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Abstract: 32 

  Nucleic acid amplification tests, like real-time polymerase chain reaction, are widely 33 

used for pathogen detection; however, their interpretation rarely accounts for sampling 34 

variability. Instead, cycle threshold values are often categorized reducing precision. We 35 

describe how pathogen cycle threshold values can be normalized to endogenous host gene 36 

expression to correct for sampling variability and compare the validity of this approach to 37 

standardization with a standard curve. Normalization serves as a valid alternative to 38 

standardization, does not require making a standard curve, increases precision, accounts for 39 

sampling variability, and can be easily applied to large clinical or surveillance datasets for 40 

informative interpretation.  41 

Introduction: 42 

   Nucleic acid amplification tests like reverse transcription quantitative real-time 43 

polymerase chain reaction (RT-qPCR) are routinely used in clinical laboratories for pathogen 44 

detection [1]. The prototypical RT-qPCR assay includes two primer and probe sets (targets) for a 45 

specific pathogen and one primer probe set (target) for an endogenous host gene. Results are 46 

interpreted from a range of cycle-threshold (Ct) values, samples with a Ct value below a certain 47 
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predetermined cut-off are categorized as positive [2]. Categorizing Ct values transforms a 48 

quantitative measurement into a categorical one limiting precision of the measurement which 49 

may lead to misinterpretation. Yet, Ct values are broadly interpreted categorically because, it 50 

provides a simpler alternative to using them as numerical value, which requires making a 51 

standard curve and additional analysis. 52 

   To encourage more informative use of Ct values as a numerical value, we investigate 53 

using relative gene expression (normalization) in lieu of a standard curve (standardization) for 54 

interpretation [3]. Normalization has the benefits of re-purposing the host gene target, 55 

accounting for sampling variability by measuring the ratio of the pathogen target(s) to host 56 

target, it can be performed retrospectively and automated for large clinical or surveillance 57 

datasets.    58 

 Methods: 59 

  To validate relative gene expression as a quantitative way to interpret Ct values we 60 

used a dataset of n = 212 clinical test results from persons who tested positive for COVID-19 61 

from 24/3/2020 to 9/5/2020.  Specimens from persons seeking a diagnostic test for SARS-CoV-2 62 

infection were collected by nasopharyngeal swab and nucleic acid extraction was performed 63 

using the Viral RNA isolation kit on the MagMAX-96
TM

 platform (ThermoFisher). Host (RNaseP) 64 

and viral gene (Envelope, Nucleocapsid) targets were assayed by RT-qPCR, as previously 65 

described. A 9-replicate, 5-fold, 1:10 dilution of SARS-CoV-2 synthetic RNA was used to make a 66 

standard curve and Ct values were transformed to log10 GE/mL using simple linear 67 

regression[4]. Relative gene expression was calculated between the viral Envelope (E) and 68 

RNaseP targets using a derivation of the method proposed by Livak and Schmittgen (2
−ΔCt

) [5]. 69 
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Pearson’s correlation and simple linear regression were used to estimate the relationship 70 

between crude, normalised and standardized RT-qPCR measurements. Data analysis was 71 

performed using R Statistical Software Version 4.1.0, p-values of less than α = 0.05 were 72 

considered statistically significant. 73 

Results:  74 

  To illustrate how normalizing the pathogen gene target(s) to host gene target accounts 75 

for sampling variability we made a scatterplot of normalized SARS-CoV-2 viral load to crude viral 76 

E gene Ct (Figure 1). At a single Ct value (e.g. Ct 15) the quantifiable amount of SARS-CoV-2 77 

genome differs by 5-fold, which corresponds to 10,000 viral genomes or a 4-log change. This 78 

difference was undetectable without correcting for sampling variability and serves as an 79 

example of how interpretation of untransformed Ct values may lead to information bias and 80 

incorrect inference. 81 

  We then compared normalized SARS-CoV-2 viral load to standardized viral load to test 82 

if relative gene expression serves as a valid alternative to making a standard curve (Figure 2). 83 

Normalized viral load has a strong positive linear relationship with standardized measurements 84 

and variability seems homogenous across the range of observed values, indicating 85 

comparability (SLR, R
2 

= 0.942, P < 0.001).   86 

Discussion: 87 

  We demonstrate that using relative gene expression to normalize pathogen load 88 

quantifies specimen sampling variability and serves as a valid alternative to analysis using a 89 

standard curve.  Normalization has the benefits of: repurposing host gene targets, accounting 90 
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for sampling variability (reducing information bias), more informative use of Ct values as a 91 

numeric measure than a categorical one and can be retrospectively performed on large clinical 92 

datasets. Relative gene expression makes the assumption that the target host gene selected as 93 

an endogenous control possess equivalent inter-individual expression, which may not always be 94 

the case in those infected with a pathogen. 95 

  Given the well document disadvantages of interpreting Ct values categorically or as a 96 

crude numeric measure for pathogen detection[6], we recommend that clinicians consider 97 

making more informed use and account for sampling variability by normalization as described.  98 

 99 

 100 

 101 
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Figure 1: Scatterplot Visualizing the Linear Relationship Between Normalized SARS-CoV-2 164 

Viral Load and SARS-CoV-2 E gene Cycle-Threshold Value, for n = 212 Nasopharyngeal 165 

Specimens (PCC, r
  
= -0.970, P < 0.001).  166 

 167 

Scatterplot of normalized SARS-CoV-2 viral load and Envelope gene (E) cycle threshold values (Ct) assayed by RT-168 

qPCR in n = 212 nasopharyngeal specimens collected from people tested for COVID-19 in British Columbia. The 169 

transformed and untransformed variables show a strong negative relationship, quantified by Pearson’s correlation 170 

coefficient (r = -0.970, P < 0.001). The red segmented line shows that at a constant E gene Ct value of 15, SARS-171 

CoV-2 viral load may vary by a 5-fold difference which corresponds to 10,000 viral genomes. This dramatic 172 

difference would not have been detectable without adjusting for sampling variability in the normalization process; 173 

therefore, Ct values alone possess little quantitative information regarding viral load. 174 

 175 

 176 

 177 

 178 
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Figure 2: Linear Relationship between normalized SARS-CoV-2 viral load and SARS-CoV-2 E 179 

gene Cycle-Threshold Value, for n = 212 Nasopharyngeal Specimens (SLR, R
2 

= 0.942, P < 180 

0.001).  181 

 182 

Scatterplot of normalized and standardized SARS-CoV-2 viral load assayed by RT-qPCR in n = 212 nasopharyngeal 183 

specimens collected from people tested for COVID-19 in British Columbia. The two variables show a strong positive184 

relationship and shared variation, quantified by simple linear regression (R
2
 = 0.942, P < 0.001). Black line and 185 

shading show the model fit and 95% confidence interval. 186 

 187 
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