the most difficult part of the inference problem—finding
likely recombinant paths through the existing ARG for new samples—is solved exactly under a well-
defined statistical model, using established HMM methodology (Section 4.2). The implementation
currently uses a single, arbitrarily chosen, maximum likelihood path via the Viterbi algorithm, but
there are numerous ways in which the HMM machinery could be extended in order to explore the set
of possible paths, or to quantify the uncertainty around it. Similarly, the current parameterization
of the HMM with a single mismatch ratio is simplistic, and it would be straightforward to condition
on per-site mutation rates (and nucleotide-dependent state transitions, with some additional develop-
ment). Recombination breakpoints for the ARG are currently inserted at the right-most extent of the
possible interval (Section 2.5). More likely locations for the breakpoint could be chosen within the
interval, for example based on sequence motifs (Gallaher, 2020; Yang et al., 2020). It is likely that the
basic machinery of finding matches and quantifying the uncertainty around them under a well-defined
statistical model in large ARGs would have many applications besides those explored here.

The vast volume of whole genome sequence data generated during the pandemic has presented
classical phylogenetic methods and software with major difficulties (Hodcroft et al., 2021). Standard
interchange formats such as FASTA, Newick and VCF were simply not designed to deal with millions
of samples, and their limitations have come sharply into focus (Turakhia et al., 2021; De Maio et al.,
2023). Replacements that can scale to millions of genomes have had to be developed at speed, usually
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focusing on compiled programming languages to maximise performance. Here, however, we have
developed a new method based on an existing data structure and library infrastructure, designed from
the beginning to scale to millions of samples (Kelleher et al., 2016, 2019). The sc2ts package is written
entirely in Python and by reusing existing high-performance components can infer recombinant viral
ancestry at unprecedented scale. Similarly, all of the analyses shown here are written in Python,
using the tskit API, mostly running in a few seconds on standard laptop computers (see the Data
Availability section for details of the corresponding Jupyter notebooks). Retooling methods to scale
up rapidly with expanding data and to encode recombination promises to improve tracking during this
and any future pandemic.

4 Methods

Sc2ts (pronounced “scoots”, optionally) is a method for inferring Ancestral Recombination Graphs
(ARGs; see Section 4.1) from densely sampled pandemic-scale data in real time, in which recombination
occurs at a low but significant rate. The basic idea is to incrementally update an ARG each day with
the sequences collected on that day (Figure 1). The first step is to find likely “copying paths” under the
Li and Stephens model for each sequence in the daily batch to the current ARG (Section 4.2). These
copying paths will mostly consist of a new sample sequence copying from a node in the ARG with a
small number of mutations, and often many samples from a daily batch will copy from the same ARG
node. The second step is then to “resolve” these implied polytomies by using standard tree-building
techniques (Figure 1C; Section 4.3). This greedy update strategy inevitably leads to unparsimonious
topologies, and the third step is to then increase the overall parsimony of the inferred ARG by making
some simple topological updates (Figure 1C,D; Section 4.4). Recombination is inferred as an integral
and ongoing part of this process, requiring only a few additional steps to facilitate later analysis
(Section 4.5). The result of inference for a given day is then a genealogy recording genetic inheritance
as well as mutation and recombination events for all of the sequences inserted into the ARG up to
that day, which can be conveniently and efficiently analysed using the mature and feature-rich tskit
library (Kelleher et al., 2018; Ralph et al., 2020; Tskit developers, 2023).

4.1 Ancestral Recombination Graphs

The term “Ancestral Recombination Graph” was introduced by Griffiths and colleagues (Griffiths,
1991; Griffiths and Marjoram, 1997) and originally defined as an alternative formulation of the coa-
lescent with recombination stochastic process (Hudson, 1983). Subsequently, the term ARG came to
be used in a more general way to describe not just realisations of this model, but to any recombinant
genetic ancestry (Minichiello and Durbin, 2006; Zhang et al., 2023). While there is some subtlety in
the details (Wong et al., 2023), we can think of an ARG as being any graph that encodes the reticulate
genetic ancestry of a sample of colinear sequences under the influence of recombination. This definition
encompasses various types of graphs often described using the broader term of phylogenetic networks.
The “succinct tree sequence” is an ARG data structure that is both general (in terms of the types of
ancestry that can be described) and computationally efficient (Wong et al., 2023). Originally developed
to facilitate large-scale coalescent simulations (Kelleher et al., 2016), the methods have been extended
and applied to forward-time simulations (Kelleher et al., 2018; Haller et al., 2019), calculation of
population genetics statistics (Ralph et al., 2020) and ARG inference (Kelleher et al., 2019; Wohns
et al., 2022). The succinct tree sequence is based on a simple tabular representation, which defines
a set of nodes, edges, sites and mutations. A node represents a particular genome, which may be
an observed sample or an inferred genetic ancestor. The genetic inheritance between a pair of nodes
along a segment of genome is defined by the edge (¢,r,p,c), which states that child node ¢ inherited
its genome from parent node p from left coordinate ¢ to right coordinate r. A site defines a position
on the genome and the ancestral state (allele) at that site. A mutation records the site and node
IDs where a mutation occurs and the derived state (allele). In addition to these basic elements of the
data model, the tskit library supports additional tables and fields, the ability to associate arbitrary
metadata with table rows, and facilities to record provenance information (Tskit developers, 2023).
Tskit supports arbitrarily complex patterns of mutation at a particular site, and it is useful to
define some terminology to classify them. A mutation’s “parent” is the first mutation encountered
(at that site) on the path to root from the mutation’s node in the local tree corresponding to the
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site’s position. If no other mutation is encountered on the path to root, the mutation’s parent is
null. The “derived state” of a mutation is the allelic state inherited by nodes in the subtree rooted
at the mutation’s node (in the local tree), assuming there are no subsequent descendant mutations.
The “inherited state” of a mutation is the derived state of the parent mutation, if it exists, or the
site’s ancestral state otherwise. A “recurrent mutation“ is a mutation with a non-null parent, and a
“reversion” is a recurrent mutation that reverses the state change of its parent. For example, if we
have two mutations a and b, such that a is the parent of b, with state transitions (inherited state —
derived state) a: A — T and b: T — A, we define b as a reversion.

Given the node, edge, site and mutation tables we can efficiently construct the local genealogical
trees along the genome (arising from recombination) and perform a range of calculations efficiently by
reasoning about the differences between these local trees (Kelleher et al., 2016; Ralph et al., 2020).
These algorithms have led to performance increases of several orders of magnitude over the state-of-
the-art in a range of applications (Kelleher et al., 2016, 2018, 2019; Ralph et al., 2020; Baumdicker
et al., 2022). The succinct tree sequence encoding is also very concise, allowing, for example, for
millions of complete human genomes to potentially be stored in a few gigabytes of space (Kelleher
et al., 2019).

The tskit library (Tskit developers, 2023) is a liberally licensed open source toolkit that provides
a comprehensive suite of tools for working with ARGs. Based on core functionality written in C, it
provides interfaces in C, Python and Rust. The Python interface is based on NumPy (Harris et al.,
2020) and provides a convenient platform for interactive analysis of large-scale data using, for example,
Jupyter notebooks (Kluyver et al., 2016) and taking advantage of the analysis tools in the burgeoning
PyData ecosystem. (It is possible to access the toolkit from R via the reticulate package, and the
slendr library (Petr et al., 2022) also provides some native R support. A full R interface would be a
valuable addition to the ecosystem.) Tskit is mature software, widely used in population genetics, and
has been incorporated into several downstream applications (e.g., Haller and Messer, 2019; Speidel
et al., 2019; Terasaki Hart et al., 2021; Fan et al., 2022; Korfmann et al., 2022; Mahmoudi et al., 2022;
Petr et al., 2022; Rasmussen and Guo, 2022; Zhang et al., 2023). It is important to note that this
ecosystem for storing and manipulating ARGs can generally be used to efficiently record and analyse
SARS-CoV-2 genealogies reconstructed using other methods, not only the sc2ts approach that we
describe here. Note also that there is no requirement that recombination be present, and the methods
are also very efficient when working with a single tree.

4.2 The Li and Stephens model

The Li and Stephens (LS) model (Li and Stephens, 2003) is an approximation of the coalescent with
recombination (Hudson, 1983) which captures many of the important features of the joint processes
of mutation and recombination. It is a Hidden Markov Model (HMM) in which a focal genome is
modelled as a sequence of nucleotides that are probabilistically emitted as an imperfect mosaic of
a set of reference genomes (Figure 8). The LS model is used in a wide variety of applications in
genomics, including modern approaches to statistical genotype phasing and imputation (Delaneau
et al., 2019; Browning et al., 2021, 2018; Rubinacci et al., 2020), and estimation of parameters such
as recombination rates (e.g., Hinch et al., 2011) and intensity of selection within and across hosts in
viral sequence data (e.g., Palmer et al., 2019). See McVean and Kelleher (2019) for further review and
discussion of the LS model.

The generative process of the LS model is summarised in Figure 8. Here, a transition matrix, @,
governs the process of switching (recombining) between members of the reference panel (the hidden
states). An emission matrix, E, allows for differences between the focal sequence and the hidden state
from which it is copied (due to mutation as well as sequencing error). Both F and @) may be a function
of the reference panel members, but transitions are generally assumed to be independent of the hidden
states (Figure 8, pink panel). This assumption dramatically increases performance as the state space
drops to two states (i.e., switching or not switching). Emissions may also be a function of the nucleotide
states, but in our RNA virus case we assume that mutations occur from all possible alleles (A, C,G,U
and a gap in the alignment, —) to any other with equal probability /4. This is reasonable for rapidly
evolving pathogens, but we note that setting the number of alleles at site £ (ag) to the set of observed
alleles across all analysed samples (p¢/(ap — 1)) will often be more appropriate (Figure 8, blue panel).
We use the Viterbi algorithm (Viterbi, 1967) to find the most likely copying path, given @, E, and a
set of reference sequences. Throughout, we refer to the probabilities of mismatching to a member of
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Figure 8: A schematic of the Li and Stephens (LS) model, in which a focal sequence (bottom) is
described as an imperfect mosaic of the sequences in a reference panel. Black crosses along the focal
sequence show sequencing errors or mutations. In the standard formulation, at site ¢, the recombination
probability is 7y, the mutation probability is py and n denotes the size of the reference panel. The
Viterbi algorithm can be used to find a “copying path” through the reference panel for a given focal
sequence that maximises the likelihood under these parameters. Unseen states in the reference panel are
shown as coloured lines enclosed by the grey box. The black arrow describes the true path through the
data which leads to the emitted focal sequence below. Examples of transition and emission probabilities
along this trajectory are shown by the red and blue arrows, respectively.
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the reference panel at site £ as pg, and the probability of recombining between two members of the
reference panel between site £ — 1 and site £ as r,. For convenience, py is commonly referred to as the
‘mutation probability’, but we note that this probability of mismatch also encompasses various other
error modes that result in a mismatch (such as sequencing and alignment errors). Note also that it is
these probabilities, not the rates of mutation and recombination, that are required to fully define the
HMM; see Donnelly and Leslie (2010) for a discussion of how these parameters relate to the coalescent
process.

The probabilities of these competing processes of mismatch and recombination are usually con-
trolled by the site-specific parameters py and ry, respectively. For this work we used a slightly different
formulation, which uses one parameter, the mismatch ratio (MMR), to control the relative importance
of mutation and recombination in the HMM. Specifically, an MMR value of k will prefer k£ mismatches
(mutations) to a single recombination that results in copying from a template with no mismatches.
To map between recombination probability and mutation probability for a particular mismatch ratio,
we simply consider the two paths that we wish to be equally likely and rearrange for the mutation or
recombination probability. Consider the simple case where we assume p; = p and r; = r. Without loss
of generality, consider a region of length m. Up until this region, two paths are equally likely, so we
can re-scale by the likelihood of observing the focal sequence up to the site before the region starts, c.
For an MMR of &, we only need to consider two of the n members of the reference panel. One, Py, for
which there are no mismatches, but we need to recombine in, and a second, P, for which there are k
(randomly chosen) mismatches in the region. The probability of tracking along each of those paths is

given by:
P[Py] = & am=1 (1—p)™ recombine to a template with no mismatches,
n
P[Ps] = ca™ (1 — ,u)m_k u” stay in a template with & mismatches,

where o = (1 — r) 4+ r/n represents the probability of a sequence not recombining at a given position
with any of the other n — 1 members of the reference panel (Figure 8, red panel) and c is the likelihood
of the path up to this point (assumed to be equal by construction). We then set these path probabilities
to be equal, and rearrange to relate r and p to one another:

nu®

1
S e

Thus, for lower MMR, values (k here), recombination is increasingly favoured over multiple mutations in
a specific ancestral genome. We use an MMR value of k£ = 3 in this work, because of the relatively high
rate of recombination relative to mutation typical of coronaviruses (Amoutzias et al., 2022). Exploring
different mismatch ratios and more sophisticated parameterizations of the HMM are important avenues
for future work.

Genetic data for SARS-CoV-2 contains substantial amounts of missingness, (nucleotides coded as
‘unknown’ or masked out as described in Section 4.7) and it is important to account for this missingness
in a systematic way. In sc2ts we automatically impute missing data as samples are added into the
ARG, using the LS model. To do this, we assume that sites with missing nucleotides are uninformative
to the path probability, by setting the emission probability from any state (A, C, G, U, —) to ‘unknown’
equal to 1 (though we could have chosen any constant). As a result, emissions of unknown nucleotides
will not contribute to differences in path probabilities. Once the most likely copying path is determined,
we then attach the sample to the ARG (see Figure 1 and following subsections). For each newly
attached sample we encode its nucleotide sequence by recording mutations where it differs from the
nucleotide sequence of its parental node, but (importantly) ignoring sites with missing data in the
new sample. Thus, once the newly added sequence has been attached to the ARG any missing data
is imputed from its parental node. There is therefore no missing data in the ARG; all missing bases
are “hard called” at attachment time. Note that this approach is equivalent to using state-of-the-art
imputation methods (e.g. Browning et al., 2018; Delaneau et al., 2019) with a reference panel consisting
of all sequences in the ARG, since these methods are also based on the LS model. Evaluating the
accuracy of missing data imputation using sc2ts is an important facet of future work.

In sc2ts, we use the efficient ARG-based implementation of the LS Viterbi algorithm from tsinfer
(Kelleher et al., 2019) to find the most likely copying path for each sample sequence among all sequences
(sampled and inferred) in the current ARG. In the majority of cases, with non-recombinant sample

T =

21


https://doi.org/10.1101/2023.06.08.544212
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.08.544212; this version posted June 8, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

sequences, the most likely solution is to copy from one of the nodes in the ARG that minimises the
number of mutations required to insert the focal sequence. Importantly, because the reference panel
here consists of every node in the ARG, we can match to both older sample sequences or internal
nodes representing an inferred ancestral sequence (see subsequent subsections for details about how
these are added). Thus, when no recombination is present, the LS Viterbi algorithm is implementing
a version of parsimony, in which we are guaranteed to find a sequence that minimises the number of
additional mutations required to incorporate a newly-added sample into the ARG. Recombination is
then inferred when the most likely solution to the LS HMM is to copy from more than one ARG node
along the genome, for a given sample sequence.

The Viterbi algorithm enables us to find a path through the reference panel from among the n™
paths that is provably at the optimum, under the LS model. We can solve this massive optimisation
problem exactly because the ARG-based implementation of the LS HMM used in tsinfer (Kelleher
et al., 2019) scales approximately logarithmically with reference panel size (as opposed to linearly, for
standard matrix-based approaches). This efficient HMM algorithm is the main reason for tsinfer’s
scalability, and here allows us to find closely matching sequences and recombination paths among
millions of SARS-CoV-2 genomes exactly under a well-defined statistical model.

It is important to note that the Viterbi algorithm only returns one of the copying paths that
maximise the likelihood under the given mutation and recombination parameters. There may be many
such paths, from which we choose one arbitrarily. Also, the present choice of using a single mismatch-
ratio parameter to control the likelihood of recombination vs mutation may lead to relatively flat
likelihood spaces where many different paths have equal likelihood. There are many possibilities in
using established HMM methodology to reason about and explore the space of possible matches, which
may be a fruitful avenue for future work. Examples include stochastic traceback (e.g., Rasmussen et al.,
2014) through the collection of paths at the global optimum to glean further information about the
likelihood surface, and determine whether there are downstream implications for our conclusions. Here,
we have considered the Viterbi algorithm to make statements about the most likely paths through the
data. The machinery used here can be modified to run the forwards and backwards algorithms that
determine the probability of observing a focal sequence, integrating over all possible paths through the
data, under the LS model (Palmer et al., 2023). This presents an opportunity to estimate parameters
of interest under the LS model at pandemic scale.

4.3 Tree inference from HMM daily sample clusters

With tens of thousands of samples being added to the ARG per day, there are often clusters of hundreds
of sequences attaching to the same node (or more generally, recombinant path; see Section 4.5). While
some of these samples will require no extra mutations (because they are identical to the attachment
node), in general there will be complex patterns of shared mutations among the samples reflecting
their evolutionary relationships. A natural way to infer these within-cluster evolutionary relationships
is to use standard tree-building algorithms. We can infer a likely tree relating the samples in a cluster
independently of the other samples in a daily batch and then attach the tree (and mutations) to the
ARG at the node identified by the HMM.

We currently use the UPGMA algorithm (Michener and Sokal, 1957) as implemented in SciPy (Vir-
tanen et al., 2020) to build trees from sample clusters, and then map mutations back to this topology
using maximum parsimony. We chose this approach mainly for simplicity, and because of the speed
and reliability of the SciPy implementation. An issue with the UPGMA algorithm is that it gener-
ates a strictly binary tree, creating internal nodes supported by no informative site (i.e., having no
mutation immediately ancestral to them). We avoid such false precision by post-processing to remove
unsupported internal nodes, representing the relationship between k identical descendants of a node
as a polytomy of size k.

There are well-known issues with using such a simple algorithm for inferring evolutionary relation-
ships (Felsenstein, 2004). Table 1 shows that this within-cluster tree building has a significant influence
on the overall ARG topology, and therefore applying more sophisticated tree building methods that
keep track of the required mutations (rather then inferring post-hoc by parsimony) is a likely avenue
for improvements in overall inference quality.
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4.4 Parsimony-increasing heuristics

Attaching trees built from the clusters of samples that copy from a particular node (or path of nodes
for recombinants, see Section 4.5) under the HMM is an inherently greedy strategy and can produce
inferences that are clearly unparsimonious. The final step in adding a daily batch of samples to the
ARG is therefore to perform some local updates that target specific types of parsimony violations in
the just-updated regions of the ARG. There are currently two parsimony-increasing operations applied,
which we refer to as “mutation collapsing” and “reversion pushing” (Figure 1D, E).

Given a newly attached node, mutation collapsing inspects its siblings from previous sample days
to check if any of them share (a subset of) the mutations that it carries. If so, we increase the
overall parsimony of the inference by creating a new node representing the ancestor that carried those
shared mutations and make that new node the parent of the siblings carrying those shared mutations
(Figure 1D). The patterns of shared mutations between siblings can be complex, and the current
implementation uses a simple greedy strategy for choosing the particular mutations to collapse.

The reversion push operation inspects a newly added node to see if any of its mutations are
“immediate reversions”; that is, are reversions of a mutation that occurred on the new node’s immediate
parent. We increase the overall parsimony of the inference by “pushing in” a new node which descends
from the original parent, and carries all its mutations except those causing the reversions on the newly
added node (Figure 1E).

Table 1 shows that nodes generated by these operations constitute roughly the same fraction of
the total in both the Long and Wide ARGs, and contribute significantly to the overall topology.
These nodes are also being chosen by the LS HMM as likely choices of parent (data not shown)
demonstrating that the heuristics are successfully capturing features of real sequences. However, they
are both simple greedy operations, just examining the local parts of the ARG topology affected by
newly added samples. Because the inferred ARGs still contain a large number of reversion mutations
which are likely to be mostly artefactual (Section 2.3), it is clear that there is room for improvement and
that further parsimony-increasing heuristics (e.g., resolving reversions beyond those on immediately
adjacent edges) would likely be of benefit.

4.5 Treatment of recombinants

A sample sequence is designated as a recombinant if the most likely path inferred by the LS HMM for
that sample contains at least one switch between parents. Recombinant sequences are mostly treated
identically to non-recombinants, as we simply need to reason about a path of parent nodes along
genome intervals rather than a single parent over the whole genome, which is naturally handled by
the succinct tree sequence data structure and tskit library (Section 4.1). To facilitate analysis and
to help understand the robustness of recombinants we perform some additional steps in sc2ts.

The LS HMM may infer identical paths and patterns of mutations for multiple samples in a daily
batch, and so we create a “recombination” node (marked with a specific “flags” value) for each distinct
recombinant. (This node is not strictly necessary but makes it convenient to find recombinants for
subsequent analysis.) Variation within a cluster of recombinant sequences is handled in the same way
as non-recombinants (see Section 4.3 above for details). When the Viterbi algorithm implementation
used by the LS HMM infers recombinant ancestry for a given genome, the point at which inheritance
switches from one parent node to another is the last possible position. The left-most extent of the
breakpoint interval is derived by sequence comparison between the parents, as described in Section 2.5.

For a particular recombination node in an ARG, a breakpoint is defined as the location at which
inheritance switches from one parent to another. In the tskit encoding (see Section 4.1) inheritance
between nodes is defined by edges (¢, r, p, ¢), which state that child node ¢ inherits from parent node p
over the half-closed genome interval [¢, 7). For simplicity, suppose that a recombination node « inherits
from two parents p; and ps with a breakpoint of x. In the ARG, this is defined by two edges (0, z, p1, u)
and (z, L, ps,u) where L is the length of the genome. Since inheritance intervals are half-closed, u
inherits all positions up to = (exclusive) from parent p; and all positions from z (inclusive) to the
end of the genome from parent ps. We then define the breakpoint interval [by, b,) as the half-closed
interval defining the range of possible values for x, such that b, < x < b,.

The LS HMM machinery, and the interpretation of inferred recombinant paths and breakpoint
intervals is a central part of sc2ts, and there are many ways to extend and improve. For example,
the current parameterization of using a single “mismatch ratio” is very simplistic (Section 4.2) and
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likely results in a flat likelihood space where many recombinant paths have equal probability of being
chosen. Post-processing the match results to produce more parsimonious breakpoints may also be a
worthwhile avenue for development. In particular, we may choose to insert breakpoints for the ARG
that are chosen from within the possible interval, rather than the current approach of taking the
rightmost value. Cases where we have more than two parents may either be the “stacking” of multiple
recombination events or instances where the HMM has chosen to switch to a third sequence rather
than back to the original parent (where this is equally parsimonious). Many putative recombination
events, however, will represent poor quality data, where a recombinant copying path happens to be a
more likely explanation of a highly divergent sequence. A thorough analysis of the behaviour of the
LS model in the context of a pandemic-scale ARG may lead to significant improvements in our ability
to identify recombinants and to filter poor quality data.

4.6 Node dating

The approach to assigning a date to nodes in sc2ts is currently ad-hoc, and the inferred timing of
events from the ARGs reported here should be treated with caution (e.g., Figure 5). Sample nodes
(those corresponding to observed sample sequences) are the most accurately dated, as we use the
reported collection date for these nodes. These are not entirely accurate, but our data filtering criteria
should remove the most egregious errors (see Section 4.8). Other nodes in the ARG are dated by
splitting the time between the attached samples and the chosen parent nodes equally (in the case
of trees inferred from daily sample clusters, Section 4.3) or by adding arbitrary small values when
creating new nodes using parsimony rules (Section 4.4). Because the ARGs for SARS-CoV-2 are
very treelike, with recombination nodes constituting a tiny fraction of the overall topology (Table 1),
existing methods (e.g., To et al., 2016) could likely be adapted to accurately date the vast majority of
the nodes.

4.7 Data preprocessing

The findings of this study are based on sequences and metadata available on GISAID (https://
gisaid.org/) up to 2022-08-22 and accessible at https://doi.org/10.55876/gis8.230329cd. We re-
moved sequences if they had ambiguous collection dates, were collected before 2020-01-01 or were
isolated from a non-human host. We aligned sequences to the Wuhan-Hu-1/2019 reference sequence
(GenBank: MN908947.3) using Nextclade v2.3.0 (Aksamentov et al., 2021) (dataset tag 2022-07-
26T12:00:00Z). We also excluded sequences if they had a “bad” quality control status in any of the
four Nextclade columns (“qc.missingData.status”, “qc.mixedSites.status”, “qc.frameShifts.status” and
‘qe.stopCodons.status”).

We encode ambiguous nucleotide letters (i.e., not A, C, G, T, or a gap) in the pairwise genome
alignments as missing data (N). Problematic bases in the alignments, which had two or more Ns or
gaps within a distance of seven bases, are masked as missing data following the approach used in the
“faToVCF” tool used by UShER (Turakhia et al., 2021). Sites that are masked by this process are
treated as missing data by the LS HMM (Section 4.2). In addition, we exclude 481 problematic sites
flagged as prone to sequencing errors or as highly homoplasic entirely (https://github.com/W-L/
ProblematicSites_SARS-CoV2/, accessed 2022-09-22).

Although the current masking strategy is simple and robust, there are significant disadvantages
because it excludes, for example, any deletions of length greater than one base. Exploring more
sophisticated masking strategies is an important route for future improvements.

4.8 Filtering “time travellers”

A major source of error in early versions of sc2ts was the existence of “time traveller” sequences: those
with erroneously early collection dates. For example, an Alpha sample purportedly collected in 2020
from the United States, before Alpha appeared in the United Kingdom (USA/MN-Mayo-1563/2020),
produced significant topological distortions in inferred ARGs. Hence, to exclude such potential “time
travellers” we employ two filters.

The first filter is a simple threshold on the time delay between the collection date and submission
date. After some preliminary analysis we settled on a maximum submission delay of 30 days when
building the ARGs described here. The second filter is to remove any sequence with a collection date
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Figure 9: A schematic of the iterative procedure to impute Pango lineage for inserted, non-sample
nodes. Here, three nodes (question marks) have unknown Pango lineage (A). The lineage for node N1
can be directly copied from its parent (L2), which has an identical sequence. The lineage for node
N2 must be inferred from that of the parent (L2) plus the lineage-defining mutation (red X) on the
connecting edge. The lineage for node N3 can then be copied from that of node N2.

that pre-dates the time to the most recent common ancestor (tMRCA) of its corresponding clade. We
obtained the tMRCA for each clade from a Nextstrain GISAID reference tree (downloaded on 2022-
08-22), and we used the lower bound of the 95% confidence interval of each clade as the minimum date
cut-off. This excludes a further 618 samples not covered by the maximum submission delay filter.

As the results of sc2ts are sensitive to the existence of time-travellers, an important aspect of
future work is to find better ways to identify them. One possibility is to use the LS HMM itself to flag
overly divergent sequences and to exclude them from attachment to the ARG. We might also estimate
collection dates by adding these potential time travellers back to the ARG, allowing an automated
assessment of collection date discrepancies.

4.9 Imputation of Pango lineage for non-sample nodes

While the Pango lineages of sample nodes are imported directly from GISAID metadata, the lineage
status of internal nodes inserted into the sc2ts ARG must be imputed. We do this using the list of
lineage-defining mutations (based on 90% consensus of the sequences analysed) from the COVID-CG
website (Chen et al., 2021, https://covidcg.org/; accessed on 2022-11-04).

For a given non-sample node u, if the Pango lineage of its parent or one of its children is already
known, and there are no lineage-defining mutations on the connecting edge, then u copies this Pango
lineage exactly. Otherwise, the lineage for u is inferred by matching its full set of mutations against the
COVID-CG list. We apply these two steps to the internal nodes of the ARG iteratively, as illustrated
in Figure 9, until all internal nodes are assigned a lineage (where possible—note that sometimes a
lineage cannot be assigned to the children of a recombination node).

This method is fast, as the lineages for most of the internal nodes can be imputed by copying from
the surrounding nodes (Wide ARG: 80% of nodes, Long ARG: 66%), and significantly more efficient
than extracting the haplotypes for each internal node and using existing Pangolin assignment tools
(O’Toole et al., 2021). The accuracy depends on the quality of the list of lineage-defining mutations,
as well as the source of lineage designation for the sample nodes: we obtain slightly different results
when using those recorded on GISAID (which uses pangoLEARN), and those assigned by Nextclade.
To gauge the accuracy of imputation, we have used our method to re-impute the lineage designations
of each sample node using the surrounding information; this results in 99% of nodes being assigned
the same lineage as per the source metadata in the Wide ARG, and 98% in the Long ARG.
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6 Data Availability

The source code for sc2ts and notebooks and code used to produce the results described here available
on GitHub:

e https://github.com/jeromekelleher/sc2ts/
e https://github.com/jeromekelleher/sc2ts-paper/

Details of the GISAID data used are available at https://doi.org/10.55876/gis8.230329cd and
included in the Supplemental Table (GISAID EPI SET PDF).

The inferred ARGs described here are available on request to those with the appropriate GISAID
data access.

The mapping of tskit IDs to strain and EPI_ISL identifiers for the subgraph plots in Supplementary
Figures S4, S5, S6 and S7 are at https://github.com/jeromekelleher/sc2ts-paper/blob/main/
data/Subgraph_sample_mapping.txt.
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Figure S1: Tanglegram equivalent to that in Figure 2, but for the Long ARG (i.e., subsampled to
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Jackson et al. (2021)

sc2ts (Wide ARG)

Sample Group | Parents ]135:;13;?(1:)1; Parents }?rff;kvztf(lf)t
ALDP-11CF93B A iﬁg 21,256-21,615 B-Xfpﬁjs 21,256-22,228
ALDP-125C4D7 A ihﬁg 21,256-21,615 B'klf;;g 21,256-22,228
ALDP-130BB95 A %ﬁ: 21,256-21,615 B'lehzlg 21,256-22,228
LIVE-DFCFFE A iﬁf 18,999-20,296 B'Xfpﬁ” 21,256-22,228
QEUH-CCCB30 B Bjﬁﬁjg 6,529-6,955 iéﬁj 6,529-6,955
QEUH-CDOF1F B Bﬁiiﬁfg 6,529-6,955 iéﬁg 6,529-6,955
MILK-1166F52 C Bﬁ%ggf_l 95,097-27,443 BA_?_’;; 25,997-27,973
MILK-11C95A6 C pabba 1 25,007-27,443 | NP1 25,097-27,973
QEUH-109B25C C pabba 1 25,007-27,443 | NP1 25,097-27,973
MILK-126FE1F D Bﬁiiﬁjg 20,704-23,064 Bﬁiiij@ 22.445-23,064
RAND-12671E1 D Biﬁf}'jg 20,704-23,064 Bﬁiii'j?) 22.445-23,064
RAND-128FA33 D Biiﬁf’ 20,704-23,064 Bgiigjg 22.445-23,064
CAMC-CBAO18 | n/a i}pg 20,390-21,256 BA}I')LZ: 17,616-21,256
CAMCCBIABS | wia | BT | LT et e
MILK-103C712 n/a B./lx'llp7h7;7 26,;182:12%?878 n/a n/a
QEUH-1067DEF | n/a | A2 11052410871 | P22 | 7,729-10,871

Table S1: Recombinant sequences involving the Alpha (B.1.1.7) variant reported by Jackson et al.
(2021) have recombinant ancestry in the Wide ARG. The breakpoint intervals and Pango lineage
assignments of the parents were taken from Table 2 (3SEQ results) of Jackson et al., except the Pango
lineage assignment of the parents of group B recombinants, which were taken from Table 1 (motif-
based results). 3SEQ interval coordinate modifications are described in the caption for Table 2.
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Figure S2: Distribution of recombination breakpoints and mutations along the genome in the Long
ARG. Top panel shows the intervals for 851 breakpoints associated with 763 recombination nodes
with at least two descending samples, plotted along the genome as line segments (coloured by interval
width). Other details as described in Figure 4.
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Figure S3: Divergence between parent lineages for recombination events within and among different
VoC categories. There are 78 Alpha+Alpha recombination breakpoints corresponding to 75 recom-
bination nodes (25 breakpoints / 24 nodes with > 5 descendant samples). 148 breakpoints from 142
nodes are Delta+Delta recombinations (45 breakpoints / 45 nodes with > 5 descendants), and 148
breakpoints from 142 nodes are Omicron+Omicron (71 breakpoints / 68 nodes with > 5 descendants).
The equivalent figures for Alpha+Delta are 9 / 8 (3 / 2), for Alpha+Omicron are 2 / 1 (0 / 0), and for
Delta+Omicron are 20 / 13 (6 / 3). Note only recombination breakpoints involving lineages classified
into Alpha, Delta, and Omicron VoC categories are plotted above: all other breakpoints are omitted.
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Figure S4: Detailed version of Figure 6A. All single nucleotide mutations are listed with the inherited
nucleotide state, followed by the reference genome position, followed by the derived nucleotide state (af-
ter mutation). Recurrent mutations (see Section 4.1) are highlighted in bold, with reversions indicated
by lowercase nucleotide letters. Sample nodes are shown with tskit IDs, which can be mapped to GI-
SAID EPI ISL identifiers and strain names using supplementary file Subgraph_sample_mapping.txt.
In contrast to Figure 6A, Pango lineages shown here are those assigned by GISAID rather than
Nextclade; however, in the specific case of XA, Nextclade and GISAID exactly agree on the lineage
designations.
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Figure S6:  Detailed version of Figure 6C, with node and mutation labels as in Figure S4 (see
supplementary file Subgraph_sample_mapping.txt to map tskID to EPI_ISL and strain name). Note
that GISAID does not designate any nodes as XD in the Long ARG, hence no recombinant Pango
lineages are marked in this plot. From inspection of the samples, we believe the GISAID designations
to be erroneous in this case.
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Figure S8: Subgraph of the Long ARG, focusing on two likely false positive recombination nodes
at the start of the Delta wave (“focal” nodes, in red, corresponding to rows A and B in Table 3).
The path to node tsk261771 has been expanded: this node (in gold) is the ancestor of ~89.8% of
Delta samples in the Long ARG, and represents a large polytomy with 107 immediate children. Of
the remaining Delta samples, most (8.4%) are descendants of the node tsk232088 on the far right,
a sibling of the earliest focal recombination node. The suspected-incorrect recombination path to an
early B.1 MRCA is also shown. Note the large amount of additional recombination (black nodes)
among close descendants of the focal nodes.
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