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Abstract.   We describe a novel approach to recovering the underlying parameters of the SIR 

dynamic epidemic model from observed data on case incidence or deaths. We formulate a 

discrete-time approximation to the original continuous-time model and search for the parameter 

vector that minimizes the standard least squares criterion function. We show that the gradient 

vector and matrix of second-order derivatives of the criterion function with respect to the 

parameters adhere to their own systems of difference equations and thus can be exactly 

calculated iteratively. Applying our new approach, we estimate four-parameter SIR models on 

two datasets: (1) daily reported cases of COVID-19 during the SARS-CoV-2 Omicron/BA.1 

surge of December 2021 - March 2022 in New York City; and (2) weekly deaths from a plague 

outbreak on the Isle of Bombay during December 1905 - July 1906, originally studied by 

Kermack and McKendrick in their now-classic 1927 paper. The estimated parameters from the 

COVID-19 data suggest a duration of persistent infectivity beyond that reported in small-scale 

clinical studies of mostly symptomatic subjects. The estimated parameters from the plague data 

suggest that the Bombay outbreak was in fact driven by pneumonic rather than bubonic plague.  
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Introduction 

Nowadays our sophisticated graphic software can draw attractive plots showing how 

many people have fallen victim to a highly contagious disease over the course of days, weeks or 

months. But our graphs alone don’t teach us how to reliably determine the underlying risk of 

transmission from an infected to a susceptible person, or the amount of time that an infected 

individual remains contagious to others, or what proportion of the population was already 

infected at the critical point in time when the epidemic wave took off, or how many people 

remain at risk of infection. 

We’ve just described what mathematicians call the inversion problem [1-4]: how to work 

backwards from limited data on incident cases or deaths to recover the key parameters 

underlying our dynamic epidemic models. The problem was born nearly a century ago when 

Kermack and McKendrick (KM) fit a curve derived from their now-classic model to datapoints 

of weekly deaths from a plague outbreak on the Isle of Bombay [5]. Since then, scores of 

investigators have searched for a robust, workable method of estimating the parameters of what 

has famously come to be known as the SIR (Susceptible-Infected-Removed) model, and the race 

to find a solution has accelerated with the arrival of the COVID-19 epidemic. 

What has made the inversion problem so difficult is that, with some possible exceptions 

[6-10], the SIR model of coupled differential equations does not admit a closed-form 

mathematical solution that can be readily used to test the model’s predictions against the 

observed data. That major stumbling block has left us with a motley collection of second-best 

alternatives.  

One idea has been to back out the parameters from the certain salient characteristics of 

the observed epidemic curve, such as the initial exponential rate of increase of cases [11, 12], the 

time to reach the peak incidence [13], the rate of decline after the peak [14], and the proportion 

of the population that is ultimately infected [15-17]. This approach may give us point estimates 

of the key parameters, but it does not provide any uncertainty ranges around the estimates.  

Another idea is to pare down the set of parameters to be identified by making judicious 

use of prior information on some parameters [18-21], in some cases derived from previous waves 

of a multi-wave epidemic [22]. Perhaps the most traveled road to a solution has been the use of 

various parameter search algorithms [18, 23-29] which, when it comes down to it, offer only a 

marginal improvement over brute force search [30]. Bayesian estimation may be better able to 
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integrate prior information into our search procedures [31-36], but its computational burden is 

usually even greater. Last but not least, we can resort to trial and error combined with visual 

inspection [37]. 

The present study, we suggest, offers an easily workable solution to the inversion 

problem. Rather than seeking a closed-form, analytical solution to KM’s system of differential 

equations, we pursue an alternate strategy. First, following the lead of other investigators [35, 38-

40], we develop a discrete-time version of their classic, continuous-time SIR model. This step 

allows us to write their dynamic system in terms of difference equations rather than differential 

equations. Second, similarly following in others’ footsteps [26, 41-44], we define a least squares 

objective function to test our SIR model’s predictions against the observed data.  

Third, in what appears to be an innovation, we show that both the gradient vector and 

Hessian matrix of second-order derivatives of our objective function with respect to the 

parameters follow their own systems of difference equations. As a result, both the gradient and 

Hessian can be rapidly and exactly computed by straightforward iteration, an approach that is 

computationally far superior to numerical approximation [45].  

Fourth, once we have calculated the gradient and Hessian, we can use the well-known 

Newton-Raphson algorithm [46] or Gauss-Newton [47] algorithms to find the global optimum. 

Fifth, relying on the minimum least squares criterion, we can then calculate the variance-

covariance matrix of the parameters and thus determine their confidence intervals [48]. Sixth, 

our approach permits us to readily determine what parameters are in fact identified when we 

have only time-series data on new cases or deaths. 

We apply our strategy to the estimation of a four-parameter SIR model to two types of 

datasets. First, we study COVID-19 incidence over a 99-day interval from the December 4, 2021, 

through March 12, 2022, during the Omicron/BA.1 wave in New York City. Second, we study 

31 weeks of data on deaths from the plague from December 17, 1905, through July 15, 1906, 

during an outbreak in the Isle of Bombay, originally studied by KM [5].  

Statistical Methods 

Discrete-Time SIR Model  

Following the lead of other investigators [4, 35, 38-40], we adopt a discrete-time 

approach. In our SIR epidemic model, the time axis is marked off in equally spaced intervals 𝑡𝑡 =

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 1, 2023. ; https://doi.org/10.1101/2023.03.13.23287177doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.13.23287177
http://creativecommons.org/licenses/by-nc-nd/4.0/


New Approach to the SIR Inversion Problem  Version 2, 30-Apr-2023 

 4 

0,1, … ,𝑇𝑇, where the duration of each interval is sufficiently small as to adequately approximate 

the classical, continuous-time version [5, 49-52]. At any time 𝑡𝑡, individuals within this closed 

population can be in one of three mutually exclusive states: susceptible (S), infected (I), or 

removed (R). The latter state, which includes both recovered living individuals and decedents, is 

assumed to be absorbing. To minimize possible complications arising from the non-

identifiability of multiple parameters [53-56], we assume a fixed, demographically closed 

population of size 𝑁𝑁. 

 Let 𝑆𝑆𝑡𝑡, 𝐼𝐼𝑡𝑡, and 𝑅𝑅𝑡𝑡 denote the respective numbers of individuals in each of the three states 

at time 𝑡𝑡. The dynamic path of the epidemic is governed by the following deterministic, coupled 

difference equations: 

𝑆𝑆𝑡𝑡 = 𝑆𝑆𝑡𝑡−1 − 𝛽𝛽𝑆𝑆𝑡𝑡−1𝐼𝐼𝑡𝑡−1 𝑁𝑁⁄          (1a) 

𝐼𝐼𝑡𝑡 = 𝐼𝐼𝑡𝑡−1 + 𝛽𝛽𝑆𝑆𝑡𝑡−1𝐼𝐼𝑡𝑡−1 𝑁𝑁⁄ − 𝛾𝛾𝐼𝐼𝑡𝑡−1          (1b) 

𝑅𝑅𝑡𝑡 = 𝑅𝑅𝑡𝑡−1 + 𝛾𝛾𝐼𝐼𝑡𝑡−1            (1c) 

𝑆𝑆𝑡𝑡 + 𝐼𝐼𝑡𝑡 + 𝑅𝑅𝑡𝑡 = 𝑁𝑁          (1d) 

Equations (1a) through (1d) represent the well-known forward Euler approximation to the 

underlying continuous-time SIR model of coupled differential equations [57]. Apart from the 

population size 𝑁𝑁, this dynamic system has two parameters: 𝛽𝛽 and 𝛾𝛾. In equations (1a) and (1b), 

𝛽𝛽 > 0 is an infection transmission parameter, while in equations (1b) and (1c), the parameter 

𝛾𝛾 > 0 gauges the proportion of infected individuals who transition to the removed state at each 

time period. The multiplicative term 𝛽𝛽𝑆𝑆𝑡𝑡−1𝐼𝐼𝑡𝑡−1 𝑁𝑁⁄  in equations (1a) and (1b) reflects the law of 

mass action [58], whereby susceptible individuals become infected in proportion to their 

frequency of contact with currently infected individuals. All individuals within the population 

are assumed to mix homogeneously, with no subgroup of individuals mixing preferentially with 

any other subgroup.  

The final equation (1d) reflects the constant size 𝑁𝑁 of the population and is consistent 

with equations (1a) through (1c). Strictly speaking, one should adjust the size 𝑁𝑁 of the mixing 

population in equations (1a) and (1b) to take account of removals by death. Unless the overall 

death rate is substantial, this adjustment is usually ignored in model implementations. 
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To further simplify matters, we assume that initially all individuals are either susceptible 

or infected. Specifically, at 𝑡𝑡 = 0, we have: 

𝑆𝑆0 = (1 − 𝑖𝑖0)𝑁𝑁          (2a) 

𝐼𝐼0 = 𝑖𝑖0𝑁𝑁           (2b) 

𝑅𝑅0 = 0            (2c) 

In equations (2a) and (2b), the additional parameter 𝑖𝑖0 represents the proportion of the entire 

population of size 𝑁𝑁 that is initially infected. We address the more general case where 𝑅𝑅0 > 0 

below. 

 In the dynamic system (1), the mean duration of infection is time-invariant and equal to 

1 𝛾𝛾⁄ . Given the initial conditions (2), the system will result in an epidemic wave so long as 

(1 − 𝑖𝑖0)𝛽𝛽 𝛾𝛾⁄ > 1, a well-known result known as the epidemic threshold theorem [24, 51, 59, 

60]. Assuming that 1 − 𝑖𝑖0 ≈ 1, most authors write this epidemic threshold condition as ℛ0 > 1, 

where ℛ0 = 𝛽𝛽 𝛾𝛾⁄  is the basic reproduction number [24, 52, 61, 62]. 

Parameter Estimation Problem 

 We do not have direct observations on the underlying state variables 𝑆𝑆𝑡𝑡, 𝐼𝐼𝑡𝑡, and 𝑅𝑅𝑡𝑡. If we 

had such data, our inversion problem would border on trivial [39, 63, 64]. Instead, we observe 

only the reported counts of new infections at various intervals. For now, we assume that new 

infection counts 𝑦𝑦𝑡𝑡 are observed at each discrete time 𝑡𝑡. Below we address the more general case 

where such counts are observed less frequently. The counts 𝑦𝑦𝑡𝑡 represent observations on the 

output variables 𝑋𝑋𝑡𝑡, 𝑡𝑡 = 1, … ,𝑇𝑇, which from (1) correspond to: 

𝑋𝑋𝑡𝑡 = 𝛽𝛽𝑆𝑆𝑡𝑡−1𝐼𝐼𝑡𝑡−1 𝑁𝑁⁄           (3) 

It will be helpful to define the parameter 𝛼𝛼 = 1 − 𝛾𝛾 as the proportion of infected individuals who 

remain infected from one time period to the next, so that the probability an infected individual 

remains infectious after 𝜏𝜏 time periods is 𝛼𝛼𝜏𝜏. Given the definition of the output variable 𝑋𝑋𝑡𝑡 in (3), 

our dynamic system (1) can be redefined as: 

𝑆𝑆𝑡𝑡 = 𝑆𝑆𝑡𝑡−1 − 𝑋𝑋𝑡𝑡          (4a) 

𝐼𝐼𝑡𝑡 = 𝑋𝑋𝑡𝑡 + 𝛼𝛼𝐼𝐼𝑡𝑡−1            (4b) 
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So long as the state variables adhere to the condition that that 𝑆𝑆𝑡𝑡 + 𝐼𝐼𝑡𝑡 + 𝑅𝑅𝑡𝑡 = 𝑁𝑁, an explicit 

difference equation for 𝑅𝑅𝑡𝑡 is unnecessary. 

 We can now characterize our parameter estimation problem. Given observations 𝑦𝑦𝑡𝑡 on 

the output variables 𝑋𝑋𝑡𝑡, we want to estimate the unknown parameters 𝛽𝛽, 𝛼𝛼, 𝑖𝑖0, and 𝑁𝑁. Our 

stumbling block is that we cannot express 𝑋𝑋𝑡𝑡 as a closed-form function of these parameters. We 

know only that the output variables 𝑋𝑋𝑡𝑡 adhere to the dynamic system defined by (2), (3) and (4), 

which in turn depends on the parameters 𝛽𝛽, 𝛼𝛼, 𝑖𝑖0, and 𝑁𝑁. 

Solution Strategy: Nonlinear Least Squares 

 To proceed, we need some additional notation. Let 𝒚𝒚 = (𝑦𝑦1, … ,𝑦𝑦𝑇𝑇)′ and 𝑿𝑿 =

(𝑋𝑋1, … ,𝑋𝑋𝑇𝑇)′, respectively, denote column vectors of the observed incidence data and the 

corresponding output variables at each time 𝑡𝑡, where we use boldface symbols denote vectors or 

matrices. Let 𝜽𝜽 = (𝛽𝛽,𝛼𝛼, 𝑖𝑖0)′ denote the column vector of the unknown parameters excluding the 

population size 𝑁𝑁. For now, we condition on 𝑁𝑁, but as we discuss below, this additional 

parameter can be separately identified once 𝜽𝜽 has been estimated. Let 𝑿𝑿(𝜽𝜽) represent the 

functional dependence of the output variables on the parameters, suppressing for now that the 

fact that 𝑿𝑿 also depends on 𝑁𝑁. Finally, let the operator 𝑫𝑫 denote the gradient of partial 

derivatives with respect to the parameters. For example, the column vector 𝑫𝑫𝑿𝑿𝒕𝒕 =

�𝜕𝜕𝑋𝑋𝑡𝑡
𝜕𝜕𝜕𝜕

, 𝜕𝜕𝑋𝑋𝑡𝑡
𝜕𝜕𝜕𝜕

, 𝜕𝜕𝑋𝑋𝑡𝑡
𝜕𝜕𝑖𝑖0
� ′ represents the gradient of partial derivatives of the output variable 𝑋𝑋𝑡𝑡 at time 𝑡𝑡. 

 We want to optimize some objective function 𝑉𝑉�𝒚𝒚,𝑿𝑿(𝜽𝜽)� with respect to 𝜽𝜽. While 𝑿𝑿(𝜽𝜽) 

has no closed-form expression, the time-specific gradient vectors 𝑫𝑫𝑿𝑿𝒕𝒕 of partial derivatives of 𝑋𝑋𝑡𝑡 

with respect to the elements of 𝜽𝜽 follow a system of difference equations and can thus be readily 

calculated iteratively. The same goes for the Hessian matrices 𝑫𝑫𝟐𝟐𝑿𝑿𝒕𝒕 of second-order partial 

derivates with respect to the elements of 𝜽𝜽. Once we have computed the gradient vectors 𝑫𝑫𝑿𝑿𝒕𝒕 

and Hessian matrices 𝑫𝑫𝟐𝟐𝑿𝑿𝒕𝒕, we can use the Newton-Raphson algorithm [46] or, under more 

restrictive conditions, the Gauss-Newton [47] algorithm to optimize 𝑉𝑉.  

 To see how this solution strategy works, we specifically consider the nonlinear least 

squares optimization criterion 𝑉𝑉�𝒚𝒚,𝑿𝑿(𝜽𝜽)� = �𝒚𝒚 − 𝑿𝑿(𝜽𝜽)�′�𝒚𝒚 − 𝑿𝑿(𝜽𝜽)�, which can be written in 

summation notation as: 

𝑉𝑉 = ∑ �𝑦𝑦𝑡𝑡 − 𝑋𝑋𝑡𝑡(𝜽𝜽)�2𝑇𝑇
𝑡𝑡=1          (5) 
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This criterion has been widely used in attempts to fit the SIR model to incidence data [26, 41-

44]. It is well known that minimizing 𝑉𝑉 is equivalent to computing the maximum likelihood 

estimate of 𝜽𝜽 under the assumption that the observations 𝑦𝑦𝑡𝑡 are independently normally 

distributed 𝑁𝑁(𝑋𝑋𝑡𝑡(𝜽𝜽),𝜎𝜎2) with respective means 𝑋𝑋𝑡𝑡(𝜽𝜽) and homoscedastic variance 𝜎𝜎2. In 

Appendix A, we adopt a more general maximum likelihood framework and specifically consider 

an alternative Poisson distribution.  

Calculating the Gradient of the Least Squares Optimization Criterion V 

 The gradient of the least squares criterion 𝑉𝑉 in equation (5) with respect to the parameter 

vector 𝜽𝜽 is: 

𝑫𝑫𝑫𝑫 = −2∑ (𝑦𝑦𝑡𝑡 − 𝑋𝑋𝑡𝑡)𝑇𝑇
𝑡𝑡=1 𝑫𝑫𝑿𝑿𝒕𝒕         (6) 

From (6), we learn that the gradient 𝑫𝑫𝑫𝑫 depends on the gradients 𝑫𝑫𝑿𝑿𝒕𝒕. Our next step is to derive 

specific expressions for the latter gradient terms. Taking the derivative of (3) with respect to 𝜽𝜽, 

we get: 

𝑫𝑫𝑿𝑿𝒕𝒕  = �𝑆𝑆𝑡𝑡−1
𝐼𝐼𝑡𝑡−1
𝑁𝑁
�𝑫𝑫𝑫𝑫 + �𝜕𝜕

𝑁𝑁
� 𝐼𝐼𝑡𝑡−1𝑫𝑫𝑺𝑺𝒕𝒕−𝟏𝟏 + �𝜕𝜕

𝑁𝑁
� 𝑆𝑆𝑡𝑡−1𝑫𝑫𝑰𝑰𝒕𝒕−𝟏𝟏     (7), 

where the notation 𝑫𝑫𝑫𝑫 represents the unit column vector  �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑖𝑖0
� ′ = (1,0,0)′. Taking the 

derivative of (1a), we get: 

𝑫𝑫𝑺𝑺𝒕𝒕 = 𝑫𝑫𝑺𝑺𝒕𝒕−𝟏𝟏 �1 − �𝜕𝜕
𝑁𝑁
� 𝐼𝐼𝑡𝑡−1� − 𝑆𝑆𝑡𝑡−1

𝐼𝐼𝑡𝑡−1
𝑁𝑁
𝑫𝑫𝑫𝑫 − 𝑆𝑆𝑡𝑡−1 �

𝜕𝜕
𝑁𝑁
�𝑫𝑫𝑰𝑰𝒕𝒕−𝟏𝟏    (8) 

From (1b) and (3), we can write 𝐼𝐼𝑡𝑡 = 𝛼𝛼𝐼𝐼𝑡𝑡−1 + 𝑋𝑋𝑡𝑡 =  𝛼𝛼𝐼𝐼𝑡𝑡−1 + 𝛽𝛽𝑆𝑆𝑡𝑡−1𝐼𝐼𝑡𝑡−1 𝑁𝑁⁄ = �𝛼𝛼 + 𝜕𝜕
𝑁𝑁
𝑆𝑆𝑡𝑡−1� 𝐼𝐼𝑡𝑡−1. 

Taking the derivative of this expression gives: 

𝑫𝑫𝑰𝑰𝒕𝒕 = �𝛼𝛼 + 𝜕𝜕
𝑁𝑁
𝑆𝑆𝑡𝑡−1�𝑫𝑫𝑰𝑰𝒕𝒕−𝟏𝟏 + 𝐼𝐼𝑡𝑡−1 �𝑫𝑫𝑫𝑫 + 𝑆𝑆𝑡𝑡−1

𝑁𝑁
𝑫𝑫𝑫𝑫� + 𝐼𝐼𝑡𝑡−1 �

𝜕𝜕
𝑁𝑁
�𝑫𝑫𝑺𝑺𝒕𝒕−𝟏𝟏   (9), 

where 𝑫𝑫𝑫𝑫 similarly represents the unit vector (0,1,0)′.  

 We next need to compute the initial values of the gradients 𝑫𝑫𝑺𝑺𝟎𝟎 and 𝑫𝑫𝑰𝑰𝟎𝟎. Since 𝐼𝐼0 = 𝑖𝑖0𝑁𝑁 

and 𝑆𝑆0 = (1 − 𝑖𝑖0)𝑁𝑁, we can write the gradients 𝑫𝑫𝑺𝑺𝟎𝟎 = −𝑁𝑁𝑫𝑫𝒊𝒊𝟎𝟎 and 𝑫𝑫𝑰𝑰𝟎𝟎 = 𝑁𝑁𝑫𝑫𝒊𝒊𝟎𝟎, where the 

gradient 𝑫𝑫𝒊𝒊𝟎𝟎 simplifies to (0,0,1)′. Given these initial gradient values, we can use (8) and (9) to 

iteratively compute the vectors 𝑫𝑫𝑺𝑺𝒕𝒕 and 𝑫𝑫𝑰𝑰𝒕𝒕 for all 𝑡𝑡 = 1, … ,𝑇𝑇. Once these gradients have been 
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computed, we can then apply (7) to iteratively compute the corresponding gradients 𝑫𝑫𝑿𝑿𝒕𝒕. Those 

quantities in turn yield the gradient 𝑫𝑫𝑫𝑫 of our objective function through equation (6).  

Calculating the Hessian Matrix 

Let 𝑫𝑫𝑿𝑿 denote the 𝑇𝑇 × 3 matrix whose 𝑡𝑡-th row is the vector 𝑫𝑫𝑿𝑿𝒕𝒕′. Taking the derivative 

of the gradient in (6), we obtain: 

𝑫𝑫𝟐𝟐𝑫𝑫 = 2 𝑫𝑫𝑿𝑿′𝑫𝑫𝑿𝑿 − 2∑ (𝑦𝑦𝑡𝑡 − 𝑋𝑋𝑡𝑡)𝑫𝑫𝟐𝟐𝑿𝑿𝒕𝒕𝑇𝑇
𝑡𝑡=1        (10) 

From (10), we similarly learn that the Hessian 𝑫𝑫𝟐𝟐𝑫𝑫 depends on the gradients 𝑫𝑫𝑿𝑿𝒕𝒕 , which we 

have already derived, as well the Hessian matrices 𝑫𝑫𝟐𝟐𝑿𝑿𝒕𝒕. 

 To develop the corresponding iterative formulas for the Hessian matrices 𝑫𝑫𝟐𝟐𝑿𝑿𝒕𝒕, we need 

some additional notation. For two column vectors 𝑨𝑨 and 𝑩𝑩 of dimension 𝐿𝐿 × 1, we define the 

outer product 𝑨𝑨 ∙ 𝑩𝑩 as the 𝐿𝐿 × 𝐿𝐿 matrix 𝑨𝑨𝑩𝑩′ formed by the cross-products of the elements of 𝑨𝑨 

and 𝑩𝑩. (Note that 𝑩𝑩 ∙ 𝑨𝑨 is the transpose of 𝑨𝑨 ∙ 𝑩𝑩.) We further define 𝑨𝑨⨀𝑩𝑩 = (𝑨𝑨 ∙ 𝑩𝑩) + (𝑩𝑩 ∙ 𝑨𝑨) as 

the symmetric matrix formed by the sum of the outer product and its transpose. In the three-

dimensional case, 𝑨𝑨 = (𝑎𝑎1,𝑎𝑎2,𝑎𝑎3)′, and 𝑩𝑩 = (𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3)′, we have: 

𝑨𝑨⨀𝑩𝑩 = �
𝑎𝑎1𝑏𝑏1 + 𝑏𝑏1𝑎𝑎1 𝑎𝑎1𝑏𝑏2 + 𝑏𝑏1𝑎𝑎2 𝑎𝑎1𝑏𝑏3 + 𝑏𝑏1𝑎𝑎3
𝑎𝑎2𝑏𝑏1 + 𝑏𝑏2𝑎𝑎1 𝑎𝑎2𝑏𝑏2 + 𝑏𝑏2𝑎𝑎2 𝑎𝑎2𝑏𝑏3 + 𝑏𝑏3𝑎𝑎2
𝑎𝑎3𝑏𝑏1 + 𝑏𝑏3𝑎𝑎1 𝑎𝑎3𝑏𝑏2 + 𝑏𝑏3𝑎𝑎2 𝑎𝑎3𝑏𝑏3 + 𝑏𝑏3𝑎𝑎3

�     (11) 

 Now taking the derivative of 𝑫𝑫𝑿𝑿𝒕𝒕 as displayed in (7), we get: 

𝑫𝑫𝟐𝟐𝑿𝑿𝒕𝒕  = �1
𝑁𝑁
� (𝑆𝑆𝑡𝑡−1𝑫𝑫𝑰𝑰𝒕𝒕−𝟏𝟏 + 𝐼𝐼𝑡𝑡−1𝑫𝑫𝑺𝑺𝒕𝒕−𝟏𝟏)⨀(𝑫𝑫𝑫𝑫) +  

�𝜕𝜕
𝑁𝑁
� �(𝑫𝑫𝑰𝑰𝒕𝒕−𝟏𝟏)⨀(𝑫𝑫𝑺𝑺𝒕𝒕−𝟏𝟏) + 𝑆𝑆𝑡𝑡−1𝑫𝑫𝟐𝟐𝑰𝑰𝒕𝒕−𝟏𝟏 + 𝐼𝐼𝑡𝑡−1𝑫𝑫𝟐𝟐𝑺𝑺𝒕𝒕−𝟏𝟏�    (12) 

The Hessian matrices 𝑫𝑫𝟐𝟐𝑿𝑿𝒕𝒕 depend in turn on the Hessian matrices 𝑫𝑫𝟐𝟐𝑺𝑺𝒕𝒕 and 𝑫𝑫𝟐𝟐𝑰𝑰𝒕𝒕. The 

corresponding expressions for these Hessian matrices are: 

𝑫𝑫𝟐𝟐𝑺𝑺𝒕𝒕 =  �1 − �𝜕𝜕
𝑁𝑁
� 𝐼𝐼𝑡𝑡−1�𝑫𝑫𝟐𝟐𝑺𝑺𝒕𝒕−𝟏𝟏 − �𝜕𝜕

𝑁𝑁
� (𝑫𝑫𝑰𝑰𝒕𝒕−𝟏𝟏)⨀(𝑫𝑫𝑺𝑺𝒕𝒕−𝟏𝟏) − ��𝜕𝜕

𝑁𝑁
� 𝑆𝑆𝑡𝑡−1�𝑫𝑫𝟐𝟐𝑰𝑰𝒕𝒕−𝟏𝟏  

 −�1
𝑁𝑁
� (𝑆𝑆𝑡𝑡−1𝑫𝑫𝑰𝑰𝒕𝒕−𝟏𝟏 + 𝐼𝐼𝑡𝑡−1𝑫𝑫𝑺𝑺𝒕𝒕−𝟏𝟏)⨀(𝑫𝑫𝑫𝑫)      (13) 

𝑫𝑫𝟐𝟐𝑰𝑰𝒕𝒕 =  �𝛼𝛼 + 𝜕𝜕
𝑁𝑁
𝑆𝑆𝑡𝑡−1�𝑫𝑫𝟐𝟐𝑰𝑰𝒕𝒕−𝟏𝟏 + �𝜕𝜕

𝑁𝑁
� (𝑫𝑫𝑰𝑰𝒕𝒕−𝟏𝟏)⨀(𝑫𝑫𝑺𝑺𝒕𝒕−𝟏𝟏) + ��𝜕𝜕

𝑁𝑁
� 𝐼𝐼𝑡𝑡−1�𝑫𝑫𝟐𝟐𝑺𝑺𝒕𝒕−𝟏𝟏  

 + �1
𝑁𝑁
� (𝑆𝑆𝑡𝑡−1𝑫𝑫𝑰𝑰𝒕𝒕−𝟏𝟏 + 𝐼𝐼𝑡𝑡−1𝑫𝑫𝑺𝑺𝒕𝒕−𝟏𝟏)⨀(𝑫𝑫𝑫𝑫) + 𝑫𝑫𝑰𝑰𝒕𝒕−𝟏𝟏⨀(𝑫𝑫𝑫𝑫)    (14) 
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To complete our calculations, we note that the initial values 𝑫𝑫𝟐𝟐𝑺𝑺𝟎𝟎 and 𝑫𝑫𝟐𝟐𝑰𝑰𝟎𝟎 are simply null 

matrices.   

 Taken together, equations (10), (12), (13) and (14), along with the initial null values of 

𝑫𝑫𝟐𝟐𝑺𝑺𝟎𝟎 and 𝑫𝑫𝟐𝟐𝑰𝑰𝟎𝟎, permit us to iteratively compute the Hessian 𝑫𝑫𝟐𝟐𝑫𝑫, just as we outlined for the 

gradient 𝑫𝑫𝑫𝑫 above. 

Multiple Local Optima; Highly Correlated Parameter Estimates 

In the Newton-Raphson [46] approach to optimization, which we employed here, the 

current value of the parameter vector 𝜽𝜽(𝑘𝑘) is repeatedly mapped into an updated value 

𝜽𝜽(𝑘𝑘+1) according to the well-known rule: 

𝜽𝜽(𝑘𝑘+1) = 𝜽𝜽(𝑘𝑘) − 𝑞𝑞 (𝑫𝑫𝟐𝟐𝑫𝑫)−𝟏𝟏 𝑫𝑫𝑫𝑫        (15) 

In equation (15), the gradient 𝑫𝑫𝑫𝑫, as defined in (6), and the Hessian 𝑫𝑫𝟐𝟐𝑫𝑫, as defined in (10), are 

both computed at the current value of the parameter vector 𝜽𝜽(𝑘𝑘). The step size 0 < 𝑞𝑞 ≤ 1 is 

under control of the programmer. This approach works flawlessly when the objective function 𝑉𝑉 

is globally convex, for example, when each output variable 𝑿𝑿𝒕𝒕 is a linear function of  𝜽𝜽. But 

that’s hardly the situation in the SIR inversion context.  

To begin with, there is good reason to suspect that 𝑉𝑉 is not globally convex and may have 

multiple local optima. While the classical SIR model predicts a single-peaked wave of incident 

cases 𝑋𝑋𝑡𝑡 so long as ℛ0 > 1, the observed data 𝑦𝑦𝑡𝑡 often display multiple peaks over time. (A good 

example is the two-peak plot of the 2001 Dengue fever outbreak in Havana [60].) In that case, 

the search algorithm embodied in (15) may easily end up at a local rather than a global optimum 

of 𝑉𝑉 as it gets trapped in a region of the parameter space that fits one of the multiple peaks.  

What’s more, there will be regions of the parameter space where the Hessian 𝑫𝑫𝟐𝟐𝑫𝑫 is not 

positive definite because the second term in equation (11) (that is, −2∑ (𝑦𝑦𝑡𝑡 − 𝑋𝑋𝑡𝑡)𝑫𝑫𝟐𝟐𝑿𝑿𝒕𝒕𝑇𝑇
𝑡𝑡=1 ) will 

not necessary be a positive definite matrix. In that case, the updated parameter rule (15) may not 

result in a decrease in the objective function 𝑉𝑉 as the algorithm veers away from the optimum.  

These difficulties may be partly addressed by the Gauss-Newton algorithm [47], which in 

the current context entails the following parameter updating rule: 

𝜽𝜽(𝑘𝑘+1) = 𝜽𝜽(𝑘𝑘) − 𝑞𝑞 (2 𝑫𝑫𝑿𝑿′𝑫𝑫𝑿𝑿)−𝟏𝟏 𝑫𝑫𝑫𝑫        (16) 
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The idea here is that matrix 2 𝑫𝑫𝑿𝑿′𝑫𝑫𝑿𝑿, which corresponds to the first term in our expression for 

the Hessian 𝑫𝑫𝟐𝟐𝑫𝑫 in (10), is always positive definite, so that the rule (16) will consistently result 

in a decrease in 𝑉𝑉. However, the matrix 𝑫𝑫𝑿𝑿′𝑫𝑫𝑿𝑿 may be ill-conditioned, with eigenvalues 

spanning multiple orders of magnitude, so that the steps 𝜽𝜽(𝑘𝑘+1) − 𝜽𝜽(𝑘𝑘) jump around 

uncontrollably and fail to converge to zero. While various modifications such the Levenberg-

Marquardt algorithm have been proposed to recondition the matrix 𝑫𝑫𝑿𝑿′𝑫𝑫𝑿𝑿 [65], in the final 

analysis our search procedure may end up being exquisitely sensitive to the choice of the initial 

parameter vector 𝜽𝜽(0). 

Even when our objective function 𝑉𝑉 has an interior global minimum, where it is at least 

locally convex in the neighborhood surrounding the optimum, we may still encounter an inverted 

ridge or ravine where the parameters are highly correlated. There may indeed be a unique value 

𝜽𝜽∗ at the very bottom of the ravine that achieves the global minimum 𝑉𝑉∗. But along the floor of 

the ravine, there is a one-dimensional curve containing 𝜽𝜽∗ where 𝑉𝑉 is almost equal to 𝑉𝑉∗. Strictly 

speaking, the parameters are structurally identified, but they are not practically identified [66].  

To confront these problems of multiple equilibria and correlated parameters in the 

applications below, we took care to construct and inspect maps of the least-squares criterion 𝑉𝑉 

and the gradient 𝑫𝑫𝑫𝑫 as functions of the parameters. We also examined the path of successive 

updates 𝜽𝜽(𝑘𝑘) in parameter space generated by our Newton-Raphson search algorithm. 

Confidence Intervals; Reparametrizing  

 Our reliance on the nonlinear least squares criterion 𝑉𝑉 in equation (5) permits us to 

estimate confidence intervals for the estimated parameters [48]. Conditional upon 𝑁𝑁, the 

variance-covariance matrix of the parameters 𝜽𝜽 = (𝛽𝛽,𝛼𝛼, 𝑖𝑖0) is 𝑪𝑪 = 𝑠𝑠2(𝑫𝑫𝑿𝑿′𝑫𝑫𝑿𝑿)−1, where 𝑠𝑠2 =

𝑉𝑉 𝑇𝑇⁄ , and where 𝑫𝑫𝑿𝑿 and 𝑉𝑉 are evaluated at the optimum. The standard errors are the square roots 

of the diagonal elements of 𝑪𝑪. The symmetric 95 percent confidence intervals, based upon the 

assumption of an asymptotic normal distribution, can be evaluated as ±1.96 standard errors 

about the estimates. We can then use the Delta method [67] to compute the standard errors and 

confidence intervals around nonlinear functions of the parameters, such as the basic reproduction 

number ℛ0 = 𝛽𝛽 𝛾𝛾⁄ = 𝛽𝛽 (1 − 𝛼𝛼)⁄  and the mean duration of infection 1 𝛾𝛾 =⁄ 1 (1 − 𝛼𝛼)⁄ . 

 In some applications where the data 𝑦𝑦𝑡𝑡 exhibit substantial variability and the resulting 

value of  𝑠𝑠2 is large, the estimated symmetric confidence interval surrounding 𝛼𝛼 may exceed the 
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allowable range of 0 ≤ 𝛼𝛼 < 1. In such cases, we can reparametrize, instead specifying 𝜽𝜽 =

(𝛽𝛽,𝜔𝜔, 𝑖𝑖0) with 𝛼𝛼(𝜔𝜔) = 1 (1 + 𝑒𝑒−𝜔𝜔)⁄ , where the substitute parameter 𝜔𝜔 is unbounded. Our 

expression for 𝑫𝑫𝑰𝑰𝒕𝒕 in equation (9) will remain valid, but with the modification that 𝑫𝑫𝑫𝑫 =

�0, 𝑑𝑑𝜕𝜕
𝑑𝑑𝜔𝜔

, 0� = (0,𝛼𝛼(1 − 𝛼𝛼), 0). Our expression for 𝑫𝑫𝟐𝟐𝑰𝑰𝒕𝒕 in equation (14) will become: 

𝑫𝑫𝟐𝟐𝑰𝑰𝒕𝒕 =  �𝛼𝛼 + 𝜕𝜕
𝑁𝑁
𝑆𝑆𝑡𝑡−1�𝑫𝑫𝟐𝟐𝑰𝑰𝒕𝒕−𝟏𝟏 + �𝜕𝜕

𝑁𝑁
� (𝑫𝑫𝑰𝑰𝒕𝒕−𝟏𝟏)⨀(𝑫𝑫𝑺𝑺𝒕𝒕−𝟏𝟏) + ��𝜕𝜕

𝑁𝑁
� 𝐼𝐼𝑡𝑡−1�𝑫𝑫𝟐𝟐𝑺𝑺𝒕𝒕−𝟏𝟏 +  

 �1
𝑁𝑁
� (𝑆𝑆𝑡𝑡−1𝑫𝑫𝑰𝑰𝒕𝒕−𝟏𝟏 + 𝐼𝐼𝑡𝑡−1𝑫𝑫𝑺𝑺𝒕𝒕−𝟏𝟏)⨀(𝑫𝑫𝑫𝑫) + 𝑫𝑫𝑰𝑰𝒕𝒕−𝟏𝟏⨀(𝑫𝑫𝑫𝑫) + 𝐼𝐼𝑡𝑡−1𝑫𝑫𝟐𝟐𝑫𝑫   (17) 

The additional term on the right-hand side of equation (17), which does not appear in (14), 

contains the matrix 𝑫𝑫𝟐𝟐𝑫𝑫 = �
0 0 0
0 𝑑𝑑2𝜕𝜕

𝑑𝑑𝜔𝜔2 0
0 0 0

�, where 𝑑𝑑
2𝜕𝜕

𝑑𝑑𝜔𝜔2 = 𝛼𝛼(1 − 𝛼𝛼)(1 − 2𝛼𝛼). 

Recovering the Population Size Parameter N 

 While 𝑿𝑿(𝜽𝜽) has no closed-form expression in terms of 𝜽𝜽, it turns out that each element 

𝑋𝑋𝑡𝑡 is a linear function of the population size parameter 𝑁𝑁. That is, 𝑋𝑋𝑡𝑡 can be written in the form 

𝜑𝜑𝑡𝑡(𝜽𝜽)𝑁𝑁, where 𝜑𝜑𝑡𝑡(𝜽𝜽) is a function of the remaining parameters 𝜽𝜽. 

To prove this result, we only need to show that the state variables 𝑆𝑆𝑡𝑡 and 𝐼𝐼𝑡𝑡 are 

themselves proportional to 𝑁𝑁. Thus, if for all times 𝑡𝑡 = 1, … ,𝑇𝑇, we can show that 𝑆𝑆𝑡𝑡 = 𝑓𝑓𝑡𝑡(𝜽𝜽)𝑁𝑁 

and 𝐼𝐼𝑡𝑡 = 𝑔𝑔𝑡𝑡(𝜽𝜽)𝑁𝑁 for some functions 𝑓𝑓𝑡𝑡(𝜽𝜽) and 𝑔𝑔𝑡𝑡(𝜽𝜽), then from equation (3), we would have 

𝑋𝑋𝑡𝑡 = 𝛽𝛽𝑆𝑆𝑡𝑡−1𝐼𝐼𝑡𝑡−1 𝑁𝑁⁄ = 𝛽𝛽𝑓𝑓𝑡𝑡−1(𝜽𝜽)𝑔𝑔𝑡𝑡−1(𝜽𝜽)𝑁𝑁. Thus, 𝜑𝜑𝑡𝑡(𝜽𝜽) = 𝛽𝛽𝑓𝑓𝑡𝑡−1(𝜽𝜽)𝑔𝑔𝑡𝑡−1(𝜽𝜽). 

We can prove that 𝑆𝑆𝑡𝑡 and 𝐼𝐼𝑡𝑡 are proportional to 𝑁𝑁 by mathematical induction. From 

equations (2a) and (2b), respectively, we known that 𝑆𝑆0 = (1 − 𝑖𝑖0)𝑁𝑁 and 𝐼𝐼0 = 𝑖𝑖0𝑁𝑁. So, the 

proposition is true for 𝑡𝑡 = 0. Now suppose that 𝑆𝑆𝑡𝑡 = 𝑓𝑓𝑡𝑡(𝜽𝜽)𝑁𝑁 and 𝐼𝐼𝑡𝑡 = 𝑔𝑔𝑡𝑡(𝜽𝜽)𝑁𝑁,  at time 𝑡𝑡. We 

claim that 𝑆𝑆𝑡𝑡+1 = 𝑓𝑓𝑡𝑡+1(𝜽𝜽)𝑁𝑁 and 𝐼𝐼𝑡𝑡+1 = 𝑔𝑔𝑡𝑡+1(𝜽𝜽)𝑁𝑁 necessarily hold for some functions 𝑓𝑓𝑡𝑡+1(𝜽𝜽) 

and 𝑔𝑔𝑡𝑡+1(𝜽𝜽). From (1a), we can write 𝑆𝑆𝑡𝑡+1 = 𝑆𝑆𝑡𝑡 �1 − 𝜕𝜕
𝑁𝑁
𝐼𝐼𝑡𝑡�. We have 𝑆𝑆𝑡𝑡+1 = 𝑆𝑆𝑡𝑡 �1 − 𝜕𝜕

𝑁𝑁
𝐼𝐼𝑡𝑡� =

𝑓𝑓𝑡𝑡(𝜃𝜃)𝑁𝑁�1 − 𝜕𝜕
𝑁𝑁
𝑔𝑔𝑡𝑡(𝜃𝜃)𝑁𝑁� = �𝑓𝑓𝑡𝑡(𝜃𝜃) − 𝛽𝛽𝑔𝑔𝑡𝑡(𝜃𝜃)�𝑁𝑁, and so 𝑓𝑓𝑡𝑡+1(𝜃𝜃) = 𝑓𝑓𝑡𝑡(𝜃𝜃) − 𝛽𝛽𝑔𝑔𝑡𝑡(𝜃𝜃). Similarly, 

𝐼𝐼𝑡𝑡+1 = 𝐼𝐼𝑡𝑡 �𝛼𝛼 + 𝜕𝜕
𝑁𝑁
𝑆𝑆𝑡𝑡� = 𝑔𝑔𝑡𝑡(𝜃𝜃)𝑁𝑁 �𝛼𝛼 + 𝜕𝜕

𝑁𝑁
𝑓𝑓𝑡𝑡(𝜃𝜃)𝑁𝑁� = 𝑔𝑔𝑡𝑡(𝜃𝜃)�𝛼𝛼 + 𝛽𝛽𝑓𝑓𝑡𝑡(𝜃𝜃)�𝑁𝑁, and so 𝑔𝑔𝑡𝑡+1(𝜃𝜃) =

𝑔𝑔𝑡𝑡(𝜃𝜃)�𝛼𝛼 + 𝛽𝛽𝑓𝑓𝑡𝑡(𝜃𝜃)�. ∎ 

The fact that each output variable 𝑋𝑋𝑡𝑡 is proportional to 𝑁𝑁 permits us to employ an 

iterative procedure resembling the expectation-maximization (or EM) algorithm [68] to recover 
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an estimate of that parameter. Let’s say that we have a parameter estimate 𝑁𝑁(𝑛𝑛) at iteration 𝑛𝑛 of 

the algorithm. We employ the previously described procedure to estimate 𝜽𝜽(𝑛𝑛) conditional upon 

𝑁𝑁(𝑛𝑛). That corresponds to the maximization (or M) step. (From the coding standpoint, when 

apply the Newton-Raphson parameter search rule described in (15) to estimate 𝜽𝜽(𝑛𝑛), we’re 

looping on 𝑘𝑘 within a loop on 𝑛𝑛.) Given both 𝑁𝑁(𝑛𝑛) and 𝜽𝜽(𝑛𝑛), we have output-variable estimates 

𝑋𝑋𝑡𝑡
(𝑛𝑛) = 𝜑𝜑𝑡𝑡�𝜽𝜽(𝑛𝑛)�𝑁𝑁(𝑛𝑛) for all 𝑡𝑡. We now compute: 

 𝜅𝜅(𝑛𝑛+1) = 𝒚𝒚′𝑿𝑿(𝒏𝒏) 𝑿𝑿(𝒏𝒏)′𝑿𝑿(𝒏𝒏)⁄ = ∑ 𝑦𝑦𝑡𝑡𝑋𝑋𝑡𝑡
(𝑛𝑛)𝑇𝑇

𝑡𝑡=1 ∑ �𝑋𝑋𝑡𝑡
(𝑛𝑛)�

2
𝑇𝑇
𝑡𝑡=1�      (18) 

That is, we compute an adjustment factor 𝜅𝜅(𝑛𝑛+1) by regressing 𝒚𝒚 on 𝑿𝑿(𝒏𝒏). For the expectation (or 

E) step, we update the population size as 𝑁𝑁(𝑛𝑛+1) = 𝜅𝜅(𝑛𝑛+1)𝑁𝑁(𝑛𝑛). This iterative procedure will 

work for any optimization criterion 𝑉𝑉 and not just for the least squares criterion described above. 

Non-Identifiability of the Initially Resistant Population 

We have thus far assumed in equation (2c) that no one in the population was initially 

resistant to infection, that is, 𝑅𝑅0 = 0. Now let’s assume more generally that a non-negative 

fraction 1 > 𝑟𝑟0 ≥ 0 of the population is already resistant at 𝑡𝑡 = 0. We thus replace the restricted 

initial conditions (2) with the following more general initial conditions: 

𝑆𝑆0 = (1 − 𝑖𝑖0 − 𝑟𝑟0)𝑁𝑁          (19a) 

𝐼𝐼0 = 𝑖𝑖0𝑁𝑁           (19b) 

𝑅𝑅0 = 𝑟𝑟0𝑁𝑁           (19c) 

So long as the 𝑅𝑅0 initially resistant individuals mix homogeneously with those in the susceptible 

and infected states, equation (3) governing the output variables 𝑋𝑋𝑡𝑡 as well as the equations of 

motion (4) for the state variables 𝑆𝑆𝑡𝑡 and 𝐼𝐼𝑡𝑡 remain unchanged. 

Apart from our original parameter vector 𝜽𝜽 = (𝛽𝛽,𝛼𝛼, 𝑖𝑖0) and the population size 𝑁𝑁, it 

appears that we now have an additional parameter 𝑟𝑟0 to be estimated. It turns out, however, that 

𝑟𝑟0 cannot be identified in our discrete SIR model from the observed data 𝒚𝒚 alone [54]. 

 To see why, let’s suppose that we estimate our more general model conditional upon 

some fixed value of  𝑟𝑟0. We denote the resulting minimum least squares estimates as 𝜽𝜽∗(𝑟𝑟0) and 

𝑁𝑁∗(𝑟𝑟0) to show their dependence on the value of 𝑟𝑟0 chosen. We denote the corresponding 

individual components of 𝜽𝜽∗(𝑟𝑟0) as 𝛽𝛽∗(𝑟𝑟0), 𝛼𝛼∗(𝑟𝑟0), and 𝑖𝑖0∗(𝑟𝑟0). Our original parameter estimates 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 1, 2023. ; https://doi.org/10.1101/2023.03.13.23287177doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.13.23287177
http://creativecommons.org/licenses/by-nc-nd/4.0/


New Approach to the SIR Inversion Problem  Version 2, 30-Apr-2023 

 13 

conditional upon 𝑟𝑟0 = 0 thus correspond to 𝛽𝛽∗(0), 𝛼𝛼∗(0), 𝑖𝑖0∗(0), and 𝑁𝑁∗(0). Then the following 

conditions hold for all 1 > 𝑟𝑟0 ≥ 0: 

𝛽𝛽∗(𝑟𝑟0) = 𝛽𝛽∗(0) (1 − 𝑟𝑟0)⁄          (20a) 

𝛼𝛼∗(𝑟𝑟0) = 𝛼𝛼∗(0)          (20b) 

𝑖𝑖0∗(𝑟𝑟0) = 𝑖𝑖0∗(0)(1 − 𝑟𝑟0)         (20c) 

𝑁𝑁∗(𝑟𝑟0)  = 𝑁𝑁∗(0) (1 − 𝑟𝑟0)⁄          (20d) 

What’s more, the paths of the output variable 𝑋𝑋𝑡𝑡 and the state variables 𝑆𝑆𝑡𝑡 and 𝐼𝐼𝑡𝑡 at the optimum 

values of the parameters, but not the state variable 𝑅𝑅𝑡𝑡, will be independent of 𝑟𝑟0. Accordingly, 

the optimum value of 𝑉𝑉 will likewise be independent of 𝑟𝑟0. 

 We again rely upon mathematical induction to prove that the state variables 𝑆𝑆𝑡𝑡 and 𝐼𝐼𝑡𝑡 at 

the optimum are independent of 𝑟𝑟0. First consider 𝑡𝑡 = 0. For any value of 𝑟𝑟0, we have from (19a) 

that 𝑆𝑆0 = (1 − 𝑖𝑖0∗(𝑟𝑟0) − 𝑟𝑟0)𝑁𝑁∗(𝑟𝑟0). Applying (20c) and (20d), we get 𝑆𝑆0 = �1 − 𝑖𝑖0∗(0)�𝑁𝑁∗(0), 

which does not depend on 𝑟𝑟0. Similarly for any value of 𝑟𝑟0, we have from (19b) that 

 𝐼𝐼0 = 𝑖𝑖0∗(𝑟𝑟0)𝑁𝑁∗(𝑟𝑟0). Again applying (20c) and (20d), we get 𝐼𝐼0 = 𝑖𝑖0∗(0)𝑁𝑁∗(0), which is likewise 

independent of 𝑟𝑟0. Now assume that 𝑆𝑆𝑡𝑡 and 𝐼𝐼𝑡𝑡 are independent of 𝑟𝑟0. We show that 𝑆𝑆𝑡𝑡+1 and 𝐼𝐼𝑡𝑡+1 

must also be independent of 𝑟𝑟0. From (1a), we have 𝑆𝑆𝑡𝑡+1 = 𝑆𝑆𝑡𝑡(1 − 𝛽𝛽∗(𝑟𝑟0)𝐼𝐼𝑡𝑡 𝑁𝑁∗(𝑟𝑟0)⁄ ). Applying 

(19a) and (19d), this expression resolves to 𝑆𝑆𝑡𝑡+1 = 𝑆𝑆𝑡𝑡(1 − 𝛽𝛽∗(0)𝐼𝐼𝑡𝑡 𝑁𝑁∗(0)⁄ ). From (1b) and (3), 

we have 𝐼𝐼𝑡𝑡+1 = 𝐼𝐼𝑡𝑡(𝛼𝛼 + 𝛽𝛽∗(𝑟𝑟0)𝑆𝑆𝑡𝑡 𝑁𝑁∗(𝑟𝑟0)⁄ ). Again applying (20a) and (20d), this expression 

similarly resolves to 𝐼𝐼𝑡𝑡+1 = 𝐼𝐼𝑡𝑡(𝛼𝛼 + 𝛽𝛽∗(0)𝑆𝑆𝑡𝑡 𝑁𝑁∗(0)⁄ ). ∎ 

Interpreting the Estimated Population Size N: Underreporting and Incomplete Mixing 

While the additional parameter 𝑟𝑟0 is not identifiable from the data 𝒚𝒚 alone, we might still 

be able to identify it from other data. Suppose, for example, that we had sharp prior information 

on the basic reproduction number ℛ0 = 𝛽𝛽 𝛾𝛾⁄ = 𝛽𝛽 (1 − 𝛼𝛼)⁄ . Let’s denote this prior estimate ℛ�0. 

We first compute the basic reproductive number ℛ0
∗(0) = 𝛽𝛽∗(0) �1 − 𝛼𝛼∗(0)�⁄  implied by our 

parameter estimates conditional upon 𝑟𝑟0 = 0. So long as ℛ�0 ≥ ℛ0
∗(0), we can then use our prior 

information to conclude that 𝑟𝑟0 = 1 − ℛ0
∗(0) ℛ�0⁄ . 

 Why couldn’t we similarly take advantage of prior information on the population size to 

ascertain the initial proportion 𝑟𝑟0 of resistant individuals? Suppose we knew from census data 

that the population contained 𝑁𝑁� individuals. We would first estimate 𝑁𝑁∗(0) conditional upon 
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𝑟𝑟0 = 0, and then, so long as 𝑁𝑁� ≥ 𝑁𝑁∗(0), we would have the estimate 𝑟𝑟0 = 1 −𝑁𝑁∗(0) 𝑁𝑁�⁄ . 

Unfortunately, reliance solely on census data for prior estimates of population size 𝑁𝑁 is 

complicated by two other phenomena: underreporting and incomplete mixing. 

In many contexts, particularly in recent applications of the SIR and related 

compartmental models to COVID-19 incidence, it has been widely recognized that a significant 

number of incident cases may have gone unreported [69]. In the absence of reliable information 

on the temporal pattern of such underreporting, the most parsimonious approach to this 

phenomenon has been to assume a case identification ratio equal to a constant 𝑝𝑝 < 1 [70-72]. In 

that case, our model would need to be modified to accommodate the reality that our reported 

incidence data 𝑦𝑦𝑡𝑡 are in fact estimates of 𝑝𝑝𝑋𝑋𝑡𝑡 rather than 𝑋𝑋𝑡𝑡. We’ve already learned, however, 

that 𝑋𝑋𝑡𝑡 = 𝜑𝜑𝑡𝑡(𝜽𝜽)𝑁𝑁, where 𝜑𝜑𝑡𝑡(𝜽𝜽) is a function of the remaining parameters 𝜽𝜽, and this is the case 

even in our more general model admitting 𝑟𝑟0 > 0. Accordingly, our reported incidence data 𝑦𝑦𝑡𝑡 

are really estimates of 𝑝𝑝𝑋𝑋𝑡𝑡 = 𝜑𝜑𝑡𝑡(𝜽𝜽)(𝑝𝑝𝑁𝑁), and the estimated population size derived from our 

model is really an estimate of 𝑝𝑝𝑁𝑁. 

We thus have a knotty problem of confounding. We can estimate population size 𝑁𝑁∗(0) 

assuming that there are no initially resistant individuals and no underreporting. If we had census 

data 𝑁𝑁�, we could account for both phenomena, writing 𝑁𝑁∗(0) 𝑁𝑁�⁄ = 𝑝𝑝(1 − 𝑟𝑟0). Without more 

information, we cannot separately identify 𝑝𝑝 and 𝑟𝑟0. 

 We would ordinarily interpret the parameter 𝑁𝑁 to gauge the size of the population at risk 

for contagion. This population would consist of all individuals who homogeneously mix with 

each other in accordance with the law of mass action embodied in equations (1) and (3). Many 

investigators, however, have properly recognized that the underlying assumption of 

homogeneous mixing may not apply to the entire population [19, 73-78].  

Let’s say we’re analyzing an outbreak on a college campus with known student 

enrollment 𝑁𝑁�. When we run our model with 𝑟𝑟0 = 0, we obtain an estimate 𝑁𝑁∗(0) that is, say, 

only about 10 percent of 𝑁𝑁�. This finding does not necessarily imply that 90 percent of the student 

body was resistant or that only one in ten cases was reported. Instead, it may mean that only 

small fraction of the student body was directly involved in the mixing process that generated the 

outbreak. A good example would be the COVID-19 outbreak at the campus of the University of 

Wisconsin-Madison in September 2020, where total student enrollment was 𝑁𝑁� = 44,640, but 
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where the large fraction of cases was concentrated in two on-campus student residence halls with 

a combined population of about 2,932 [79]. 

Any comparison between the estimated population size 𝑁𝑁∗(0) and the census statistic 𝑁𝑁� 

thus entails three confounded interpretations. Some cases have gone unreported. Some 

individuals may be initially resistant. And other individuals may be susceptible but remain 

outside the core population through which the infectious agent has spread. 

Adapting the Model to Data on Removals 

 Our analysis has thus far assumed that each data point 𝑦𝑦𝑡𝑡 is an observation on the 

corresponding output variable 𝑋𝑋𝑡𝑡 capturing the number of individuals who transitioned from the 

susceptible to the infected state at time 𝑡𝑡. Alternatively, we can construct an analogous model 

where the data point 𝑦𝑦𝑡𝑡 is instead an observation on a distinct output variable 𝑍𝑍𝑡𝑡 capturing the 

number of individuals who transitioned from the infected to the removed state at time 𝑡𝑡. This 

approach would be important if we had data on the number of deaths during an epidemic of a 

disease with a near 100 percent fatality rate, as KM observed in the case of 1905-1906 plague 

outbreak on the Isle of Bombay [5]. 

 In this alternative model, the output variable 𝑍𝑍𝑡𝑡 is: 

𝑍𝑍𝑡𝑡 = 𝑅𝑅𝑡𝑡 − 𝑅𝑅𝑡𝑡−1 = (1 − 𝛼𝛼)𝐼𝐼𝑡𝑡          (21) 

Continuing with the least squares framework, the objective function is now: 

𝑉𝑉 = ∑ �𝑦𝑦𝑡𝑡 − 𝑍𝑍𝑡𝑡(𝜽𝜽)�2𝑇𝑇
𝑡𝑡=1          (22) 

To minimize this objective function employing the same strategy above, we will need to 

compute the gradient vector 𝑫𝑫𝒁𝒁𝒕𝒕 and the Hessian matrix 𝑫𝑫𝟐𝟐𝒁𝒁𝒕𝒕. From (25), we immediately have: 

𝑫𝑫𝒁𝒁𝒕𝒕 = (1 − 𝛼𝛼)𝑫𝑫𝑫𝑫𝒕𝒕 − 𝐼𝐼𝑡𝑡𝑫𝑫𝑫𝑫         (23) 

The corresponding Hessian matrix is: 

𝑫𝑫𝟐𝟐𝒁𝒁𝒕𝒕 = (1 − 𝛼𝛼)𝑫𝑫𝟐𝟐𝑫𝑫𝒕𝒕 − 𝑫𝑫𝑫𝑫𝒕𝒕⨀𝑫𝑫𝑫𝑫        (24) 

To compute these two expressions, we will need the gradient 𝑫𝑫𝑫𝑫𝒕𝒕 and Hessian 𝑫𝑫𝟐𝟐𝑫𝑫𝒕𝒕, but these 

respective quantities were already computed in equations (9) and (14) above. To complete our 

estimation procedure, we note that the output variables are similarly linear functions of the 

population size parameter 𝑁𝑁, so that the EM-type algorithm described above likewise applies. 
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Working with Aggregate Data 

 In some applications, we may have only aggregate data reported over a coarse time scale, 

rather than the finely divided time axis assumed so far. For concreteness, let’s assume that the 

underlying SIR epidemic model is valid when the time axis 𝑡𝑡 = 0,1, … ,𝑇𝑇 is marked off in days, 

but we only have data 𝑦𝑦𝑚𝑚 on the cumulative number of deaths during each 7-day week, indexed 

by 𝑚𝑚 = 1, … ,𝑀𝑀. Days 𝑡𝑡 are mapped into weeks 𝑚𝑚 by the relation 𝑚𝑚 = ℎ(𝑡𝑡) = �𝑡𝑡−1
7
� + 1, 

where the floor operator ‖𝑥𝑥‖ maps into the largest integer 𝑗𝑗 such that 𝑗𝑗 ≤ 𝑥𝑥. We further assume 

that 𝑇𝑇 = 7𝑀𝑀, so that week 𝑀𝑀, which corresponds to the last week, ends on day 𝑇𝑇. 

 Now define the 𝑀𝑀 × 𝑇𝑇 aggregation matrix 𝑾𝑾 with element 𝑤𝑤𝑚𝑚𝑡𝑡 = 1 if and only if 𝑚𝑚 =

ℎ(𝑡𝑡). Otherwise, 𝑤𝑤𝑚𝑚𝑡𝑡 = 0. While our finely disaggregated model generates daily values 𝑍𝑍𝑡𝑡 of 

the output variable from the underlying parameters 𝜽𝜽, our data 𝑦𝑦𝑚𝑚 represent observations on the 

aggregated values 𝒘𝒘𝒎𝒎𝒁𝒁 = ∑ 𝑤𝑤𝑚𝑚𝑡𝑡
𝑇𝑇
𝑡𝑡=1 𝑍𝑍𝑡𝑡, where 𝒘𝒘𝒎𝒎 denotes row 𝑚𝑚 of the matrix 𝑾𝑾 and where 𝒁𝒁 

denotes the 𝑇𝑇 × 1 column vector with coordinates 𝑍𝑍𝑡𝑡. (From the computational standpoint, we’re 

calculating the integral required to convert a continuous- to a discrete-time SIR model [40].) In 

vector notation, our least squares criterion becomes: 

𝑉𝑉 = (𝒚𝒚 −𝑾𝑾𝒁𝒁)′(𝒚𝒚 −𝑾𝑾𝒁𝒁)         (25) 

Let 𝑫𝑫𝒁𝒁 denote the 𝑇𝑇 × 3 matrix whose row 𝑡𝑡 is the gradient 𝑫𝑫𝒁𝒁𝒕𝒕, and let 𝑾𝑾(𝑫𝑫𝒁𝒁) denote the 

𝑀𝑀 × 3 matrix derived by multiplying the 𝑀𝑀 × 𝑇𝑇 matrix 𝑾𝑾 by the 𝑇𝑇 × 3 matrix 𝑫𝑫𝒁𝒁. The gradient 

of 𝑉𝑉 is then given by: 

𝑫𝑫𝑫𝑫 = −2 (𝒚𝒚 −𝑾𝑾𝒁𝒁)′𝑾𝑾(𝑫𝑫𝒁𝒁)         (26)  

Let 𝒘𝒘𝒎𝒎 denote row 𝑚𝑚 of the matrix 𝑾𝑾, so that 𝒘𝒘𝒎𝒎𝒁𝒁 = ∑ 𝑤𝑤𝑚𝑚𝑡𝑡
𝑇𝑇
𝑡𝑡=1 𝑍𝑍𝑡𝑡 represents the predicted 

value. The corresponding Hessian matrix becomes: 

𝑫𝑫𝟐𝟐𝑫𝑫 = 2 �𝑾𝑾(𝑫𝑫𝒁𝒁)�′�𝑾𝑾(𝑫𝑫𝒁𝒁)� − ∑ (𝑦𝑦𝑚𝑚 − 𝒘𝒘𝒎𝒎𝒁𝒁)∑ 𝑤𝑤𝑚𝑚𝑡𝑡𝑫𝑫𝟐𝟐𝒁𝒁𝒕𝒕𝑇𝑇
𝑡𝑡=1

𝑀𝑀
𝑚𝑚=1    (27) 

Accordingly, we can run our SIR model to generate the state variables 𝑍𝑍𝑡𝑡 and then calculate the 

derivatives 𝑫𝑫𝒁𝒁𝒕𝒕 and 𝑫𝑫𝟐𝟐𝒁𝒁𝒕𝒕 in the disaggregated time scale and then apply the aggregation matrix 

𝑾𝑾 to weight the results. 
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Data 

Omicron Wave, December 2021 – March 2022, New York City 

We studied the reported daily incidence of COVID-19 during the SARS-CoV-2 

Omicron/BA.1 wave of December 2021 – March 2022 in New York City, NY, United States, a 

city of population 8.49 million. Our data consisted of daily counts of cases reported by the New 

York City department of health [80], where the date of report was intended to be the date when a 

positive test was performed or when the diagnosis of COVID-19 was otherwise made. 

Our data showed systematic variation in case counts by day of the week, with many 

fewer cases diagnosed over the weekends. To account for these fluctuations, we converted the 

raw case counts 𝑐𝑐𝑡𝑡 into centered 7-day moving averages, that is, 𝑦𝑦𝑡𝑡 = 1
7
∑ 𝑐𝑐𝑡𝑡+𝑖𝑖
+3
𝑖𝑖=−3  , where 𝑡𝑡 

indexes the date of report. Figure 1 shows the raw counts of reported cases per day 𝑐𝑐𝑡𝑡 (connected 

gray datapoints) as well as the daily case counts 𝑦𝑦𝑡𝑡 adjusted for the day of the week (red 

datapoints). We relied upon the adjusted daily counts 𝑦𝑦𝑡𝑡 to estimate our SIR model parameters. 

  

 
 

Figure 1. Daily Reported Cases of COVID-19, 12/1/2021 – 3/15/2022, in New York City. The connected gray 
datapoints show the raw case counts (𝑐𝑐𝑡𝑡). The red datapoints, covering 12/4/2021 – 3/12/2022, show the centered 7-
day moving averages (𝑦𝑦𝑡𝑡).  
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Plague Outbreak, December 1905 – July 1906, Isle of Bombay 

 Figure 2 displays the average daily number of reported deaths from plague in the Isle of 

Bombay during each week over a 31-week period, beginning with the week starting Sunday, 

December 17, 1905, and continuing through the week starting Sunday, July 15, 1906. The 

average daily deaths were computed from the weekly totals plotted by KM in their classic 1927 

paper [5]. The height of each bar is the average daily number of deaths during that week. The 

area of each bar equals the reported number of deaths during that week. 

 

 
 

Figure 2. Average Number of Daily Deaths from Plague, Isle of Bombay, Week Starting 12/17/1905 Through 
the Week Starting 7/15/1906. Each bar corresponds to one week. The height of each bar is the average daily 
number of deaths during that week. The area of each bar equals the number of deaths during that week. Data adapted 
from Kermack and McKendrick [5]. 
 

 In our analysis of the plague death data, we interpreted the weekly death counts 𝑦𝑦𝑚𝑚, 

indexed by 𝑚𝑚 = 1, … ,31, as observations on the aggregated values ∑ 𝑤𝑤𝑚𝑚𝑡𝑡𝑍𝑍𝑡𝑡𝑇𝑇
𝑡𝑡=1 , where 𝑍𝑍𝑡𝑡 are the 

underlying output variables with daily index 𝑡𝑡 = 1, … ,217, defined in equation (21), and where 

𝑤𝑤𝑚𝑚𝑡𝑡 are elements of the aggregation matrix 𝑾𝑾 described above. We estimated the parameters of 

our SIR model by minimizing the least squares criterion 𝑉𝑉 defined in equation (25). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 1, 2023. ; https://doi.org/10.1101/2023.03.13.23287177doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.13.23287177
http://creativecommons.org/licenses/by-nc-nd/4.0/


New Approach to the SIR Inversion Problem  Version 2, 30-Apr-2023 

 19 

Data Processing and Computation 

The raw COVID-19 case counts (𝑐𝑐𝑡𝑡) were downloaded from the New York City data 

portal [80] in comma-separated-value (CSV) format and converted via Stata Statistical Software 

Release 17 [81] into internal Stata (DTA) format. The 7-day moving averages (𝑦𝑦𝑡𝑡), displayed in 

Figure 1, were computed via Stata programming language [82]. The data on weekly deaths from 

plague in the Isle of Bombay were taken from the graph on page 714 of the original KM paper 

[5]. All code for parameter estimation described in the Statistical Methods section above was 

written in Mata [83], a matrix programming language embedded within Stata. Calculations were 

carried out on a MacBook Pro with a 2.3 GHz 8-Core Intel Core i9 processor. 

Results 

Omicron Wave, December 2021 – March 2022, New York City  

 Figure 3 shows the predicted values of the output variable 𝑋𝑋𝑡𝑡 as a connected curve 

superimposed on the observed datapoints 𝑦𝑦𝑡𝑡 for the Omicron wave in New York City. The 

computation time to achieve convergence of our Newton-Raphson algorithm was 0.93 sec. 

 

 
 
Figure 3. Daily Reported and Predicted Cases of COVID-19, 12/4/2021 – 3/12/2022, New York City. The red 
points show the data 𝑦𝑦𝑡𝑡 derived from Figure 1. The curve connects the predicted values of the output variable 𝑋𝑋𝑡𝑡.  
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Table 1 summarizes the resulting parameter estimates. At 𝑡𝑡 = 0, corresponding to 

December 3, 2021, the infected proportion 𝑖𝑖0 was an estimated 0.8 percent. The estimated 

population-size 𝑁𝑁 was about 12 percent of the city’s total population. The estimated basic 

reproduction number ℛ0 was on the order of 4. The estimated mean duration of infectivity 

1 (1 − 𝛼𝛼)⁄  was in the range of 2 to 3 weeks. The 95% confidence intervals were estimated 

conditional upon 𝑁𝑁, as described above. 

 

Table 1. Parameter Estimates of SIR Model of COVID-19 Incidence, New York City 
Omicron Wave, December 2021 – March 2022 a,b 

 

𝛽𝛽 𝛼𝛼 𝑖𝑖0 × 10–3 𝑁𝑁 × 106 ℛ0 1 (1 − 𝛼𝛼)⁄  
0.233 0.941 8.23 1.013 3.93 16.8 

(0.216, 0.250) (0.928, 0.954) (6.96, 9.51)  (3.35, 4.50) (13.2, 20.5) 
a. Except for the population size parameter 𝑁𝑁, symmetric 95% confidence intervals conditional upon 𝑁𝑁 are 
displayed below each estimate. 
b. In addition to the four model parameters, the final two columns show the estimated basic reproduction number 
ℛ0 = 𝛽𝛽 (1 − 𝛼𝛼)⁄  and the estimated mean duration of infectivity 1 (1 − 𝛼𝛼)⁄ . 
 

 

Figure 4A plots the least squares criterion 𝑉𝑉 (blue curve, left axis) and the first partial 

derivative 𝜕𝜕𝑉𝑉 𝜕𝜕𝛽𝛽⁄  (red curve, right axis) as functions of the parameter 𝛽𝛽. The remaining 

parameters have been held constant at their estimated values. The criterion 𝑉𝑉 reaches a minimum 

at the optimum 𝛽𝛽 = 0.233, where 𝜕𝜕𝑉𝑉 𝜕𝜕𝛽𝛽⁄ = 0. The function 𝑉𝑉 is convex in the interval from 𝛽𝛽 = 

0.169, where 𝜕𝜕𝑉𝑉 𝜕𝜕𝛽𝛽⁄  reaches a minimum, to 𝛽𝛽= 0.352, where 𝜕𝜕𝑉𝑉 𝜕𝜕𝛽𝛽⁄  reaches a maximum. 
 

 

Figure 4. Panel A. Least Squares Criterion 𝑫𝑫 (Left Axis) and First Partial Derivative 𝝏𝝏𝑫𝑫 𝝏𝝏𝝏𝝏⁄  (Right Axis) as 
Functions of the Parameter 𝝏𝝏. Panel B. Least Squares Criterion 𝑫𝑫 (Left Axis) and First Partial Derivative 
𝝏𝝏𝑫𝑫 𝝏𝝏𝑫𝑫⁄  (Right Axis) as Functions of the Parameter 𝑫𝑫.  
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Figure 4B above displays the analogous plot of 𝑉𝑉 and 𝜕𝜕𝑉𝑉 𝜕𝜕𝛼𝛼⁄  as functions of the 

parameter 𝛼𝛼, where the remaining parameters are similarly held constant at their optimum 

values. The criterion 𝑉𝑉 reaches a minimum at the optimum 𝛼𝛼 = 0.941, at which point 𝜕𝜕𝑉𝑉 𝜕𝜕𝛼𝛼⁄ =

0. The function 𝑉𝑉 is convex in the interval from 𝛼𝛼 = 0.868, where 𝜕𝜕𝑉𝑉 𝜕𝜕𝛼𝛼⁄  reaches a minimum, to 

𝛼𝛼 = 1, the boundary of admissible values of 𝛼𝛼, where 𝜕𝜕𝑉𝑉 𝜕𝜕𝛼𝛼⁄  remains positive. 

Figure 5 plots the projection of 𝑉𝑉 onto the (𝛼𝛼,𝛽𝛽) plane. Again, the remaining parameters 

(𝑖𝑖0,𝑁𝑁) were held at the optimum values given in Table 1 above. The darkest area represents a 

ravine where 𝑉𝑉 attains its lowest values. The yellow point in the center is the optimum (𝛼𝛼,𝛽𝛽) = 

(0.941, 0.233) where 𝑉𝑉 is minimized. 

 

 

Figure 5. Least Squares Criterion 𝑫𝑫 Projected onto the (𝑫𝑫,𝝏𝝏) Plane. The yellow point identifies the minimum 
where (𝛼𝛼,𝛽𝛽) = (0.941, 0.233). The parameters 𝑖𝑖0 and 𝑁𝑁 were held constant at their optimum values given in Table 1. 
The plot was produced in part from the Stata program surface [84]. 

 

Plague Outbreak, December 1905 – July 1906, Isle of Bombay 

 Figure 6 reports our analysis of data on deaths from plague during December 1905 – July 

1906 in the Isle of Bombay, originally reported and studied by KM [5]. 

 As in Figure 2 above, we have displayed the raw data on deaths as a bar graph, where 

each vertical bar covers one week, indexed 𝑚𝑚 = 1, … ,31, where the height of each bar is the 

reported average daily deaths that week, and where the area of each bar is the reported number of 
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weekly deaths (𝑦𝑦𝑚𝑚). The superimposed green curve represents the fit to the data, based upon the 

KM’s approximation 800
7

 sech2(0.2𝑡𝑡 − 3.4), where sech represents the hyperbolic secant, and 

where we have divided their published formula by 7 to convert their estimates into daily units. 

The green curve thus corresponds to the authors’ estimates of the underlying output variable 𝑍𝑍𝑡𝑡. 

  

 
Figure 6. Reported and Predicted Deaths from Plague, Isle of Bombay, 12/17/1905 – 7/21/1906. The time axis 
is marked off in weeks, with week 𝑚𝑚 = 1 starting on 12/17/1905 and week 𝑚𝑚 = 31 starting on 7/15/1906. As noted 
in Figure 2, the height of each bar is the average daily number of deaths reported each week, while the area of each 
bar equals the number of deaths during that week, adapted from Kermack and McKendrick [5]. The green curve 
represents the authors’ original fit to the data, while the red curve represents our estimates of the output variable 𝑍𝑍𝑡𝑡. 

 
The red curve in Figure 6 connects our predictions of the daily values 𝑍𝑍𝑡𝑡 for 𝑡𝑡 =

1, … ,217. The underlying parameter estimates were: 𝛽𝛽 = 0.610, with 95% confidence interval 

(0.537, 0.683); 𝛼𝛼 = 0.446 (0.376, 0.515); 𝑖𝑖0 = 2.80 × 10−5 (1.26 × 10−5, 4.34 × 10−5); and 

𝑁𝑁 = 5.103 × 104. The estimated basic reproduction number was ℛ0 = 1.101 (1.094, 1.107), 

while the estimated mean duration in the infected state was 1 (1 − 𝛼𝛼)⁄ = 1.804 (1.579, 2.031). 

Additional Results 

 In addition to our main results above, we performed various ancillary analyses, which are 

reported in appendices. Appendix B provides an approach to computing the unconditional 
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confidence intervals around the parameter estimates for the New York City Omicron wave. In 

Appendix C, we display the two- and three-dimensional paths of successive parameter estimates 

𝜽𝜽(𝒌𝒌) = �𝛽𝛽(𝑘𝑘),𝛼𝛼(𝑘𝑘), 𝑖𝑖0
(𝑘𝑘)� derived from our application of the Newton-Raphson algorithm to the 

New York City data. In Appendix D, we report the results of a robustness test, where we re-

estimate our SIR model for New York City after multiplying the original case counts 𝑦𝑦𝑡𝑡 by 

mean-preserving, lognormally distributed noise. 

 In Appendix E, we account for the observation that some of the SARS-CoV-2 cases 

reported during the rising phase of the New York City epidemic wave of Figure 1 were in fact 

infections by the Delta variant, while some of the cases reported during the declining phase were 

in fact Omicron BA.2 infections. To that end, we reran our SIR model after multiplying the 

original case counts 𝑦𝑦𝑡𝑡 by the estimated proportion of Omicron BA.1 cases at each date 𝑡𝑡. We 

also reran our SIR model on the original case counts 𝑦𝑦𝑡𝑡, but restricted the observation interval to 

those dates 𝑡𝑡 during which the BA.1 variant was estimated to comprise at least 80% of all cases. 

 In Appendices F and G, we report estimates of our SIR model for two other jurisdictions 

during the COVID-19 epidemic. Appendix F shows our estimates for the SARS-CoV-2 Omicron 

wave in Los Angeles County, CA, during the same time period covered by our study of New 

York City above. Appendix G shows our estimates based upon an outbreak of SARS-CoV-2 at 

the University of Wisconsin-Madison during September 2020, originally reported in a study of 

the potential super-spreader influence of a nearby cluster of local bars [79]. 

 Finally, Appendix H provides a diagnostic plot of the least squares criterion 𝑉𝑉 as a 

function of the parameter 𝛽𝛽 for the Isle of Bombay plague data, comparable to Figure 4A for 

New York City above. 

Discussion 

Is SIR the Correct Structural Model for Omicron? 

 The mere fact that we have found a workable solution to the SIR inversion problem does 

not necessarily mean that the Susceptible-Infected-Removed model is the most appropriate 

description of the data under study. Our illustrative analysis of the SARS-CoV-2 Omicron/BA.1 

wave in New York City during December 2021 – March 2022 cogently brings home the point. 

 Figure 3 shows a tight fit of the SIR model-predicted curve 𝑋𝑋𝑡𝑡 to the case incidence 

datapoints 𝑦𝑦𝑡𝑡 for New York City. Figures 4A, 4B, and 5 confirm that the estimated values of the 
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parameters 𝛽𝛽 and 𝛼𝛼 are indeed situated at the minimum of a convex region of our least squares 

criterion function 𝑉𝑉. Appendix C confirms that successive updates of the parameter vector 𝜽𝜽(𝒌𝒌) 

generated by the Newton-Raphson algorithm follow a path along the convex surface of 𝑉𝑉. 

Appendix D confirms that our estimates are robust to the inclusion of noise in the observed data. 

Despite these indicators that the underlying model was not somehow ill-conditioned, the 

mean duration of infectivity, computed as 1 (1 − 𝛼𝛼)⁄ , was estimated from the New York City 

data to be on the order of 17 days, with a 95% confidence interval of two to three weeks. That’s 

way out of line with what is known from direct clinical measurement. In one cohort of 55 

symptomatic Omicron-infected patients, only 13.5 percent continued to shed virus ten days after 

infection [85]. Yet our New York City-based parameter estimate for 𝛼𝛼 would give the proportion 

remaining infectious after ten days at 𝛼𝛼10 = 54.4%. 

To be sure, some of our alternative analyses yielded lower estimates of the mean duration 

of infectivity. When we attempted to exclude Delta and BA.2 infections from the original New 

York City case counts 𝑦𝑦𝑡𝑡, the estimated mean duration dropped to about 10 days (Appendix E). 

When we reran our SIR model on the Omicron wave in Los Angeles County, the estimated mean 

duration was about 9 days (Appendix F). But these estimates are still don’t come close to those 

based on the available clinical data. When we reran our SIR model on an outbreak at the 

University of Wisconsin-Madison in September 2020, we obtained an estimated mean duration 

of about 7 days (Appendix G). But that outbreak was quite likely driven by the ancestral strain of 

SARS-CoV-2, and certainly not by Omicron. 

 Despite its remarkable fit to the data, SIR may thus fail as a structural model of the 

Omicron wave, even if it apparently succeeds as a reduced form model [86]. While its 

parameters 𝛽𝛽 and 𝛼𝛼 can indeed be backed out from the data and the inversion problem solved, 

these parameters do not necessarily warrant the structural interpretation that we assumed in our 

exposition of the SIR model in equations (1) through (5) above. That is not to say, however, that 

an adequate reduced form model is incapable of making accurate projections [87]. 

 We should not, however, abandon the possibility that SIR may indeed be the correct 

structural model of the Omicron wave. To the contrary, the parameter estimates may reveal a 

critically important characteristic of the Omicron variant that clinical studies, which are 

necessarily biased toward symptomatic patients, have so far missed. In effect, the Omicron wave 

was so massive not because the variant had such a high per-contact infectivity (through the 
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parameter 𝛽𝛽), but because a much larger proportion of asymptomatic infected individuals 

remained persistently infectious (through the parameter 𝛼𝛼). We also need to consider that the 

degree of persistent infectivity is not determined solely by biological characteristics of the virus, 

but also by the extent to which infected individuals isolated themselves from others. That 

behavioral component of the parameter 𝛼𝛼 may have changed during the Omicron wave. 

It might be argued that there is a third plausible interpretation, namely, that SIR may 

indeed be the correct structural model, but that the case incidence data analyzed here were 

inadequate to separately identify the key parameters 𝛽𝛽 and 𝛼𝛼. That is, our four-parameter version 

of SIR is what some physicists have described as a “sloppy” model [53, 55]. Indeed, the dark 

ravine in the surface map of 𝑉𝑉 in Figure 5 points to a high correlation between the two 

parameters in the topological neighborhood of the global optimum in the (𝛽𝛽,𝛼𝛼) plane, an 

observation that has been noted previously [71]. That finding suggests that the basic reproduction 

number ℛ0 = 𝛽𝛽 𝛾𝛾⁄ = 𝛽𝛽 (1 − 𝛼𝛼)⁄  is the only identifiable or “stiff” parameter. 

Still, the results in Appendix C, which follows the path of the Newton-Raphson search 

algorithm in parameter space, suggest that 𝛽𝛽 and 𝛼𝛼 are indeed separately identified from the 

available count data. In Figure C2, as the algorithm approaches convergence to the minimum of 

the criterion 𝑉𝑉, the implicit derivative 𝑑𝑑𝛼𝛼(𝑘𝑘) 𝑑𝑑𝛽𝛽(𝑘𝑘)⁄  does not approach a constant value, as we 

would expect in the case of non-identification. 

What About the Results for the Plague? 

 Not only do our SIR predictions fit reasonably well to the observed data on Bombay 

plague deaths in Figure 6, but they virtually coincide with the curve of the approximate closed-

form solution drawn by KM [5]. While others have fitted SIR-type compartmental models to the 

1905–1906 Bombay plague data [88], our study appears to be the first replication of the authors’ 

century-old result. 

 The plague, caused by the bacterium Yersinia pestis, can spread through human 

populations by various transmission pathways. Bubonic plague, generally thought to be the cause 

of a series of Bombay outbreaks that began in 1896 [89-91], is transmitted to humans through rat 

fleas [92], but transmission between humans also appears to occur via infected human fleas or 

body lice [93]. Pneumonic plague, by contrast, is transmitted by direct human-to-human 

transmission via respiratory droplets and can occur as a complication of bubonic plague [94, 95]. 
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Pneumonic plague is more lethal, but transmission requires closer person-to-person contact and 

is thus thought to have a lower basic reproduction number ℛ0 [94].  

So, does our SIR model similarly succeed as a reduced form model but fail as a structural 

model of the Bombay plague outbreak? Several structural compartmental models of plague 

transmission have been tested, typically involving separate states and parameters for humans and 

vectors [88, 89, 95-97]. In a rat-flea transmission model for bubonic plague, for example, the 

structural model contained a separate sub-epidemic module for rats with a distinct basic 

reproduction number for rat-to-rat transmission [97]. A human-flea-human structural model 

appeared to have the best fit to nine plague outbreaks during Europe’s Second Pandemic from 

1348 to 1813 [95]. Our minimalist SIR model has none of these structural features. 

These general observations, however, hardly exclude the possibility that the pneumonic 

form may have been responsible for the 1905-1906 outbreak studied by KM. In his classic 1926 

Treatise on Pneumonic Plague [98], Wu Lien-Teh acknowledged the 1908 Indian Plague 

Commission’s conclusion that pneumonic constituted less than 3 percent of cases overall. (See 

[98] at p. 9.) But he did not hesitate to point out that some “well-characterized pneumonic 

outbreaks are on record.” (p. 90-92.) “In fact,” he added, “it was this great incidence of 

respiratory diseases in Bombay which attracted Childe’s attention and led to his finally 

establishing the pneumonic form of plague as a distinct entity.” (pp. 11-12). He further noted an 

observation bias in favor of bubonic plague due to the rapid mortality from pneumonic 

“…because, as a rule, such patients succumb so quickly that they seldom reach the hospital.” (p. 

269). 

What’s more, the parameter estimates derived from our solution to the inversion problem 

are strikingly consistent with what is known about pneumonic plague transmission. Lien-Teh’s 

data suggested a median duration of illness of about two days from the onset of symptoms to 

inevitable death from heart failure ([98] at p. 249, 260). Our point estimate of the parameter 𝛼𝛼 = 

0.446, implying an average infectious period of 1.8 days, is similarly consistent with more 

contemporary estimates of the parameters of pneumonic human-to-human transmission [95]. 

Lien-Teh further stressed a very low early infectivity due to the initial lack of cough (p. 296). 

Transmission through contact at close range, he stressed, appeared to have been required (p. 

299). His observations, along with more contemporary estimates of pneumonic human-to-human 

transmission [94, 95], are consistent with our estimate of a basic reproduction number ℛ0 = 1.1. 
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The plague may indeed have been initially imported into Bombay in its bubonic form 

through rat-flea-human transmission, and the disease may have been sustained between 

outbreaks either by repeated importations or by an urban reservoir of selectively immune rats 

[89]. Still, our data are consistent the intriguing hypothesis that responsive isolation measures by 

British authorities [90] may have altered the mode of transmission during the 1905–1906 

outbreak from the bubonic rat-flea-human mode to the pneumonic human-human mode, a 

phenomenon observed in the 17th century when the Derbyshire village of Eyan fell victim to the 

Black Death [99]. If so, our parsimonious SIR model is in fact the appropriate structural model 

of the outbreak. 

Why are the Estimated Population Sizes N So Small? . 

 Table 1 reports estimated population size parameters of  𝑁𝑁 = 1.013 million for New York 

City, while Appendix Table F1 gives 𝑁𝑁 = 1.046 million for Los Angeles County. As noted, these 

estimates of 𝑁𝑁 were only 11.9 percent of the total census population of New York City and 14.5 

percent of the corresponding census population of Los Angeles County. Where, then, did all the 

other millions of inhabitants go? 

 As discussed above, we cannot distinguish between three possible explanations of the 

shortfall. First, there is concrete evidence of significant underreporting of Omicron infections, 

due principally to the widespread availability of home rapid antigen testing [69], particularly in 

New York City [100, 101]. Second, despite the evidence of immune escape on the part of the 

Omicron variant [102], a substantial fraction of the population may still have retained long-term 

cellular immunity, particular through the administration of multiple vaccine doses [103]. Third, 

contrary to the underlying assumption of homogeneous mixing, there is strong evidence that a 

substantial proportion of the population avoided retail establishments, drinking and eating places, 

transportation venues, worksites and other high-risk locations [104]. 

 Our analysis of the Bombay outbreak data gave an estimated size parameter 𝑁𝑁 = 51 

thousand individuals, which comes to about 6.5 percent of estimated Bombay population of 775 

thousand in 1900 [105]. The same three factors could well be responsible for the shortfall. In 

particular, there is significant evidence for the acquisition of at least humoral immunity against 

Yersinia pestis among plague survivors [106]. 
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Limitations and Extensions 

Parameter search algorithms such as Newton-Raphson [46] and Gauss-Newton [47] have 

superior performance when they rely on closed-form expressions for the gradient vector and 

matrix of second derivates, rather than on numerical approximation [45]. Still, as Figures 4A and 

4B teach us, there will nonetheless be a restricted region of the parameter space where the least 

squares criterion function is convex. Some of these regions may contain local rather than global 

optima. To avoid such problems of implementation, we plotted the least squares criterion 𝑉𝑉 and 

its first partial derivatives as functions of the parameters. Still, finding the right initial values and 

keeping the parameter search within bounds remain unavoidable challenges. 

As seen in Figure 1A and Appendix Figures F1 and G1, striking day-of-the-week effects 

on COVID-19 testing and case reporting required us to pretreat the raw case counts. Our 

centered, 7-day moving average appeared to be the most flexible nonparametric approach to this 

task. Alternative approaches that incorporate parametric models of day-of-the-week effects 

directly in our model of the output variable 𝑋𝑋𝑡𝑡 have yet to be tried. 

We have focused sharply on the original SIR model, rather than its numerous variations. 

Still, our basic approach can be extended to these more complex models. Our findings offer a 

caution, however, that such models as SEIR, which require an additional parameter governing 

the transition from an intermediate exposed state to the infected state, may very well turn out to 

be sloppy [71]. 

One exemption may be the well-studied SIRS model [59, 107], where individuals in the 

𝑅𝑅 (recovered) state can transition back to the 𝑆𝑆 (susceptible) state as a result of waning 

immunity. The SIRS model still has three states, and the definitions of the output variables 𝑋𝑋𝑡𝑡 

and 𝑍𝑍𝑡𝑡 in equations (3) and (21), respectively, remain unchanged, but the parameter vector 𝜽𝜽 has 

an additional component governing the rate of transition from 𝑅𝑅 back to 𝑆𝑆. Since the SIRS model 

is known to admit oscillations with a stable endemic equilibrium [59, 108], we would be in a 

position to run our parameter recovery algorithm on multiple waves of data 𝑦𝑦𝑡𝑡. That is a task for 

future research. 

Appendix A. Poisson Likelihood Function 

 While we relied upon the nonlinear least squares criterion 𝑉𝑉, as defined in equation (5) in 

the main text, to develop our estimation strategy, we could have employed other optimization 
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criteria. To illustrate, we consider the case where the observed observations 𝒚𝒚 consist of count 

data on the number of reported cases, and assume that each observed data point 𝑦𝑦𝑡𝑡 is 

independently Poisson distributed [71] with mean 𝑋𝑋𝑡𝑡. The joint likelihood of combined 

observations will be: 

ℒ = ∏ 1
𝑦𝑦𝑡𝑡!
𝑒𝑒−𝑋𝑋𝑡𝑡𝑋𝑋𝑡𝑡𝑦𝑦𝑡𝑡𝑇𝑇

𝑡𝑡=1           (A1) 

As before, we assume that each output variable 𝑋𝑋𝑡𝑡 is a function of the vector of 

underlying parameters 𝜽𝜽. The log likelihood will then be: 

ℓ(𝜽𝜽) = −∑ 𝑋𝑋𝑡𝑡(𝜽𝜽) + ∑ 𝑦𝑦𝑡𝑡 log𝑋𝑋𝑡𝑡(𝜽𝜽) − 𝐾𝐾𝑇𝑇
𝑡𝑡=1

𝑇𝑇
𝑡𝑡=1       (A2) 

In equation (A2), the additional term 𝐾𝐾 = − log(𝑦𝑦𝑡𝑡!) does not depend on the underlying 

parameters 𝜽𝜽. The gradient of the log likelihood function will then be: 

𝑫𝑫𝓵𝓵 = −∑ 𝑫𝑫𝑫𝑫𝒕𝒕 + ∑ 𝑦𝑦𝑡𝑡
𝑋𝑋𝑡𝑡
𝑫𝑫𝑫𝑫𝒕𝒕𝑇𝑇

𝑡𝑡=1
𝑇𝑇
𝑡𝑡=1 = ∑ 1

𝑋𝑋𝑡𝑡
(𝑦𝑦𝑡𝑡 − 𝑋𝑋𝑡𝑡)𝑫𝑫𝑫𝑫𝒕𝒕𝑇𝑇

𝑡𝑡=1      (A3) 

The gradient expressed in (A3) differs from the gradient in equation (6) only in terms of the 

weighting factors 1
𝑋𝑋𝑡𝑡

  in each summation term.  The Hessian matrix of second-order derivatives 

is: 

𝑫𝑫𝟐𝟐𝓵𝓵 = ∑ 1
𝑋𝑋𝑡𝑡

(𝑦𝑦𝑡𝑡 − 𝑋𝑋𝑡𝑡)𝑫𝑫𝟐𝟐𝑫𝑫𝒕𝒕 −𝑇𝑇
𝑡𝑡=1 ∑ �𝑦𝑦𝑡𝑡

𝑋𝑋𝑡𝑡
2� (𝑫𝑫𝑫𝑫𝒕𝒕) ∙ (𝑫𝑫𝑫𝑫𝒕𝒕)𝑇𝑇

𝑡𝑡=1      (A4) 

While the Hessian matrix in equation (10) above was positive definite reflecting an objective 

function 𝑉𝑉 to be minimized, here the Hessian matrix is negative definite reflecting an objective 

function ℓ to be maximized. The remaining computations of the gradients 𝑫𝑫𝑫𝑫𝒕𝒕 will be computed 

iteratively exactly as described in the main text. 

 Given these expressions for the gradient 𝑫𝑫𝓵𝓵 and Hessian 𝑫𝑫𝟐𝟐𝓵𝓵 of the likelihood function, 

we can then use the Newton-Raphson algorithm [46] to find maximum likelihood estimates. 

Appendix B. Computation of Unconditional Confidence Intervals: New York City Omicron 

In the main text, we estimated the variance-covariance matrix of the parameters 𝜽𝜽 =

(𝛽𝛽,𝛼𝛼, 𝑖𝑖0) conditional on 𝑁𝑁 as 𝑪𝑪 = 𝑠𝑠2(𝑫𝑫𝑫𝑫′𝑫𝑫𝑫𝑫)−1, where 𝑠𝑠2 = 𝑉𝑉 𝑇𝑇⁄ , where 𝑫𝑫𝑫𝑫 was the 𝑇𝑇 × 3 

matrix whose rows were the gradient vectors 𝑫𝑫𝑫𝑫𝒕𝒕 defined in (7), and where 𝑫𝑫𝑫𝑫𝒕𝒕 and 𝑉𝑉 were 

evaluated at the optimum. In this Appendix, we offer one possible approach to computing the 
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unconditional variance-covariance matrix of the combined parameters (𝜽𝜽,𝑁𝑁) and display the 

comparative results for the data on the 2021-2022 Omicron wave in New York City. 

We again rely upon [48] to compute the unconditional variance-covariance matrix 𝑪𝑪 =

𝑠𝑠2�𝑫𝑫𝑫𝑫�′𝑫𝑫𝑫𝑫��−1, where 𝑠𝑠2 = 𝑉𝑉 𝑇𝑇⁄  is estimated as above, but where 𝑫𝑫𝑫𝑫� is the 𝑇𝑇 × 4 matrix whose 

rows are the augmented gradient vectors 𝑫𝑫𝑫𝑫�𝒕𝒕=�𝑫𝑫𝑫𝑫𝒕𝒕,
𝜕𝜕𝑋𝑋𝑡𝑡
𝜕𝜕𝜕𝜕
�. In contrast to equation (7) in the main 

text, we compute: 

𝑫𝑫𝑫𝑫�𝒕𝒕  = 𝑆𝑆𝑡𝑡−1𝐼𝐼𝑡𝑡−1 �
1
𝜕𝜕
𝑫𝑫𝑫𝑫 − 𝛽𝛽

𝜕𝜕2
𝑫𝑫𝑫𝑫� + �𝛽𝛽

𝜕𝜕
� 𝐼𝐼𝑡𝑡−1𝑫𝑫𝑺𝑺𝒕𝒕−𝟏𝟏 + �𝛽𝛽

𝜕𝜕
� 𝑆𝑆𝑡𝑡−1𝑫𝑫𝑰𝑰𝒕𝒕−𝟏𝟏   (B1) 

Here, we define 𝑫𝑫𝑫𝑫 = (1,0,0,0)′ and  𝑫𝑫𝑫𝑫 = (0,0,0,1)′ as unit vectors in four dimensions. 

Equation (B1) is used only to evaluate the augmented matrix 𝑫𝑫𝑫𝑫� and was not used to estimate 

the optimum values of the parameters. The quantities 𝑫𝑫𝑫𝑫�𝒕𝒕 and 𝑉𝑉 continue to be evaluated at the 

optimum values of the parameters, which remain unchanged from the main text. 

 Table B1 compares the conditional and unconditional confidence intervals.  
 

Table B1. Conditional and Unconditional 95% Confidence Intervals of the Parameter 
Estimates of the SIR Model of COVID-19 Incidence: New York City Omicron Wave, 
December 2021 – March 2022 a 

Parameter Estimate Conditional 95% CI Unconditional 95% CI 

𝑫𝑫 0.233 (0.216, 0.250) (0.200, 0.266) 
𝜶𝜶 0.941 (0.928, 0.954) (0.912, 0.969) 

𝒊𝒊𝟎𝟎 × 10–3 8.23 (6.96, 9.51) (6.19, 10.27) 
𝑫𝑫 × 106 1.013  (0.980, 1.046) 
𝓡𝓡𝟎𝟎 3.93 (3.35, 4.50) (2.59, 5.26) 

𝟏𝟏 (𝟏𝟏 − 𝜶𝜶)⁄  16.8 (13.2, 20.5) (8.75, 24.9) 
 

a. In addition to the four model parameters, the final two rows show the estimated basic reproduction number 
ℛ0 = 𝛽𝛽 (1 − 𝛼𝛼)⁄  and the estimated mean duration of infectivity 1 (1 − 𝛼𝛼)⁄ . 
 

Appendix C. Search Path of the Newton-Raphson Algorithm: New York City 

In Figure 5 of the main text, we mapped the least squares criterion 𝑉𝑉 as a function of the 

parameters (𝛽𝛽,𝛼𝛼). The optimum point, we found, was situated along a ravine where 𝛽𝛽 and 𝛼𝛼 

appeared to be highly correlated. Here, we study the path of parameters 𝜽𝜽(𝒌𝒌) during successive 

iterations of the Newton-Raphson algorithm described in equation (15) of the main text. 
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Figure C1 shows the projection of the path of 𝜽𝜽(𝒌𝒌) onto the (𝛽𝛽,𝛼𝛼) plane. Rather than 

apply the EM algorithm to estimate the population-size parameter 𝑁𝑁, as described in equation 

(18) of the main text, we conditioned on a fixed 𝑁𝑁 = 1.013 × 106. We chose starting values 

𝜽𝜽(𝟎𝟎) = �𝛽𝛽(0),𝛼𝛼(0), 𝑖𝑖0
(0)� = (0.3, 0.8, 0.009), corresponding to point A. The step size was 𝑞𝑞 = 0.1.  

 

   
Figure C1. Path of the Parameter Vector 𝜽𝜽(𝒌𝒌) Projected onto the (𝑫𝑫,𝜶𝜶, ) Plane Through Successive Iterations 
of the Newton-Raphson Algorithm: New York City Omicron Wave. The results are conditional upon 𝑁𝑁 = 
1.013 × 106. The algorithm started at point A  = (0.3, 0.8). At point B = (0.424, 0.779), the path reverses and follows 
along the ravine described in Figure 5 of the main text, ultimately reaching convergence at point C = (0.233, 0.940).  
 

 From the starting point A, the algorithm initially proceeded in the direction of increasing 

𝛽𝛽 and decreasing 𝛼𝛼. By point B, the algorithm had reversed course and began to follow along the 

ravine described in Figure 5 of the main text, ultimately reaching convergence at point C = 

(0.233, 0.940). At each iteration, the matrix 𝑫𝑫𝟐𝟐𝑽𝑽 was found to be positive definite. 

Figure C2 below plots the ratio of the partial derivative 𝜕𝜕𝑉𝑉 𝜕𝜕𝛽𝛽⁄  to the partial derivative 

𝜕𝜕𝑉𝑉 𝜕𝜕𝛼𝛼⁄  as a function of the iteration number 𝑘𝑘 during the evolution of the algorithm. This ratio is 

the negative of the implicit derivative 𝑑𝑑𝛼𝛼 𝑑𝑑𝛽𝛽⁄  along the search path. The ratio is slightly 

increasing in 𝑘𝑘 along the segment of the search path where 87 ≤ 𝑘𝑘 ≤ 122. Otherwise, the ratio 

continues to decline even after the path enters the ravine identified in Figure 5 of the main text.  
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Figure C2. Path of the Ratio of 𝝏𝝏𝑽𝑽 𝝏𝝏𝑫𝑫⁄  to 𝝏𝝏𝑽𝑽 𝝏𝝏𝜶𝜶⁄  Through Successive Iterations of the Newton-Raphson 
Algorithm: New York City Omicron Wave. As in Figure C1, the algorithm started at point A and converged at 
point C. At point B, the search path reversed and followed along the ravine described in Figure 5 of the main text.  
 

 

 
 

Figure C3. Path of the Parameter Vector 𝜽𝜽(𝒌𝒌) = �𝑫𝑫(𝒌𝒌),𝜶𝜶(𝒌𝒌), 𝒊𝒊𝟎𝟎
(𝒌𝒌)� Through Successive Iterations of the 

Newton-Raphson Algorithm, New York City Omicron Wave. We show only those points separated in the 
vertical 𝑖𝑖0 dimension by 0.0001. The algorithm started at A  = (0.3, 0.8, 0.009). At B = (0.424, 0.779, 0.002), the 
path of 𝜽𝜽(𝒌𝒌) reverses direction until it converges at C = (0.233, 0.940, 0.821). 
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Figure C3 above shows the path of the parameters 𝜽𝜽(𝒌𝒌) = �𝛽𝛽(𝑘𝑘),𝛼𝛼(𝑘𝑘), 𝑖𝑖0
(𝑘𝑘)� in three 

dimensions, along with the corresponding points A, B, and C. The search path from B to C 

reflects not only the movement along the ravine of Figure 5, but also the progressive increase in 

the estimated parameter 𝑖𝑖0. 

Appendix D. Robustness Test: New York City Omicron 

Here, we report a robustness test of the parameter estimates based on the COVID-19 

incidence data from New York City. To that end, we re-estimated the SIR parameters after 

multiplying the original incidence data by random, lognormally distributed noise.  

 

 
 

Figure D1. Noise-Augmented Data on Reported Daily COVID-19 Cases (Red Datapoints), Predicted Cases 
Based on Noise-Augmented Data (Orange Curve), and Predicted Cases Based on Original Data (Blue Curve), 
New York City, 12/4/2021 – 3/12/2022. The originally reported case counts were multiplied by independent 
lognormal noise with mean equal to 1 and standard deviation equal to 1 4⁄ .  
 

Figure D1 above plots the noise-augmented COVID-19 incidence data (red datapoints) 

and the resulting least-squares predicted incidence (orange curve), along with the predicted 

incidence based on the original data (blue curve). The noisy data were generated as 𝑦𝑦�𝑡𝑡 = 𝑦𝑦𝑡𝑡𝑒𝑒𝜂𝜂𝑡𝑡, 

where 𝑦𝑦𝑡𝑡 were the original data, and where the components 𝜂𝜂𝑡𝑡 were independent draws from a 
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Gaussian 𝑁𝑁(𝜇𝜇,𝜎𝜎2) distribution. The parameters were calibrated as 𝜎𝜎2 = log �1 + �1
4
�
2
� ≅

0.06062 and 𝜇𝜇 = −1
2
𝜎𝜎2 ≅ −0.03031 so that the lognormal random variable 𝑒𝑒𝜂𝜂𝑡𝑡 had mean 

𝑒𝑒𝜇𝜇+
1
2𝜎𝜎

2
= 1 and standard deviation ��𝑒𝑒𝜎𝜎2 − 1�𝑒𝑒2𝜇𝜇+𝜎𝜎2 = 1

4
 . 

Table D1 compares the parameter estimates based on the noise-augmented data with 

those derived from the original data. For these calculations, we relied on the re-parametrized 𝜽𝜽 =

(𝛽𝛽,𝜔𝜔, 𝑖𝑖0) with 𝛼𝛼(𝜔𝜔) = 1 (1 + 𝑒𝑒−𝜔𝜔)⁄ , as described in the Confidence Intervals section in the 

main text. The estimated confidence intervals are conditional on the estimated population size 

parameter 𝑁𝑁. Both Figure D1 and Table D1 indicate that the underlying model parameters 𝛽𝛽, 𝛼𝛼, 

𝑖𝑖0, and 𝑁𝑁 were reasonably well conserved after the original data were multiplied by sample 

mean-preserving noise. As anticipated, the confidence intervals surrounding the parameter 

estimates were considerably wider.  

  

Table D1. Parameter Estimates of an SIR Model of COVID-19 Incidence New York City, 
December 2021 – March 2022, With and Without Multiplicative Lognormal Noise a,b 

Parameter Original Estimates c Noisy Estimates c 

𝜷𝜷 0.233 
(0.216, 0.250) 

0.209 
(0.140, 0.278) 

𝝎𝝎 2.763 
(2.532, 2.994) 

3.000 
(1.831, 4.162) 

𝜶𝜶 0.941 
(0.926, 0.952) 

0.952 
(0.862, 0.985) 

𝒊𝒊𝟎𝟎 × 10–3 8.23 
(6.96, 9.51) 

11.68 
(3.84, 19.51) 

𝑵𝑵 × 106 1.013 1.024 

𝓡𝓡𝟎𝟎 3.93 
(3.35, 4.50) 

4.39 
(0.95, 7.82) 

𝟏𝟏 (𝟏𝟏 − 𝜶𝜶)⁄  16.8 
(13.6, 21.0) 

21.0 
(7.24, 65.2) 

 

a. Except for the population size parameter 𝑁𝑁, 95% confidence intervals conditional upon 𝑁𝑁 are displayed below 

each estimate. Confidence intervals were based on the re-parametrized 𝜽𝜽 = (𝛽𝛽,𝜔𝜔, 𝑖𝑖0) with 𝛼𝛼(𝜔𝜔) = 1 (1 + 𝑒𝑒−𝜔𝜔)⁄ . 

b. In addition to the underlying model parameters, the final two rows show the estimated basic reproduction 
number ℛ0 = 𝛽𝛽 (1 − 𝛼𝛼) =⁄ 𝛽𝛽(1 + 𝑒𝑒𝜔𝜔) and the estimated mean duration of infectivity 1 (1 − 𝛼𝛼) = 1 + 𝑒𝑒𝜔𝜔⁄ . 
c. The sample mean of both the original datapoints 𝑦𝑦𝑡𝑡 and the noise-augmented datapoints 𝑦𝑦�𝑡𝑡 was 10.05. 
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Appendix E. Accounting for Different Variants of SARS-CoV-2: New York City 

The Omicron BA.1 variant of the SARS-CoV-2 virus was far-and-away the most 

important contributor to the massive surge of reported infections observed in Figure 1 of the 

main text. Still, the initial phase of the surge overlapped the tail end of the prior Delta wave, 

while the terminal phase saw the gradual emergence of the Omicron BA.2 variant. In this 

Appendix, we repeat our SIR analysis on the data for the Omicron BA.1 variant alone. 

Figure D1 plots the estimated daily proportions of the three variants (Delta, Omicron 

BA.1, and Omicron BA.2) in New York City during the period of observation of our study. 

Estimates of the average weekly proportions, represented by the solid datapoints, were available 

from a compilation of genomic tests of viral samples maintained by the New York City health 

department [109]. We employed the Stata pchipolate (piecewise cubic Hermite interpolation) 

routine [110] to estimate the proportions for the intervening days, as represented by the 

connecting curves.   

 

 
 

Figure E1. Estimates of the Proportions of the Delta, Omicron BA.1, and Omicron BA.2 Variants in New 
York City During 112/4/2021 – 3/16/2022. Weekly averages (solid datapoints) were derived from a compilation 
maintained by the New York City health department [109]. The Stata pchipolate interpolation routine [110] was 
then employed to estimate the intervening days (connecting curves). The Omicron BA.2 category included strains 
identified as BA.2, BA.2.12.1, and BA.2.75. Not shown are the proportions of all other strains, which represented no 
more than 0.7 percent of total samples in any one week.  
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 Figure E2 below compares the SIR estimates derived from the Omicron BA.1 data alone 

(shown in orange) with the corresponding estimates reported in Figure 3 of the main text (shown 

in green). Elimination of the Delta cases resulted in a discernable attenuation of the initial 

upswing. By contrast, elimination of the Omicron BA.2 resulted in only a small absolute 

decrease in the tail of the wave during February and early March of 2022. By the time Omicron 

BA.2 began to assume a significant proportion of cases in February, as shown in Figure E1, the 

massive wave of cases in New York City had already dissipated. 

 

 
Figure E2. Daily Reported and Predicted Cases of COVID-19, 12/1/2021 – 3/15/2022, in New York City. 
Estimates Based Upon All Variants (Green) and Omicron BA.1 Variant Only (Orange). Reported cases are 
represented by data points; predicted cases by curves. Data and estimates based upon all variants reproduced from 
Figure 3 of main text.  
 
 Table E1 compares the original parameter estimates shown in Table 1 of the main text 

with the corresponding estimates derived from the Omicron BA.1-only sample. With the 

attenuation of the initial upswing in cases, the estimated 𝑖𝑖0 drops by nearly half, while the basic 

reproduction number ℛ0 declines from roughly 4 to 3. What’s more, the estimated mean duration 

of infection falls to 10.3 days, but its 95% confidence interval still does not contain the U.S. 

Centers for Disease Control estimate of 5.5 days [111]. 
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Table E1. Parameter Estimates of an SIR Model of COVID-19 Incidence New York City, 
December 2021 – March 2022. Data on All Variants Versus Omicron BA.1 Only a,b 

Parameter Original Estimates Omicron BA.1 Only 

𝜷𝜷 0.233 
(0.216, 0.250) 

0.283 
(0.266, 0.299) 

𝜶𝜶 0.941 
(0.928, 0.954) 

0.903 
(0.890, 0.916) 

𝒊𝒊𝟎𝟎 × 10–3 8.23 
(6.96, 9.51) 

4.85 
(4.15, 5.56) 

𝑵𝑵 × 106 1.013 0.984 

𝓡𝓡𝟎𝟎 3.93 
(3.35, 4.50) 

2.92 
(2.70, 3.14) 

𝟏𝟏 (𝟏𝟏 − 𝜶𝜶)⁄  16.8 
(13.2, 20.5) 

10.32 
(8.94, 11.72) 

 

a. Except for the population size parameter 𝑁𝑁, symmetric 95% confidence intervals conditional upon 𝑁𝑁 are 
displayed below each estimate. 
b. In addition to the underlying model parameters, the final two rows show the estimated basic reproduction 
number ℛ0 = 𝛽𝛽 (1 − 𝛼𝛼)⁄  and the estimated mean duration of infectivity 1 (1 − 𝛼𝛼)⁄ . 
 

 

 While the Omicron BA.1-only estimates might appear more reasonable, dropping the 

other variants from the database is hardly innocent. To see why, consider the hypothetical case 

where an infection by Virus X consistently caused a false positive test for SARS-CoV-2 but 

conferred no protection against COVID-19. In that case, it would be appropriate to downwardly 

adjust the total case counts by the estimated fractions of Virus X infections.  

Here, however, we cannot assume that a Delta infection confers no protection at all 

against a subsequent Omicron BA.1 infection. To the contrary, the Delta infections seen at the 

onset of the wave in Figure E1 likely reduced the proportion of individuals susceptible to 

Omicron BA.1 [112]. Dropping the Delta cases would downwardly bias the model estimates of 

𝑆𝑆𝑡𝑡 and thus upwardly bias the resulting estimates of the parameter 𝛽𝛽. 

 To avoid these potential biases, we estimated our SIR model instead on counts of all 

reported SARS-CoV-2 cases during the truncated 65-day window from 12/17/2021 through 

2/19/2022 when the estimated proportion of Omicron BA.1 cases exceeded 80 percent. Figure 

E3 graphs the observed and predicted counts, while Table E2 compares the parameter estimates 

from the original analysis in the main text to the estimates based on the truncated data set. The 

results reveal strong concordance between the two sets of estimates. 
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Figure E3. Daily Reported and Predicted COVID-19 Cases Based Upon Truncated Sample of New York City, 
12/17/2021 – 02/19/2022. The mean squared deviation between the predicted 𝑋𝑋�𝑡𝑡 based upon the 65-day truncated 
sample and corresponding predicted 𝑋𝑋𝑡𝑡 based upon the full sample was 1

65
∑ �𝑋𝑋�𝑡𝑡 − 𝑋𝑋𝑡𝑡�

2 =65
𝑡𝑡=1 0.017.   

 

Table E2. Parameter Estimates of SIR Model of COVID-19 Incidence, New York City, 
Full Sample (12/04/2021–03/12/22) and Truncated Sample (12/17/2021–02/19/2022) a,b 

Parameter Original Estimates Truncated Sample c 

𝜷𝜷 0.233 
(0.216, 0.250) 

0.216 
(0.189, 0.242) 

𝜶𝜶 0.941 
(0.928, 0.954) 

0.951 
(0.929, 0.972) 

𝒊𝒊𝟎𝟎 × 10–3 8.23 
(6.96, 9.51) 

68.4 
(55.7, 81.8) 

𝑵𝑵 × 106 1.013 0.993 

𝓡𝓡𝟎𝟎 3.93 
(3.35, 4.50) 

2.92 
(2.70, 3.14) 

𝟏𝟏 (𝟏𝟏 − 𝜶𝜶)⁄  16.8 
(13.2, 20.5) 

20.3 
(11.4, 29.2) 

 

a. Except for the population size parameter 𝑁𝑁, symmetric 95% confidence intervals conditional upon 𝑁𝑁 are 
displayed below each estimate. 
b. In addition to the underlying model parameters, the final two rows show the estimated basic reproduction 
number ℛ0 = 𝛽𝛽 (1 − 𝛼𝛼)⁄  and the estimated mean duration of infectivity 1 (1 − 𝛼𝛼)⁄ . 
c. The parameter 𝑖𝑖0 corresponds the estimated proportion infected as of 12/16/2021. 
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Appendix F. Omicron Wave, December 2021 – March 2022, Los Angeles County, U.S.A. 

We studied the daily incidence of COVID-19 during the SARS-CoV-2 Omicron/BA.1 

wave of December 2021 – March 2022 in Los Angeles County, CA, excluding the cities of 

Pasadena and Long Beach, a jurisdiction with population 9.26 million, as reported by the Los 

Angeles County Department of Public Health [113]. As in the case of New York City [80], the 

date of report was intended to be the date when a positive test was performed or when the 

diagnosis of COVID-19 was otherwise made. 

Figure F1 displays the raw data for Los Angeles County, derived in the same manner as 

the data shown in Figure 1 of the main text for New York City. To account for systematic 

variation in case counts by day of day of the week, we converted the raw case counts 𝑐𝑐𝑡𝑡 into 

centered 7-day moving averages, that is, 𝑦𝑦𝑡𝑡 = 1
7
∑ 𝑐𝑐𝑡𝑡+𝑖𝑖
+3
𝑖𝑖=−3  , where 𝑡𝑡 indexes the date of report. 

Figure E1 shows the raw counts of reported cases per day 𝑐𝑐𝑡𝑡 (connected gray datapoints) as well 

as the daily case counts 𝑦𝑦𝑡𝑡 adjusted for the day of the week (red datapoints). As in the main text, 

we relied upon the adjusted daily counts 𝑦𝑦𝑡𝑡 to estimate our SIR model parameters. 

 

  
 

Figure F1. Daily Reported Cases of COVID-19, 12/1/2021 – 3/15/2022, in Los Angeles County. The connected 
gray datapoints show the raw case counts (𝑐𝑐𝑡𝑡). The red datapoints, covering 12/4/2021 – 3/12/2022, show the 
centered 7-day moving averages (𝑦𝑦𝑡𝑡).  
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Figure F2 shows the predicted values of the output variable 𝑋𝑋𝑡𝑡 as a connected curve 

superimposed on the observed datapoints 𝑦𝑦𝑡𝑡 for the Omicron wave in Los Angeles County. The 

fit of the data to the four-parameter SIR model is not as tight as for New York City, 

undershooting the peak reported incidence in early January 2022 by about 8 percent. The 

computation time to achieve convergence of the Newton-Raphson algorithm was 1.04 sec. 

 

 
 
Figure F2. Daily Reported and Predicted Cases of COVID-19, 12/4/2021 – 3/12/2022, Los Angeles County. 
The red points show the data 𝑦𝑦𝑡𝑡 derived from Figure F1. The curve connects the predicted values of the output 
variable 𝑋𝑋𝑡𝑡.  

 

Table F1 summarizes the resulting parameter estimates. At 𝑡𝑡 = 0, corresponding to 

December 3, 2021, the infected proportion 𝑖𝑖0 was an estimated 0.2 percent, as compared to 0.8 

percent for New York City. The estimated population-size 𝑁𝑁 was about 14.5 percent of the total 

county population excluding the cities of Pasadena and Long Beach. The estimated basic 

reproduction number ℛ0 was on the order of 2.5, considerably small than that estimated for New 

York City. The estimated mean duration of infectivity 1 (1 − 𝛼𝛼)⁄  was on the order of 9 days, 

likewise considerably smaller than the New York City-based estimate. 
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Table F1. Parameter Estimates of SIR Model of COVID-19 Incidence,  
Los Angeles County Omicron Wave, December 2021 – March 2022 a,b 

 

𝛽𝛽 𝛼𝛼 𝑖𝑖0 × 10–3 𝑁𝑁 × 106 ℛ0 1 (1 − 𝛼𝛼)⁄  
0.272 0.890 2.44 1.346 2.49 9.11 

(0.254, 0.290) (0.876, 0.904) (1.98, 2.90)  (2.32, 2.65) (7.93, 10.3) 
a. Except for the population size parameter 𝑁𝑁, symmetric 95% confidence intervals conditional upon 𝑁𝑁 are 
displayed below each estimate. 
b. In addition to the four model parameters, the final two columns show the estimated basic reproduction number 
ℛ0 = 𝛽𝛽 (1 − 𝛼𝛼)⁄  and the estimated mean duration of infectivity 1 (1 − 𝛼𝛼)⁄ . 
 

Appendix G. University of Wisconsin-Madison COVID-19 Outbreak, September 2020. 

 In Figure G1, we display our SIR analysis of the data on an outbreak of SARS-CoV-2 at 

the University of Wisconsin-Madison during September 2020, originally reported in a study of 

the potential super-spreader influence of a nearby cluster of local bars [79]. 

  

 

 
 

Figure G1. Raw Case Counts (𝒄𝒄𝒕𝒕), Centered 7-Day Average Daily Incidence (𝒚𝒚𝒕𝒕), and Estimated Output 
Variable (𝑿𝑿𝒕𝒕) from Least Squares Fit of an SIR Model, COVID-19 Outbreak, University of Wisconsin-
Madison Campus, September 2020. Source data: [79]. 
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Table G1 displays the estimated parameters and their conditional 95% confidence 

intervals. The estimated number infected at the start of the wave on 8/9/2020 was 𝐼𝐼0 = 𝑖𝑖0𝑁𝑁 = 0.7 

(0.3, 1.1), which would imply that single infected individual (“Student Zero”) initiated the 

outbreak. The estimate of 𝑁𝑁 is remarkably close to the combined census of 2,392 students living 

in the two residence halls that had to be locked down as a result of a high prevalence of infection. 

 

Table G1. Parameter Estimates of SIR Model of COVID-19 Outbreak, 
University of Wisconsin-Madison Campus, September 2020. a,b 

 

𝛽𝛽 𝛼𝛼 𝑖𝑖0 × 10–3 𝑁𝑁 ℛ0 1 (1 − 𝛼𝛼)⁄  
0.411 0.854 0.32 2242 2.82 6.85 

(0.343, 0.479) (0.800, 0.908) (0.15, 0.50)  (2.24, 3.40) (4.34, 9.36) 
a. Except for the population size parameter 𝑁𝑁, symmetric 95% confidence intervals conditional upon 𝑁𝑁 are 
displayed below each estimate. 
b. In addition to the four model parameters, the final two columns show the estimated basic reproduction number 
ℛ0 = 𝛽𝛽 (1 − 𝛼𝛼)⁄  and the estimated mean duration of infectivity 1 (1 − 𝛼𝛼)⁄ . 
 

Appendix H. Diagnostic Plot for the KM Data on Deaths from Plague, Isle of Bombay 

 

 
 
Figure H1. Least Squares Criterion 𝑽𝑽 (Left Axis) and First Partial Derivative 𝝏𝝏𝑽𝑽 𝝏𝝏𝜷𝜷⁄  (Right Axis) as 
Functions of the Parameter 𝜷𝜷. Deaths from Plague, Isle of Bombay, 1905–1906. 
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Based upon the KM data on deaths from plague in the Isle of Bombay during 1905–1906, 

as shown in Figure 2 of the main text, Figure H1 above plots the least squares criterion 𝑉𝑉 and the 

gradient 𝜕𝜕𝑉𝑉 𝜕𝜕𝛽𝛽⁄  as functions of the parameter 𝛽𝛽. As in corresponding Figure 4A in the main text, 

where the remaining parameters 𝛼𝛼, 𝑖𝑖0 and 𝑁𝑁 were held constant at their optimum values. 

Figure H1 shows that the criterion function 𝑉𝑉 is minimized at 𝛽𝛽 = 0.610, as reported in 

the main text in connection with Figure 6, at which point the first partial derivative 𝜕𝜕𝑉𝑉 𝜕𝜕𝛽𝛽⁄  

equals 0. The function 𝑉𝑉(𝛽𝛽) has an inflection point at 𝛽𝛽 = 0.595, where the partial derivative 

𝜕𝜕𝑉𝑉 𝜕𝜕𝛽𝛽⁄  reaches a minimum. In the interval 𝛽𝛽 > 0.595, the function 𝑉𝑉(𝛽𝛽) is convex.  
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