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Abstract. Many believe that the brain implements probabilistic reasoning and 

that it represents information via some form of population (distributed) code. 

Most prior probabilistic population coding (PPC) theories share basic properties: 

1) continuous-valued units; 2) fully/densely distributed codes; 3) graded synap-

ses; 4) rate coding; 5) units have innate low-complexity, usually unimodal, tuning 

functions (TFs); and 6) units are intrinsically noisy and noise is generally consid-

ered harmful.  I describe a radically different theory that assumes: 1) binary units; 

2) sparse distributed codes (SDC); 3) functionally binary synapses; 4) a novel, 

atemporal, combinatorial spike code; 5) units initially have flat TFs (all weights 

zero); and 6) noise is a resource generated/used, normatively, to cause similar 

inputs to map to similar codes. The theory, Sparsey, was introduced 25+ years 

ago as: a) an explanation of the physical/computational relationship of episodic 

and semantic memory for the spatiotemporal (sequential) pattern domain; and b) 

a canonical, mesoscale cortical probabilistic circuit/algorithm possessing fixed-

time, unsupervised, single-trial, non-optimization-based, unsupervised learning 

and fixed-time best-match (approximate) retrieval; but was not described as an 

alternative to PPC-type theories. Here, we show that: a) the active SDC in a 

Sparsey coding field (CF) simultaneously represents not only the likelihood of  

the single most likely input but the likelihoods of all hypotheses stored in the CF; 

and b) the whole explicit distribution can be sent, e.g., to a downstream CF, via 

a set of simultaneous single spikes from the neurons comprising the active SDC. 

Keywords: Sparse distributed representations, probabilistic population coding, 

cell assemblies, canonical cortical circuit/algorithm. 

1 Introduction 

It is widely believed that the brain implements some form of probabilistic reasoning to 

deal with uncertainty in the world [1], but exactly how the brain represents probabili-

ties/likelihoods remains unknown [2, 3].   It is also widely agreed that the brain repre-

sents information with some form of distributed—a.k.a. population, cell-assembly, en-

semble—code [see [4] for relevant review].  Several population-based probabilistic 

coding theories (PPC) have been put forth in recent decades, including those in which 

the state of all neurons comprising the population, i.e., the population code, is viewed 

as representing: a) the single most likely/probable input value/feature [5]; or b) the 
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entire probability/likelihood distribution over features [6-11].  Despite their differences, 

these approaches share fundamental properties, a notable exception being the spike-

based model of [11]. (1) Neural activation is continuous (graded).  (2) All neurons in 

the coding field (CF) formally participate in the active code whether it represents a 

single hypothesis or a distribution over all hypotheses.  Such a representation is referred 

to as a fully distributed representation. (3) Synapse strength is continuous. (4) They are 

typically formulated in terms of rate-coding [12]. (5) They assume a priori that tuning 

functions (TFs) of the neurons are unimodal, e.g., bell-shaped, over any one dimension, 

and consequently do not explain how such TFs might naturally emerge, e.g., through a 

learning process. (6) Individual neurons are assumed to be intrinsically noisy, e.g., fir-

ing with Poisson variability, and noise is viewed primarily as a problem that to be dealt 

with, e.g., reducing noise correlation by averaging. 

At a deeper level, it is clear that despite being framed as population models, they are 

really based on an underlying localist interpretation, specifically, that an individual neu-

ron’s firing rate can be taken as a perhaps noisy estimate of the probability that a single 

preferred feature (or preferred value of a feature) is present in its receptive field [13], 

i.e., consistent with the “Neuron Doctrine”.  While these models entail some method of 

combining the outputs of individual neurons, e.g., averaging, each neuron is viewed as 

providing its own individual, i.e., localist, estimate of the input feature.  For example, 

this can be seen quite clearly in Fig. 1 of [9] wherein the first layer cells (sensory neu-

rons) are unimodal and therefore can be viewed as detectors of the value at their modes 

(preferred stimulus) and the pooling cells are also in 1-to-1 correspondence with direc-

tions.  This localist view is present in the other PPC models referenced above as well.   

However, there are compelling arguments against such localistically rooted concep-

tions.  From an experimental standpoint, a growing body of research suggests that in-

dividual cell TFs are far more heterogeneous than classically conceived [14-21], also 

described as having “mixed selectivity” [22], and more generally, that sets (populations, 

ensembles) of cells, i.e., “cells assemblies” [23], constitute the fundamental represen-

tational units in the brain [24, 25].   And, the greater the fidelity with which the heter-

ogeneity of TFs is modeled, the less neuronal response variation that needs to be at-

tributed to noise, leading some to question the appropriateness of the traditional concept 

of a single neuron I/O function as an invariant TF plus noise [26].  From a computa-

tional standpoint, a clear limitation is that the maximum number of features/concepts, 

e.g., oriented edges, directions of movement, that can be stored in a localist coding field 

of N units is N.  More importantly, as explained here, the efficiency, in terms of time 

and energy, with which features/concepts can be stored (learned) and retrieved/trans-

mitted is far greater if items of information (memories, hypotheses) are represented 

with sparse distributed codes (SDCs) rather than localistically [27-29]. 

The theory described herein, Sparsey [27-29], constitutes a radically new way of 

representing and computing with probabilities, diverging from most existing PPC the-

ories in many fundamental ways, including: (1) The representational units (principal 

cells) comprising a CF need only be binary. (2) Individual items (hypotheses) are rep-

resented by fixed-size, sparsely chosen subsets of the CF’s units, referred to as modular 

sparse distributed codes (MSDCs), or simply “codes” if unambiguous.  (3) Decoding 

(read-out) not only of the most likely hypothesis but of the whole distribution, i.e., the 
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likelihoods of all hypotheses stored in a CF, by downstream computations, requires 

only binary synapses. (4) The whole distribution, is sent via a wave of effectively sim-

ultaneous (i.e., occurring within some small window, e.g., at some phase of a local 

gamma cycle [30-33]) single spikes from the units comprising an active code to a down-

stream (possibly recurrently to the source) CF. (5) The initial weights of all afferent 

synapses to a CF are zero, i.e., the TFs are completely flat. The classical, roughly uni-

modal TFs [as would be revealed by low-complexity probes, e.g., oriented bars span-

ning a cell’s receptive field (RF), cf. [34]] emerge as a side-effect of the model’s sin-

gle/few-trial learning process of storing MSDCs in superposition [35]. (6) Neurons are 

not assumed to be intrinsically noisy. However, the canonical, mesoscale (i.e., the cell 

assembly scale) circuit normatively uses noise as a resource during learning.  Specifi-

cally, noise, presumably mediated by neuromodulators, e.g., ACh [36], NE [37], is 

explicitly injected into the code selection process to achieve the specific goal of (statis-

tically, approximately) mapping more similar inputs to more similar MSDCs, where 

the similarity measure for MSDCs is intersection size. In this approach, patterns of cor-

relation amongst principal cells are simply artifacts of this learning process.   

2 The Model 

Fig. 1a shows a small Sparsey model instance with an 8x8 binary units (pixel) input 

field that is fully connected, via binary weights (blue lines), all initially zero, to a mod-

ular sparse distributed coding (MSDC) coding field (CF).  The CF consists of Q win-

ner-take-all (WTA) competitive modules (CMs), each consisting of K binary neurons.  

Here, Q=7 and K=7. Thus, all codes have exactly Q active neurons and there are KQ 

possible codes.  We refer to the input field as the CF’s receptive field (RF).  Fig. 1b 

shows a particular input A, which has been associated with a particular code, (A) 

(black units); here, blue lines indicate the bundle [cf. “Synapsemble”, [30]] of weights 

that would be increased from 0 to 1 to store this association (memory trace).   

Fig. 1. The modular sparse distributed code (MSDC) coding field (CF). See text. 

Fig. 2 illustrates MSDC’s key property that: whenever any one code is fully active 

in a CF, i.e., all Q of its units are active, all codes stored in the CF will simultaneously 

be active (in superposition) in proportion to the sizes of their intersections with the 

b)a)

Input 
Field

MSDC Coding Field (CF) 

A

( )A

WTA Competitive Module (CM)
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single maximally active code. Fig. 2 shows five hypothetical inputs, A-E, which have 

been learned, i.e., associated with codes, (A) - (E).  These codes were manually cho-

sen to illustrate the principle that similar inputs should map to similar codes (“SISC”).  

That is, inputs B to E have progressively smaller overlaps with A and therefore codes 

(B) to (E) have progressively smaller intersections with (A).  Although these codes 

were manually chosen, Sparsey’s Code Selection Algorithm (CSA), described shortly, 

has been shown to statistically enforce SISC for both the spatial and spatiotemporal 

(sequential) input domains [27-29, 38, 39]: a simulation-backed example for the spatial 

domain is given in the Results section.  

Fig. 2. The probability/likelihood of a feature can be represented by the fraction of its code that 

is active. When (A) is fully active, the hypothesis that feature A is present can be considered 

maximally probable. Because the similarities of the other features to the most probable feature, 

A, correlate with their codes’ overlaps with (A), their probabilities/likelihoods are represented 

by the fractions of their codes that are active. In “” columns, black units are those intersecting 

with the input A and with its code, (A); gray indicates non-intersecting units. 

For input spaces for which it is plausible to assume that input similarity correlates 

with probability/likelihood, i.e., for vast regions of natural input spaces, the single ac-

tive code can therefore also be viewed as a probability/likelihood distribution over all 

stored codes.  This is shown in the lower part of Fig. 2.  The leftmost panel at the bottom 

of Fig. 2 shows that when (A) is 100% active, the other codes are partially active in 
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proportions that reflect the similarities of their corresponding inputs to A, and thus the 

probabilities/likelihoods of the inputs they represent.  The remaining four panels show 

input similarity (probability/likelihood) approximately correlating with code overlap 

when each of the four other stored codes is maximally active. 

2.1 The Learning Algorithm 

A simplified version of the CSA, sufficient for this paper’s examples involving only 

purely spatial inputs, is given in Table 1 and we briefly summarize it here. [The full 

model handles spatiotemporal inputs, multiplicatively combining bottom-up, top-

down, and horizontal (i.e., signals from codes active on the prior time step via recurrent 

synaptic matrices) inputs to a CF.]  CSA Step 1 computes the raw input sums (u) for all 

Q×K cells comprising the coding field.  In Step 2, these sums are normalized to U val-

ues, in [0,1].  All inputs are assumed to have the same number of active pixels, thus the 

normalizer, U, can be constant. In Step 3, we find the max U in each CM and in Step 

4, a measure of the familiarity of the input, G, is computed as the average max U across 

the Q CMs.  In Steps 5 and 6, G is used to adjust the parameters of the nonlinear I/O 

transform in the same way for all of the CF’s units. In Step 7, each unit applies that “U-

to-” transform, yielding an intermediate variable, , representing an unnormalized 

probability of the unit being chosen winner in its respective CM. Step 8 renormalizes  

values to total probabilities (ρ) of winning (within each CM) and Step 9 is the final 

draw from the ρ distribution in each CM resulting in the final code. G’s influence on 

the distributions can be summarized as follows. 

a) When high global familiarity is detected (G1), those distributions are exag-

gerated to bias the choice in favor of cells that have high input summations, 

and thus, high local familiarities (U), which acts to increase correlation. 

b) When low global familiarity is detected (G0), those distributions are flat-

tened so as to reduce bias due to local familiarity, which acts to increase the 

expected Hamming distance between the selected code and previously stored 

codes, i.e., to decrease correlation. 

Since the U values represent signal, exaggerating the U distribution in a CM in-

creases signal whereas flattening it increases noise.  The above behavior (and its smooth 

interpolation over the range, G=1 to G=0) is the means by which Sparsey achieves 

SISC.  And, it is the enforcement (statistically) of SISC during learning, which ulti-

mately makes possible the immediate, i.e., fixed time (the number of algorithmic steps 

needed to do the retrieval is independent of the number of stored codes), retrieval of the 

best-matching (most likely, most relevant) hypothesis. 

Table 1 Simplified Code Selection Algorithm (CSA) 

 Equation Short Description 

1 
U

RF
( ) ( , )i j

u x j w j i


=  Compute raw input (u) sums. 

2 maxi i UU u w=  Compute normalized input sums. U   
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3 ˆ max
qq i CM iU U=  Find the max U, ˆ

qU , in each CM, CMq 

4 
1

ˆQ

kq
U QG

=
=  Compute the input’s familiarity, G, as average Û  

value over the Q CMs. 

5 1
1

G G
K

G



 
−

−

+ − 
= +     −  

 Determine expansivity () of U-to- sigmoid func-

tion. In this paper, =2, =100, G-=0.1. 

6 

 

( )
1

4

2 3

1
( 1) 0.001 1

e



 




− −
=

  

Sets 1 so that the overall sigmoid shape is preserved 

over full  range. 2= 7, 3= 0.4, 4= 9.5.  

7 
2 3 4

1

( )

( 1)
1

1( )
i U

ie
  





− −

−
= +

+

 To each cell, apply sigmoid function, which col-

lapses to constant fn, i=1, when G  G-. 

8 i i kk CM
  


=   In each CM, normalize relative () to final () prob-

abilities of winning. 

9 Select a final winner in each CM according to the  distribution in that CM. 

3 Results 

The simulation-backed example of this section demonstrates that the CSA achieves 

the property, i.e., statistical (approximate) preservation of similarity from inputs to 

codes, qualitatively described in Fig. 2.  In the experiment, the six inputs, I1 to I6, at top 

of Fig. 3a, were presented once each and assigned to the codes, (I1) to (I6) (not 

shown), via execution of the CSA (Table 1).  The six inputs are disjoint only for sim-

plicity of exposition.  The input field (receptive field, RF) is a 12x12 binary pixel array 

and all inputs are of the same size, 12 active pixels. Since all inputs have exactly 12 

active pixels, input similarity is simply sim(Ix,Iy) = |IxIy|/12, shown as decimals under 

inputs. The CF consists of Q=24 WTA CMs, each having K=8 binary cells. The second 

row of Fig. 3a shows a novel stimulus, I7, and its varying overlaps (yellow pixels) with 

I1 to I6.  Fig. 3b shows the code, (I7), activated (by the CSA) in response to presentation 

of I7. Black indicates cells that also won for I1, red indicates active cells that did not 

win for I1, and green indicates inactive cells that did win for I1.  Fig. 3c shows (using 

the same color interpretations) the detailed values of all relevant variables (u, U, , and 

) computed by the CSA when I7 presents, and the winners drawn from the  distribu-

tion in each of the Q=24 CMs. 

If we consider presentation of I7 to be a retrieval test, then the desired result is that 

the code of the most similar stored input, I1. should be retrieved (reactivated).  In this 

case, the red and green cells in a given CM can be viewed as substitution errors, i.e., 

the green cell had the max U value in the CM and should have been reactivated, but 

since the final winner is a draw, occasionally a cell with a (possibly much) lower U 

value wins (CMs, 0, 12, 17). However, these are sub-symbolic scale errors, not errors 

at the scale of whole inputs (hypotheses), as a whole input is collectively represented 

by the entire MSDC code (entire cell assembly). In this example, appropriate threshold 
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settings in downstream computations, would allow the model as a whole to return the 

correct answer given that 18 out of 24 cells of I1’s code, (I1), are activated, similar to 

thresholding schemes in other associative memory models [40, 41].  

 

Fig. 3.  In response to a novel input, I7, the codes for the six previously learned (stored) inputs, 

I1 to I6, i.e., hypotheses, are activated with strength approximately correlated with the similarity 

(pixel overlap) of I7 input and those stored inputs.  Test input I7 is most similar to learned input, 

I1, shown by the intersections (yellow pixels) in panel a. Thus, the code with the largest fraction 

of active cells is (I1) (18/24=75%) (blue bar in panel d).  The other codes of the other inputs are 

active in rough proportion to their similarities with I7 (cyan bars). (c) Raw (u) and normalized 

(U) input summations to all cells in all CMs.  Note: all weights are effectively binary, though “1” 

is represented with 127 and “0” with 0.  Hence, the max u value possible in any cell when I7 is 

presented is 12x127=1524. The U values are transformed to un-normalized win probabilities () 

in each CM via a sigmoid transform whose properties, e.g., max value of 255.13, depend on G 

and other parameters.   values are normalized to true probabilities (ρ) and one winner is chosen 

in each CM (indicated in row of triangles: black: winner for I7 that also won for I1; red: winner 

for I7 that did not win I1: green: winner for I1 that did not win for I7.  (e, f) Details for CMs, 7 and 

15. Values in lower row of U axis are indexes of cells (within the CM) having the U values above 

them (red).  Some CMs have a single cell with much higher U (and thus ρ) value than the rest 

(e.g., CM 15), some CMs have two cells tied for the max (CMs 3, 19, 22). 

 (yellow) of  I7 with I1 to I6 (and as decimals)

I7  
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

U

CM 15

1

c)

d)

0

e) f)
24

0

18

12

6

L

I1 I2 I3 I4 I5 I6

0.417 0.25 0.167 0.083 0.083 0.0

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 4, 2023. ; https://doi.org/10.1101/162941doi: bioRxiv preprint 

https://doi.org/10.1101/162941
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

More generally, when I7 Is presented, we would like all of the stored inputs to be 

reactivated in proportion to their similarities to the test probe, I7.  Fig. 3d shows that 

this approximately occurs. The active fractions of the codes, (I1) to (I6), are highly 

rank-correlated with the pixel-wise similarities of the corresponding inputs to I7.  Thus, 

the blue bar in Fig. 3d represents the fact that the code, (I1), for the best matching 

stored input, I1, has the highest active code fraction, 75% (18 out 24, the black cells in 

Fig. 3b) cells of (I1) are active in (I7). The cyan bar for the next closest matching 

stored input, I2, indicates that 12 out of 24 of the cells of (I2) (code note shown) are 

active in (I7). In general, many of these 12 may be common to the 18 cells in 

{(I7)(I1)}.  And so on for the other stored hypotheses.  [Note that even the code for 

I6 which has zero intersection with I7 has two cells in common with (I1).  In general, 

the expected code intersection for the zero input intersection condition is not zero, but 

chance, since in that case, the winners are chosen from the uniform distribution in each 

CM, in which case the expected intersection is Q/K.] 

If, instead of viewing presentation of I7 as a retreival test, we view it as a learning 

trial, we want the sizes of intersection of the code, (I7), activated in response, with the 

six previously stored codes, (I1) to (I6), to approximately correlate with the similari-

ties of I7 to inputs, I1 to I6.  But again, this is what Fig. 3d shows. As noted earlier, we 

assume that the similarity of a stored input Ix to the current input can be taken as a 

measure of Ix’s probability/likelihood.  And, since all codes are of size Q, we can divide 

code intersection size by Q, yielding a measure normalized to [0,1]: L(I1)=|(I7) 

(I1)|/Q. Thus, this result demonstrates that the CSA, a single-trial, unsupervised, non-

optimization-based, and most importantly, fixed time, algorithm statistically enforces 

SISC.  In this case, the red cells would not be considered errors: they would just part of 

a new code, (I7), being assigned to represent a novel input, I7, in a way that respects 

similarity in the input space. Crucially, because all codes are stored in superposition 

and because, when each one is stored, it is stored in a way that respects similarities with 

all previously stored codes, the patterns of intersection amongst the set of stored codes 

reflects not simply the pairwise similarity structure over the inputs, but, in principle, 

the similarity structure of all orders present in the input set.  This is similar in spirit to 

another neural probabilistic model [2, 42], which proposes that overlaps of distributed 

codes (and recursively, overlaps of overlaps), encode the domain’s latent variables 

(their identities and valuednessess), cf. “anonymous latent variables”, [43]. 

The likelihoods in Fig. 3d may seem high.  After all, I7 has less than half its pixels 

in common with I1, etc.  Given these particular input patterns, is it really reasonable to 

consider I1 to have such a high likelihood?  Bear in mind that our example assumes that 

the only experience this model has of the world are single instances of the six inputs 

shown.  We assume no prior knowledge of any underlying statistical structure generat-

ing the inputs.  Thus, it is really only the relative values that matter and we could pick 

other parameters, notably in CSA Steps 5-7, that would result in a much less expansive 

sigmoid nonlinearity, which would result in lower expected intersections of (I7) with 

the learned codes, and thus lower likelihoods.  The main point is simply that the ex-

pected code intersections correlate with input similarity, and thus, likelihood. 

A cell’s U value represents the total local evidence that it should be activated.  How-

ever, rather than simply picking the max U cell in each CM as winner (i.e., hard max), 
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which would amount to executing only steps 1-3 of the CSA, the remaining CSA steps, 

4-9, are executed, in which the U distributions are transformed as described earlier and 

winners are chosen as draws (shown in the row of triangles just below CM indexes) 

from the ρ distributions in each CM.  Thus, an extremely cheap-to-compute (CSA Step 

4) global function of the whole CF, G, is used to influence the local decision process 

in each CM.  We repeat for emphasis that no part of the CSA explicitly operates on, 

i.e., iterates over, stored hypotheses (codes); indeed, there are no explicit (localist) rep-

resentations of stored hypotheses on which to operate. 

Fig. 4 shows that presentation of different novel inputs yields different likelihood 

distributions that correlate approximately with similarity.  Input I8 (Fig. 4a) has highest 

intersection with I2 and a different pattern of intersections with the other learned inputs 

as well (refer to Fig. 3a).  Fig. 4c shows that the codes of the stored inputs become 

active in approximate proportion to their similarities with I8, i.e., their likelihoods are 

simultaneously physically represented by the fractions of their codes which are active.  

The G value in this case, 0.65, yields, via CSA steps 5-7, the U-to- transform shown 

in Fig. 4b, which is applied in all CMs.  Its range is [1,300] and given the particular U 

distributions shown in Fig. 4d, the cell with the max U in each CM ends up being greatly 

favored over other lower-U cells.  The red box shows the U distribution for CM 9.  The 

second row of the abscissa in Fig. 4b gives the within-CM indexes of the cells having 

the corresponding (red) values immediately above (shown for only three cells).  Thus, 

cell 3 has U=0.74 which maps to approximately   250 whereas its closest competi-

tors, cells 4 and 6 (gray bars in red box) have U=0.19 which maps to  = 1.  Similar 

statistical conditions exist in most of the other CMs.  However, in three of them, CMs 

0, 10, and 14, there are two cells tied for max U.  In two, CMs 10 and 14, the cell that 

is not contained in I2‘s code, (I2), wins (red triangle and bars), and in CM 0, the cell 

that is in (I2) does win (black triangle and bars).  Overall, presentation of I8 activates 

a code (I8) that has 21 out of 24 cells in common with (I2) manifesting the high like-

lihood estimate for I2. 

Finally. Fig. 4e shows presentation of a more ambiguous input, I9, having half its 

pixels in common with I3 and the other half with I6.  Fig. 4g shows that the codes for I3 

and I6 have both become approximately equally (with some statistical variance) active 

and are both more active than any of the other codes.  Thus, the model is representing 

that these two hypotheses are the most likely and approximately equally likely.  The 

exact bar heights fluctuate somewhat across trials, e.g., sometimes I3 has higher likeli-

hood than I6, but the general shape of the distribution is preserved.  The remaining 

hypotheses’ likelihoods also approximately correlate with their pixelwise intersections 

with I9.  The qualitative difference between presenting I8 and I9 is readily seen by com-

paring the U rows of Fig. 4d and 4h and seeing that for the latter, a tied max U condition 

exists in almost all the CMs, reflecting the equal similarity of I9 with I3 and I6.  In 

approximately half of these CMs the cell that wins intersects with (I3) and in the other 

half, the winner intersects with (I6).  In Fig. 4h, the three CMs in which there is a 

single black bar, CMs 1, 7, and 12, indicates that the codes, (I3) and (I6), intersect in 

these three CMs. 
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Fig. 4. Details of presenting other novel inputs, I8 (panels a-d) and I9 (panels e-h). In both cases, 

the resulting likelihood distributions (panels c,g) correlate closely with the input overlap patterns. 

Panels b and f show details of one example CM (red boxes in panels d and h) for each input. 

3.1 A MSDC simultaneously transmits the full likelihood distribution via an 

atemporal combinatorial spike code 

The use of MSDC allows the likelihoods of all hypotheses stored in the distribution, 

to be transmitted via a set of simultaneous single spikes from the neurons comprising 

the active MSDC.  This is shown in the example given in Fig. 5e, which, at the same 

time, compares this fundamentally new atemporal, combinatorial spike code, with 
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temporal spike codes and one prior (in principle) atemporal code.  For a single source 

neuron, two types of spike code are possible, rate (frequency) (Fig. 5b), and latency 

(e.g., of spike(s) relative to an event, e.g., phase of gamma) (Fig. 5c). Both are funda-

mentally temporal and have the crucial limitation that only one value (item) represented 

by the source neuron can be sent at a time. Most prior population-based codes also 

remain fundamentally temporal: the signal depends on spike rates of the afferent axons, 

e.g., [1-4] (not shown in Fig. 5).   

Fig. 5d illustrates an (effectively) atemporal population code [5] in which the frac-

tion of active neurons in a source field carries the message, coded as the number of 

simultaneously arriving spikes to a target neuron (shown next to the target neuron for 

each of the four signals values).  This variable-size population (a.k.a. “thermometer”) 

code has the benefit that all signals are sent in the same, short time, but it is not combi-

natorial in nature, and has limitations, including: a) the max number of representable 

values (items/concepts) is the number (N) of units comprising the source CF; and b) as 

for the temporal codes defined with respect to a single source neuron, any single mes-

sage sent can represent only one item, e.g., a single value of a scalar variable, i.e., im-

plying that any one message carries only log2N bits. 

In contrast, consider the fixed-size MSDC code of Fig. 5e. The source CF consists 

of Q=5 CMs, each with K=4 binary units. Thus, all codes, are of the same fixed size, 

Q=5. As done in Fig. 2, the codes for this example were manually chosen to reflect the 

similarity structure of scalar values (Col. a) (the prior section has already demonstrated 

that the CSA statistically preserves similarity). As suggested by charts at right of Fig. 5, 

any single MSDC, i, represents (encodes) the similarity distribution over all items 

(values) stored in the field.  Note: blue denotes active units not in the intersection with 

1.  We’re assuming that input (e.g., scalar value) similarity correlates with likelihood, 

which again, is reasonable for vast portions of input spaces having natural statistics.  

Since any one MSDC, i, encodes the full likelihood distribution, the set of single 

spikes sent from it simultaneously transmits that full distribution, encoded as the in-

stantaneous sums at the target cells. Note: when any MSDC, i, is active, 20 wts (axons) 

will be active (black), thus, all four target cells will have Q=5 active inputs. Thus, due 

to the combinatorial nature of the MSDC code, the specific values of the binary weights 

are essential to describing the code (unlike the other codes where we can assume all 

wts are 1). Thus, for the example of Fig. 5e, we assume: a) all wts are initially 0; b) the 

four associations, 1 → target cell 1, 2 → target cell 2, etc., were previously stored 

(learned) with single trials; and c) on those learning trials, coactive pre-post synapses 

were increased to w=1. Thus, if 1 is reactivated, target cell 1’s input sum will be 5 and 

other cells’ sums will be as shown (to left of target cells).  If 2 is reactivated, target 

cell 2’s input sum will be 5, etc.  [Black line: active w=1; dotted line: active w=0; gray 

line: w=0.]  As described in Fig. 3 of [7], the four target cells could be embedded in a 

recurrent field with inhibitory infrastructure allowing sequential read out in descending 

input sum order, implying that the full similarity (likelihood) order information over all 

four stored items is sent in each of the four cases. As there are 4! orderings of the four 

items, each such message, each a set of 20 simultaneous spikes sent from five active  

CF units, sends log2(4!)=4.58 bits. We suggest this marriage of fixed-size MSDCs and 

an atemporal spike code is a crucial advance beyond prior population-based models, 
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i.e., the “distributional encoding” models (see [8, 9] for reviews), and may be key to 

explaining the speed and efficiency of probabilistic computation in the brain. 

Fig. 5. Temporal vs. atemporal spike coding concepts.  The fixed-size MSDC code has the ad-

vantage of being able to send the entire distribution, i.e., the likelihoods of all codes (hypothe-

ses) stored in the source CF, with a set of simultaneous single spikes from Q=5 units compris-

ing an active MSDC code. See text for details. 

4 Discussion 

We described a radically different theory, from prevailing probabilistic population 

coding (PPC) theories, for how the brain represents and computes with probabilities.  

This theory, Sparsey, avails itself only in the context of modular sparse distributed 

coding (MSDC), as opposed to the fully distributed coding context in which the PPC 

models have been developed (or a localist context). The theory, Sparsey, was intro-

duced 25+ years ago, as a model of the canonical cortical circuit and a computationally 

efficient explanation of episodic and semantic memory for sequences, but its interpre-

tation as a way of representing and computing with probabilities was not emphasized.  

The PPC models [5, 7-10, 12, 42] share several fundamental properties: 1) continuous 

neurons; 2) full/dense coding; 3) due to 1 and 2, synapses must either be continuous or 

rate coding must be used to allow decoding; 4) they generally assume rate coding; 5) 

individual neurons are generally assumed to have unimodal, e.g., bell-shaped, tuning 

functions (TFs); 6) individual neurons are assumed to be noisy, and noise is generally 

viewed as degrading computation, thus, needing to be mitigated, e.g., averaged out. 

  In contrast to these PPC properties/assumptions, Sparsey assumes: 1) binary neu-

rons; 2) items of information are represented by small (relative to whole CF) sets of 
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neurons (MSDCs) and any such code simultaneously represents not only the likelihood 

of the single best matching stored hypothesis, but, simultaneously, the likelihoods of 

all stored hypotheses; 3) only effectively binary synapses; 4) signaling via waves of 

simultaneous single (e.g., first) spikes from a source MSDC; 5) all weights are initially 

zero, i.e., the TFs are initially completely flat, and emerge via single/few-trial, unsu-

pervised learning to reflect a neuron’s specific history of inclusion in MSDCs; 6) rather 

than being viewed as a problem imposed by externalities (e.g., common input, intrinsi-

cally noisy cell firing), noise functions as a resource, controlled usage of which yields 

the valuable property that similar inputs are mapped to similar codes (SISC).  

The CSA’s algorithmic efficiency, i.e., both learning (storage) and best-match re-

trieval are fixed time operations, has not been shown for any other computational 

method, including hashing methods, either neurally-relevant [44-46], or more generally 

[reviewed in [47]].  Although time complexity considerations like these have generally 

not been discussed in the PPC literature, they are essential for evaluating the overall 

plausibility of models of biological cognition, for while it is uncontentious that the brain 

computes probabilistically, we also need to explain the extreme speed with which these 

computations, over potentially quite large hypothesis spaces, occur. 

One key to Sparsey’s computational speed is its extremely efficient method of com-

puting the global familiarity, G, simply as the average of the max U values of the Q 

CMS.  In particular, computing G does not require explicitly comparing the new input 

to every stored input (nor to a log number of the stored inputs as is the case for tree-

based methods).  G is then used to adjust, in the same way, the transfer functions of all 

neurons in a CF. This dynamic, and fast timescale (e.g., 10 ms), modulation of the 

transfer function, based on the local (to the CF, thus mesoscale circuit) measure, G, is 

a strongly distinguishing property of Sparsey: in most models, the transfer function is 

static. While there has been much discussion about the nature, causes, and uses, of cor-

relations and noise in cortical activity; see [48-50] for reviews, the G-based titration of 

the amount of noise present in the code selection process, to achieve the specific goal 

of approximately preserving similarity (SISC) is a novel contribution to the discussion. 

Enforcing SISC in the context of an MSDC CF realizes a balance between: 

a) maximizing the storage capacity of the CF, and  

b) embedding the similarity structure of the input space in the set of stored 

codes, which in turn enables fixed-time best-match retrieval. 

In exploring the implications of shifting focus from information theory to coding theory 

viz. theoretical neuroscience, [51] pointed to this same tradeoff, though their treatment 

uses error rate (coding accuracy) instead of storage capacity.  Understanding how neu-

ral correlation ultimately affects things like storage capacity is considered largely un-

known and an active area of research [52].  Our approach implies a straightforward 

answer. Minimizing correlation, i.e., maximizing average Hamming distance over the 

set of codes stored in an MSDC CF, maximizes storage capacity.  Increases of any 

correlations of pairs, triples, or subsets of any order, of the CF’s units increases the 

strength of embedding of statistical (similarity) relations in the input space. 

Sparsey has many more features and capabilities than can be described here, e.g., it 

has been generalized to the temporal domain and to hierarchies of CFs.  Nevertheless, 

the results shown here will hopefully pique further interest. 
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