
Title: Inter-rater reliability of the Infectious Disease Modeling Reproducibility Checklist 1 

(IDMRC) as applied to COVID-19 computational modeling research 2 

 3 

Darya Pokutnaya1*, Willem G Van Panhuis2, Bruce Childers3, Marquis S Hawkins1, Alice E 4 

Arcury-Quandt1, Meghan Matlack4, Kharlya Carpio1, Harry Hochheiser5 5 

 6 
1University of Pittsburgh, Department of Epidemiology; Pittsburgh, Pennsylvania, United States 7 

of America  8 

2Office of Data Science and Emerging Technologies, National Institute of Allergy and Infectious 9 

Diseases; Rockville, Maryland, United States of America [note that Dr. Van Panhuis completed 10 

the research described in this paper during his time at the University of Pittsburgh, before 11 

starting his position at NIAID] 12 

3University of Pittsburgh, Department of Computer Science; Pittsburgh, Pennsylvania, United 13 

States of America 14 

4University of Pittsburgh, Department of Environmental and Occupational Health, Pittsburgh, 15 

PA, USA 16 

5University of Pittsburgh, Department of Biomedical Informatics, Intelligent Systems Program, 17 

and Clinical and Translational Science Institute; Pittsburgh, Pennsylvania, United States of 18 

America  19 

*Corresponding author.  20 

Email: dap184@pitt.edu 21 

 22 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 22, 2023. ; https://doi.org/10.1101/2023.03.21.23287529doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.03.21.23287529
http://creativecommons.org/licenses/by-nc/4.0/


Abstract 23 

 24 
Background: Infectious disease computational modeling studies have been widely published 25 

during the coronavirus disease 2019 (COVID-19) pandemic, yet they have limited 26 

reproducibility. Developed through an iterative testing process with multiple reviewers, the 27 

Infectious Disease Modeling Reproducibility Checklist (IDMRC) enumerates the minimal 28 

elements necessary to support reproducible infectious disease computational modeling 29 

publications. The primary objective of this study was to assess the reliability of the IDMRC and 30 

to identify which reproducibility elements were unreported in a sample of COVID-19 31 

computational modeling publications. Methods: Four reviewers used the IDMRC to assess 46 32 

preprint and peer reviewed COVID-19 modeling studies published between March 13th, 2020, 33 

and July 31st, 2020. The inter-rater reliability was evaluated by mean percent agreement and 34 

Fleiss’ kappa coefficients (κ). Papers were ranked based on the average number of reported 35 

reproducibility elements, and average proportion of papers that reported each checklist item were 36 

tabulated. Results: Questions related to the computational environment (mean κ = 0.90, range = 37 

0.90–0.90), analytical software (mean κ = 0.74, range = 0.68–0.82), model description (mean κ = 38 

0.71, range = 0.58–0.84), model implementation (mean κ = 0.68, range = 0.39–0.86), and 39 

experimental protocol (mean κ = 0.63, range = 0.58–0.69) had moderate or greater (κ > 0.41) 40 

inter-rater reliability. Questions related to data had the lowest values (mean κ = 0.37, range = 41 

0.23–0.59). Reviewers ranked similar papers in the upper and lower quartiles based on the 42 

proportion of reproducibility elements each paper reported. While over 70% of the publications 43 

provided data used in their models, less than 30% provided the model implementation. 44 

Conclusions: The IDMRC is the first comprehensive, quality-assessed tool for guiding 45 

researchers in reporting reproducible infectious disease computational modeling studies. The 46 
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inter-rater reliability assessment found that most scores were characterized by moderate or 47 

greater agreement. These results suggests that the IDMRC might be used to provide reliable 48 

assessments of the potential for reproducibility of published infectious disease modeling 49 

publications. Results of this evaluation identified opportunities for improvement to the model 50 

implementation and data questions that can further improve the reliability of the checklist. 51 

Keywords: Reproducibility, infectious disease, epidemiology, modeling, COVID-19, 52 

coronavirus disease 2019 53 

Background 54 
 55 

Throughout the coronavirus disease 2019 (COVID-19) pandemic, policy makers relied 56 

extensively on epidemiological, biostatistical, and computational infectious disease models to 57 

inform decisions regarding public health interventions (1). Although there was increased interest 58 

in transparent research prior to the pandemic (2),  increasingly complex modeling methods and 59 

frequently insufficiently detailed descriptions of those methods have led to increasing 60 

reproducibility concerns. We recently proposed the Infectious Disease Modeling Reproducibility 61 

Checklist (IDMRC) a comprehensive set of guidelines that researchers can follow to publish 62 

reproducible modeling results (3). Our goal in this paper is to assess the reliability of the IDMRC 63 

to facilitate the reporting of elements impacting the reproducibility of COVID-19 research. 64 

Reproducibility is a cornerstone of the scientific method, enabling the verification of 65 

discoveries and protecting against scientific misconduct (4). However, the rapid pace of COVID-66 

19 research has raised concerns about the reproducibility of modeling results. For years 67 

governing bodies have published advice to enhance reproducibility of scientific research and 68 

proposed lists of elements that should be included in publications to ensure reproducibility have 69 

been reported (5–9). Prior to our work, these initiatives have not been synthesized into reliable 70 
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guidelines for infectious disease computational modeling research. We filled this critical gap in 71 

the literature by creating a framework for the implementation of reproducible computational 72 

infectious disease models. We formatted the framework into the Infectious Disease Modeling 73 

Reproducibility Checklist (IDMRC), a checklist that is applicable to varying types of infectious 74 

disease models with ranging complexities (3). 75 

Previously developed guidelines, such as the Strengthening the Reporting of 76 

Observational Studies in Epidemiology (STROBE) checklist and the EPIFORGE 2020 77 

guidelines for epidemic forecasting have been instrumental in enhancing the quality of modeling 78 

research (10,11). However, they focus on general recommendations for describing elements in a 79 

publication without including specific items related to data, analytical software, operating 80 

systems (including both names and version numbers), and other key computational components 81 

used to conduct the analyses. The IDMRC overcomes these limitations through the inclusion of 82 

specific items relevant to publishing reproducible infectious disease modeling studies. Here, we 83 

assess the reliability of the IDMRC with multiple reviewers and a sample of COVID-19 84 

computational modeling studies. To our knowledge, this is the first time the reliability of a 85 

checklist used to assess the reproducibility of infectious disease modeling studies has been 86 

evaluated.  87 

The Models of Infectious Disease Agent Study (MIDAS) Coordination Center 88 

(midasnetwork.us) is an NIGMS-funded center supporting the infectious disease research 89 

community. Four researchers from the MIDAS Coordination Center evaluated the reliability of 90 

the checklist by assessing a random selection of preprint and peer-reviewed COVID-19 modeling 91 

papers published between March 13th, 2020, and July 31st, 2020. The purpose of this study was 92 

to assess the inter-rater reliability of the IDMRC, characterize papers based on the reviewers’ 93 
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qualitative rankings, and determine which reproducibility elements are frequently included or 94 

overlooked in COVID-19 computational modeling studies. 95 

Methods 96 
 97 

The IDMRC was previously developed as a framework for the implementation of 98 

reproducible computational infectious disease models (Additional File 1) (3). The IDMRC 99 

consists of twenty-two questions grouped into six categories: computational environment, 100 

analytical software, model description, model implementation, data, and experimental protocol 101 

(Additional File 2). We evaluated the performance of the IDMRC in the COVID-19 modeling 102 

literature by measuring the agreement among four reviewers for the overall instrument and for 103 

individual questions. Based on the evaluations, we made suggested changes to the IDMRC 104 

(Additional File 3). 105 

We searched PubMed, medRxiv, arXiv, and bioRxiv using queries for COVID-19 106 

modeling papers between March 13th, 2020, and July 31st, 2020 (Additional File 4). As preprint 107 

servers were widely used to disseminate COVID-19 models at the beginning of the pandemic 108 

(12), we included medRxiv, arXiv, and bioRxiv in our search. We dd not restrict to certain types 109 

of computational modeling studies in our assessment given that our checklist should be 110 

applicable to all computational infectious disease modeling studies ranging from regression 111 

models to complex agent-based models. From the search results, we randomly selected 100 112 

papers for title and abstract review (Figure 1). 113 

Four researchers (DP, AAQ, KC, MM) used the IDMRC to independently review the 46 114 

modeling papers to assess which IDMRC elements were included. All four reviewers had 115 

experience in reading modeling papers, including training of at least a Master’s in Public Health 116 
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Degree. DP and AAQ were involved with the development of the checklist and had more 117 

experience using the IDMRC relative to KC and MM.   118 

We performed an inter-rater reliability analysis to assess the concordance of the ratings of 119 

the ordinal categorical items. Reliability was assessed based on the mean percent agreement with 120 

Wald 95% confidence intervals and Fleiss’ kappa (κ) estimates. Fleiss’ kappa is the observed 121 

agreement corrected for the agreement expected by chance and is appropriate when there are 122 

more than two raters assessing ordinal or nominal data (13). We used the Power4Cats function in 123 

the kappaSize package in R version 4.0.2, RStudio Version 1.3.107 to determine that 46 124 

publications could reliably produce a lower limit for a kappa estimate of 0.293 (1). Fleiss’ kappa 125 

was computed with linear weights using the wlin.conc function in the R raters package 2.0.1 126 

(14,15). Monte Carlo simulations were used to calculate percentile bootstrap confidence 127 

intervals. Results were interpreted using previously published guidelines: κ < 0.01 indicates no 128 

agreement; κ = 0.01–0.20, slight; κ = 0.21–0.40, fair; κ = 0.41–0.60, moderate; κ = 0.61–0.80 129 

substantial; and κ = 0.81–1 almost perfect agreement (15). A kappa score below 0.41 falls into 130 

the category of “slight” agreement and was deemed by the authors as indicative of questions that 131 

needed to be reviewed and revised. 132 

For each reviewer, we qualitatively ranked the papers by the number of reported elements 133 

in each publication. Publications with the most elements included (as rated by the reviewers) 134 

were ranked the highest. We also averaged the reviewers’ rankings to report the average 135 

qualitative rankings of the 46 publications. To assess if the potential impact of the peer-review on 136 

the number of reproducibility elements, DP independently reviewed the five highest-rated and 5 137 

lowest-rated publications to determine 1) if any of the publications that were published in 138 

preprint servers at the time of the review had since been published in peer-reviewed journals, and 139 
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2) if the papers that had been published in peer-reviewed journals had reported more 140 

reproducibility elements in those publications. Finally, we tabulated the proportion of papers that 141 

reported each checklist element as well as the proportion of checklist elements reported in all 142 

publications (both averaged across all reviewers).  143 

Results 144 

Four MIDAS researchers used the IDMRC to review 46 COVID-19 computational 145 

modeling papers published between March 13th, 2020, and July 31st, 2020. After title and 146 

abstract review, 48 papers were excluded based on the following exclusion criteria: 147 

observational, genomic, immunological, and molecular studies, commentaries, reviews, 148 

retractions, letters to editor, response papers, papers not related to COVID-19, and descriptions 149 

of software applications. Of the remaining 48 papers, two publications reviewing previously 150 

developed COVID-19 models were excluded after full text review (Figure 1). The final 46 paper 151 

sample consisted of 39 (85%) publications published in preprint servers (n = 34 from medRxiv; n 152 

= 5 from arXiv) and 7 (15%) from peer-reviewed journals (Additional File 5). 153 

[Figure 1. Publications included in the inter-rater reliability analysis of the Infectious Disease 154 
Modeling Reproducibility Checklist. Abbreviations: COVID-19, coronavirus disease 2019] 155 
 156 
 157 
Inter-rater reliability of the IDMRC 158 

 159 
The inter-rater reliability evaluation indicated that the IDMRC was a reliable tool with 160 

most questions characterized by moderate or better (κ > 0.41) agreement between the four 161 

reviewers. Overall, the mean percent agreement ranged from 54% (data question 5.3) to 94% 162 

(computational environment 1.1, 1.2; model implementation 4.6). Fleiss’ kappa estimates ranged 163 

from 0.23 (95%CI 0.10, 0.40) for IDMRC data question 5.5 to 0.90 (95%CI 0.79, 0.98) for both 164 
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computational environment questions. Several Fleiss’ kappa estimates in the model 165 

implementation and data categories fell below moderate agreement (Table 1). 166 

[Table 1. Infectious Disease Modeling Reproducibility Checklist elements reported in COVID-167 
19 modeling papers.] 168 
 169 

Characterization of papers based on reviewer qualitative rankings 170 

Reviewers identified similar publications as reporting the most reproducibility elements 171 

(i.e., reviewers reported “yes” for more questions) or the least number of elements (i.e., 172 

reviewers reported “yes” less often). KC and MM, the two reviewers with the least experience 173 

using the IDMRC, agreed upon  eight publications in the top 25% (n = 13) and the eight 174 

publications in the bottom 25% (n = 13) (Additional File 6). DP and AAQ, the two reviewers 175 

with more experience using the checklist, agreed on nine publications in the top 25% and ten 176 

publications in the bottom 25% (Additional File 6). All four reviewers agreed on six publications 177 

in the top 25% and seven publications were reported in the bottom 25% (Additional File 7). The 178 

publications with the most reproducibility elements based on average scores (publications 9, 15, 179 

16, 19, and 27) and the least reported reproducibility elements (2, 12, 20, 23, and 37) were all 180 

originally published as preprints. Four publications (2, 19, 20, and 27) have since been published 181 

in peer-reviewed journals. An independent review of these four papers by DP determined that the 182 

peer-reviewed versions did not have a significantly increased number of reported reproducibility 183 

elements. 184 

[Figure 2. Average quantitative paper ranking (n = 46) among four reviewers. Green bars 185 
correspond to the average number of reported elements in each publication (“yes” responses); 186 
yellow indicates partially reported elements; red indicates not reported elements, gray indicates 187 
not applicable responses.] 188 
 189 
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Average proportion of papers that reported each checklist item  190 

Rates of inclusion of the 22 checklist elements varied from 2% of papers reporting the 191 

operating system version (question 1.2) to 92% providing the model description in the journal or 192 

publication as opposed to referencing a previously developed model (question 3.2, Figure 3A). 193 

Fifty percent (n = 23) of publications provided less than 40% of all checklist categories (Figure 194 

3B). Over 94% of studies did not provide either the name or the version of the operating system 195 

used in their analysis (questions 1.2, 1.3, respectively) (Figure 3A). The analytical software name 196 

(e.g., R, STATA, SAS) was provided in 62% of publications (question 2.1), but only 41% of the 197 

software tools were openly accessible without a licensing fee (question 2.2). Most studies 198 

provided the input data (70%; question 5.4); however, only 25% provided the model 199 

implementation, or code, used to generate the data (question 4.1). Averaged across the raters, 200 

over 50% of the publications provided all five data elements (questions 5.1−5.5), but less than 201 

50% of the publications provided all six model implementation elements (questions 4.1−4.6). 202 

Thirty-nine percent of publications provided the parameters used in their models (questions 6.1) 203 

while 19% provided a clear explanation for how categories 1−5 were used together to create the 204 

model results (question 6.2). 205 

[Figure 3. Proportion of coronavirus disease 2019 (COVID-19) modeling publications (n = 46) 206 
that reported each infectious disease modeling reproducibility checklist (IDMRC) component 207 
elements. A, average percentage of papers that reported each checklist element; B, average 208 
proportion of checklist elements that were reported in all publications. Dashed line in B indicates 209 
the mean.] 210 
 211 

Discussion 212 
 213 

Improved  reproducibility of infectious disease computational models will help 214 

researchers efficiently build upon previous studies and accelerate the pace of scientific 215 
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advancements. We previously developed the Infectious Disease Modeling Reproducibility 216 

Checklist (IDMRC) to enumerate the elements necessary to support reproducible infectious 217 

disease computational modeling studies (3). Our evaluation indicated that the IDMRC is a 218 

reliable tool with the majority of the inter-rater reliability estimates reporting moderate or greater 219 

agreement between the four reviewers. Participating reviewers placed similar publications in the 220 

top and bottom reproducibility score quantiles based on the number of elements missing in each 221 

publication. The two experienced and the two novice checklist users had more similar rankings, 222 

suggesting that formally training researchers to use the IDMRC prior to evaluating a study may 223 

produce more consistent results. Furthermore, revisions to the checklist questions, primarily in 224 

the model implementation and data sections, may increase reliability of future evaluations. 225 

Our experience with the application of the checklist suggests that the question ordering 226 

may have impacted reliability. The question regarding whether the model implementation 227 

computer language was documented (question 4.4) may have received a lower score due to its 228 

positioning after the analytical software name question (question 2.1). In most instances if a 229 

publication reported the analytical software name (e.g., R, STATA), the model implementation 230 

computer language would be evident (e.g., R uses R coding language, STATA uses STATA 231 

coding language). However, occasionally the two may differ, such as when researchers use their 232 

own developed software or utilize packages to develop scripts in languages that are not original 233 

to the analytical software (e.g., writing Python scripts in R with the use of the reticulate 234 

package). Additionally, if a reviewer had already selected “no” or “not applicable” for prior a 235 

model implementation question (questions 4.1−4.3), the reviewer may have automatically 236 

selected the same response for question 4.4 without independent thought to the question. Moving 237 

the question from the model implementation section to the analytical software section (after 238 
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question 2.1) could improve the checklist reliability. We propose a revised version of the 239 

checklist which includes question 4.4 directly after question 2.1 (Additional File 3).  240 

Reliability assessments can also help highlight ambiguities in definitions commonly used 241 

in infectious disease computational modeling literature. Lower κ estimates in the data section 242 

may have been due to uncertainty regarding the definition of input data (question 5.1). For 243 

example, some of the publications described susceptible-infected-recovered (SIR) 244 

compartmental models which can be parametrized using input data, simulated data, or by 245 

referencing previously reported parameters. In these situations, reviewers may have not 246 

considered parameters as input data. To improve the reliability of the checklist, we defined input 247 

data as “any data, including parameters, used to generate a model or initial conditions” in the 248 

updated version of the checklist (Additional File 3). Furthermore, we originally included a “not 249 

applicable” answer choice in question 5.1; however, after the reliability assessment, we deemed 250 

that this answer choice was not warranted because a response of “yes” or “no” should capture all 251 

possible answer choices. Thus, we removed the “not applicable” answer choice from question 252 

5.1 in the newest version of the checklist (Additional File 3). Given that conditional nature of the 253 

checklist questions (i.e., subsequent checklist questions are affected by prior responses), 254 

including a definition of the input data as well as correcting the answer choices in question 5.1 255 

could improve the reliability of the following data questions.  256 

The computational environment, which comprises the operating system name and 257 

version, was least reported. Failure to reproduce modeling studies, even if the data and code have 258 

been made available, can be due to incompatibilities or specific requirements in the 259 

computational environment (16). For example, SAS software is not compatible with the macOS 260 

operating system unless it is run in a virtual machine. Software developed by the authors of a 261 
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given paper or analyses that require high-performance computing may also require specific types 262 

of operating systems to be functional. We recommend including a short statement specifying the 263 

name and version of the operating system in future infectious disease computational modeling 264 

studies . 265 

Two of the top qualitatively ranked publications (19 and 27) as well as two of the lower 266 

ranked publications (2 and 20) were initially published in medRxiv, during the time of review, 267 

but have since been published in peer reviewed journals. An independent review by DP indicated 268 

that the peer reviewed versions of these paper did not include significant improvement in the 269 

number of reported reproducibility elements. This suggests that the peer review process does not 270 

necessarily improve the reproducibility of papers in our sample. Despite an increase in the 271 

adoption of data and code sharing policies by journals, stricter application of the IDMRC or 272 

similar guidelines may be needed to further improve reproducibility during the peer review 273 

process (17). Some suggestions include the complementary submission of checklists, such as the 274 

IDMRC, or dynamic computational notebooks (17,18). 275 

Over 70% of the publications provided the data used for their analysis. Our estimate was 276 

similar to the 60% (n = 29) of CDC-compiled COVID-19 modeling studies analyzed by Jalali et 277 

al. and much higher than the 24.8% (n = 332) reviewed by Ioannidis et al. that reported to share 278 

their data. However, Ioannidis et al., used a text mining algorithm which may not have picked up 279 

publications that shared their data (19,20). Many journals now require researchers to provide a 280 

data availability statement when submitting a publication but allow researchers to 281 

circumnavigate the provision by stating “the datasets and code are available from the 282 

corresponding author on reasonable request.” Some publishers require authors to make their 283 

publication data publicly available (21). As of January 25, 2023, National Institute of Health-284 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 22, 2023. ; https://doi.org/10.1101/2023.03.21.23287529doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.21.23287529
http://creativecommons.org/licenses/by-nc/4.0/


supported research requires researchers to include a plan for data sharing within their funding 285 

applications. While our review included publications published on preprint servers, which have 286 

less strict reporting guidelines, we reason that preprint COVID-19 computational models should 287 

have been just as transparent with their data as peer-reviewed publications given their 288 

widespread use by policymakers and news outlets during the start of the pandemic (12).  289 

Although providing data access is becoming a common practice in infectious disease 290 

computational studies, progress in sharing model implementations is lagging. In our sample, 291 

most papers provided the model description; however, the code used to implement the model and 292 

create the results was reported in less than 25% of the studies. In the previous review of COVID-293 

19 computational modeling studies, researchers found that a similar 21.5% of publications 294 

reported the code (n =  288) (20). With increasingly complex computational methodologies in 295 

infectious disease modeling literature, withholding the exact data manipulation and analysis steps 296 

can impede the consistent regeneration of modeling results. Researchers should aim to provide 297 

open-source access to appropriately versioned model implementations accompanied by 298 

comprehensible annotations in online repositories. 299 

Sharing a reproducible model consists of more than just sharing the data or code. Each 300 

component in the checklist works together to produce the final modeling result. With each 301 

additional missing component, the time and effort that it takes for future reproduction attempts 302 

increases (22). Amid a pandemic, timely, reproducible research is critical in informing policies 303 

and life-saving interventions. 304 

 The present study has several limitations. First, we sampled COVID-19 computational 305 

modeling studies published early in the pandemic when authors may have reported fewer 306 

reproducibility elements compared to publications published in later periods. In future work, 307 
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assessing the reproducibility of publications reported during various stages of the pandemic may 308 

lead to insights regarding timing of publications and reproducibility of modeling literature. 309 

Second, given that two of the reviewers had limited experience using the IDMRC prior to the 310 

assessment, we may have underestimated the true reliability of the IDMRC. Furthermore, 311 

differences in reviewer experience may have led to an under- or over-estimation of the average 312 

number of reported reproducibility elements in our sample of publications. Finally, while the 313 

reliability assessment of the IDMRC goes a step beyond most checklists, we did not assess the 314 

reliability of the proposed changes to the IDMRC. 315 

Conclusions 316 

Our review focused on evaluating the performance of the IDMRC in COVID-19 317 

computational modeling publications. Additional rounds of review with more reviewers and 318 

modeling studies outside of COVID-19 might generalize reliability. Furthermore, lower inter-319 

rater reliability scores on some of the elements may have impacted the reported frequencies of 320 

missing reproducibility elements.  To address these issues, we proposed a revised version of the 321 

IDMRC. Tools such as the IDMRC can encourage the documentation and sharing of all elements 322 

necessary to reproduce a computational modeling study, thus supporting reproducible 323 

computational infectious disease studies and accelerating scientific discoveries by allowing 324 

others to validate results as well as by providing resources that might be reused in future studies.    325 
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 403 

Table 1. Infectious Disease Modeling Reproducibility Checklist elements reported in COVID-19 404 
modeling papers. 405 

Question Mean Percent Agreement 
(95% CI) 

Fleiss Kappa 
(95% CI) 

Computational Environment   
1.1) Is the operating system documented? 0.94 (0.87, 1.00) 0.90 (0.81, 0.97) 
1.2) Is the operating system version documented? 0.94 (0.87, 1.00) 0.90 (0.79, 0.98) 
 
Analytical Software 

  

2.1) Is the name of the analytical software documented (e.g., the programming 
language name)? 

0.88 (0.79, 0.97) 0.82 (0.71, 0.92) 

2.2) Is the analytical software accessible for free? 0.82 (0.71, 0.93) 0.68 (0.54, 0.81) 
2.3) Is the version of the analytical software documented? 0.79 (0.67, 0.90) 0.75 (0.64, 0.85) 
2.4) Do the authors include a specific identifier (DOI, URL, citation) that 
points to the analytical software that was used? 

0.76 (0.64, 0.89) 0.72 (0.61, 0.81) 

2.5) Is the analytical software installation guide accessible online?  0.89 (0.80, 0.98) 0.75 (0.60, 0.89) 
 
Model Description 
3.1) Is the complete, structured model description provided in the publication, 
supplement, or referenced publication? 

 
 

0.53 (0.38, 0.67) 

 
 

0.58 (0.51, 0.66) 

3.2) Is the model specified in the publication or supplement (contrary to being 
referenced in other papers)? 

0.91 (0.83, 0.99) 0.84 (0.70, 0.94) 

 
Model Implementation (“Code”) 
4.1) Is the model implementation (e.g., code, workflow) openly accessible 
online?  

 
 

0.86 (0.75, 0.96) 

 
 

0.86 (0.77, 0.94) 

4.2) Does the model implementation (e.g., code, workflow) have a version or 
modification date?  

0.84 (0.73, 0.94) 0.69 (0.55, 0.84) 

4.3) Does the model implementation (e.g., code, workflow) have an identifier? 0.79 (0.67, 0.90) 0.74 (0.62, 0.85) 
4.4) Is the computer language of the model implementation (e.g., code, 
workflow) documented? 

0.62 (0.48, 0.76) 0.39 (0.22, 0.54) 

4.5) Are all model implementation (e.g., code, workflow) dependencies clearly 
specified in either the publication or supplemental files?  

0.69 (0.56, 0.83) 0.63 (0.50, 0.75) 

4.6) Are the model implementations (e.g., code, workflow) annotated with 
comments? 

0.94 (0.87, 1.00) 0.80 (0.66, 0.92) 

 
Data 
5.1) Does the model in the publication use input data? 

 
 

0.75 (0.62, 0.87) 

 
 

0.59 (0.47, 0.70) 
5.2) Has the source and content of the input data been described in the 
publication or supplement? 

0.59 (0.45, 0.74) 0.36 (0.20, 0.52) 

5.3) Does the paper cite a specific, unique, and persistent identifier to refer to 0.54 (0.39, 0.68) 0.36 (0.20, 0.52) 
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each input dataset? 
5.4) Is the input data openly accessible? 0.66 (0.52, 0.80) 0.34 (0.16, 0.52) 
5.5) Is the data in a format that can be easily re-formatted (or “parsable”) to 
meet the input specifications of the model implementation? 

0.55 (0.41, 0.69) 0.23 (0.10, 0.40) 

 
Experimental Protocol 
6.1) Are all the mentioned parameter values for the model implementation 
(e.g., code, workflow) documented in a single location (e.g., table or list in the 
publication or supplement)? 

 
 

0.65 (0.51, 0.79) 

 
 

0.69 (0.60, 0.77) 

6.2) Is there an explanation of how the described/mentioned categories 
(computational environment, analytical software, model implementation, and 
data) were used together to create the results (e.g., figures and/ or tables)? 

0.50 (0.36, 0.64) 0.58 (0.52, 0.64) 

Abbreviations: CI, confidence intervals 406 
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