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Summary

Measurable levels of immunoglobulin G antibodies develop after infections with and vaccinations
against SARS-CoV-2. These antibodies are temporarily dynamic; due to waning, antibody levels
will drop below detection thresholds over time. As a result, epidemiological studies could underes-
timate population protection, given that antibodies are a marker for protective immunity.

During the COVID-19 pandemic, multiple models predicting infection dynamics were used by
policymakers to plan public health policies. Explicitly integrating antibody and waning effects
into the models is crucial for reliable calculations of individual infection risk. However, only few
approaches have been suggested that explicitly treat these effects.

This paper presents a methodology that explicitly models antibody levels and the resulting
protection against infection for individuals within an agent-based model. This approach can be
integrated in general frameworks, allowing complex population studies with explicit antibody and
waning effects. We demonstrate the usefulness of our model in two use cases.

1 Introduction

Measurable immunoglobulin G (IgG) antibodies to Severe Acute Respiratory Syndrome Coronavirus
2 (SARS-CoV-2) antigens develop after most infections with and vaccinations against SARS-CoV-2
([Wel+20]). Although the extent of immunity associated with different antibody titers and other
immune responses is not yet fully understood, it is highly likely that an individual’s antibody level
provides some information about their specific risk and severity of a future infection ([Suh+20;
Kra2l]). However, SARS-CoV-2 IgG antibody levels are temporally dynamic, and decrease over
time if no further immunization event occurs ([Ada+20]). This waning process has been confirmed
in multiple studies, showing similar effects regardless whether the immunization happened through
vaccination or infection (|[Che+22a} [Add+22]). It has been consistently shown that the total an-
tibody level starts declining about six weeks after the immunization event and potentially reduces
by more than 50% over 10 weeks (|Shr+21; [Lon+20; Seo+20|). Hence, waning is important and
should be considered explicitly when modelling the antibody level.

During the COVID-19 pandemic, multiple models for projecting and predicting the spread of
infections have been developed. In many countries, researchers and policy makers have been using
these models to simulate and implement public health policies. From a modelling perspective,
explicitly integrating antibody and waning effects into the simulation framework is crucial to allow
reliable calculations of the individual risk of infection and severeness estimation. So far, only very
few approaches have been suggested that explicitly treat these effects (see Sec. .

In this paper, we describe how to model antibody levels explicitly on an individual level, such
that the population-wide statistics are as close to reality as possible. This approach can be inte-
grated into general frameworks, allowing complex population studies with explicit antibody and
waning effects. We demonstrate the usefulness of our model in two use cases: First, we show how
to model a population, based on available data, which allows the derivation of time-dependent
immunization statistics of the individuals. Second, we describe how the antibody model can be
used to calculate protection levels (against infection) from virus variants for the entire population,
specific sub-groups or on the individual level.

The contributions of this paper are three-fold:

1. We briefly review the current state-of-the-art literature concerning approaches for modelling
individual antibody levels in epidemiological predictive models of COVID-19 (see Sec. [4.3)).
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infection statistics.

3. We show how information about the antibody level from our model can be translated into
an individual’s specific protection level. This is done explicitly for various SARS-CoV-2 virus
variants (wild-type, Delta, BA.1, BA.2, etc.).

2 Results

The proposed model allows the calculation of an individual’s antibody level and, based on that,
their protection against COVID-19 infections. By protection, we mean the reduction of the infection
probability, as compared to a person without antibodies. In the context of a pandemic, this can,
for example, be used to estimate the protection statistics of a country’s population. The only data
needed for our model are vaccination rates and infection statistics. Both data types can usually be
acquired from surveys, other models (e.g. [Mul+21]), or public sources, such as Germany’s Robert
Koch Institut (RKI).

In the following, we show two use cases of our model (details about methods and data can be
found in Sec. . All results refer to the city of Cologne in Germany.

1. We show that the model is able to calculate the number of immunization events of all pop-
ulation members at a given time, even for large populations such as a big city. This is the
basis for more complex use cases, such as the following one. Our model is validated by the
fact that its outputs closely match the observed data.

2. We show how the model can be used to gain insight into individual population groups and
how they are protected against different virus strains. The model can be used as a data basis
to develop strategies, such as vaccination campaigns, and can compensate for missing data.

2.1 Use Case 1: Population-wide immunization statistics

The model presented in this paper can be implemented as an extension of our agent-based model
(ABM) ([Mil421]). In this way, we can calculate infection dynamics that are also (but not only)
dependent on immune protection. We show in the following section how the model can be used
to calculate the number of immunization events (infections and vaccinations) at a given point in
time. This allows us to evaluate the model in a real-world scenario by comparing it to available
data. Moreover, number of immunization events is a relevant parameter because the strategies
of policymakers often depend on what share of the population has already acquired some kind of
immunity.

In Fig. [I, we show how our model results compares to observed data. Both plots show the
number of exposures (vaccinations and infections) that people in different age groups had up to
and including Summer 2022. The left plot contains observational data, stemming from antibody
level measurements across Germany ([Lan+22|); the right plot shows our simulation results. The
age group <18 is not shown because we do not have the observational data to compare it to. When
comparing the plots, two things become clear: (1) In our model, more individuals have 4 or more
exposures than shown in the observation; this implies that our model’s assumption on number of
unreported cases is somewhat too high. This deviation may be due to the fact that our model’s
results refer to Cologne and the data to Germany. In general, however, the deviations are small and
the model results structurally fit the collected data. (2) There seem to be two groups of relatively
homogeneous profiles in the model (right plot), which are not visible in the data (left plot): 18-
59 and 604. This clustering is due to the fact that the vaccination rate data for adults is only
available for these two age groups. In reality, it can be assumed that, e.g., 50-year-olds have a
different vaccination rate than 18-year-olds—however, we lack the data here. Although the age
groups are less homogeneous in reality, it can be seen that in both the model and the data, the
older groups had more frequent contact with the virus than the younger ones.
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Figure 1: Exposures (vaccinations or infections) by end of July ’22. Left: Data from |Lan+22| for
Germany. Right: Our model results for the city of Cologne.

In addition to the data shown in Figure[1] there are further surveys ([Bet+22a], [Bet+22b]) that
attempted to determine what proportion of the population has had at least one infection. We only
found data from summer 2022, but the available studies show results similar to our model: by then,
about 35-50% of the German population had been infected with COVID-19 at least once. Since
the proportion of vaccinated individuals is higher in the studies than in the general population,
this value must be interpreted as a lower limit and can only be used as a rough guide. Our model
calculates a value of about 50% for June 2022, which fits well to the aforementioned studies.

2.2 Use Case 2: Variant-specific protection of sub-groups

In general, we assume in our calculations that there is no immune protection at the beginning of
the pandemic and that each infection or vaccination increases protection. The exact methodology is
explained in Sec. In the following, we depict how the population is protected against infection
from different virus variants according to the model presented in this paper. Fig. [2] shows the
population-wide protection against infection over time averaged over all age groups. The gray
area shows that there is a large spread in immune responses; some agents are subsequently very
well protected while others have almost no protection. This can partially be explained by the
fact that some individuals are unvaccinated (blue dots), while others are vaccinated (red dots) or
boostered (more than two vaccinations, green dots). The model results clearly show that vaccinated
individuals are better protected than unvaccinated individuals, and missing vaccinations are not
compensated for by infections. Thus, unvaccinated individuals do not achieve the same protection
through multiple infections as vaccinated individuals.

We calculate the protection for the different variants (left to right). Individuals do not have
protection against any variants at the beginning of the pandemic and do not acquire significant
immunity throughout 2020. This is because only a small fraction of the population was infected in
2020 and vaccinations were not yet available. Relevant immune protection is achieved by mid-2021
because vaccinations became available for the entire adult population. Beginning in July 2021, a
significant decline in immune protection through waning is clearly visible. In winter 2021/2022,
we see another protection increase when a third round of vaccinations (boosters) was administered
to large segments of the population. In addition, the different facets of Fig. [2| show the impact of
immune escape variants: in general, protection against infection with Alpha is significantly higher
than against Delta, and protection against Delta is significantly higher than against either Omicron
variant.
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Figure 2: Protection against infection according to the model for different variants. The color
coding is as follows: blue: unvaccinated, red: vaccinated, green: boostered, black: mean protection,
gray area: 10th to 90th percentile. Reading example: for the Delta variant (2nd plot) it becomes
apparent, that unvaccinated (blue) have a significantly lower protection that vaccinated (red) or
boostered (green)by July 2022.

Fig. |3|shows how protection varies across age groups. It is clear that the mean protection within
the age groups differs significantly. On average, children acquired less protection than adults, which
can be explained by low vaccination rates in these age groups. Evidently, according to the model, the
lower vaccination rates are not compensated for by infections. According to the officially reported
numbers, the group of children under 5 years of age is not vaccinated at all, which results in a low
level of immune protection. It also becomes apparent that the different age groups were vaccinated
at different times during the vaccination campaign. The elderly over 60 were vaccinated very early,
so that immune protection was also built up early. However, due to the early vaccination, there
is already a significant decline in vaccination protection in the summer of 2021. In the younger
adults, a similar but less pronounced effect is seen; the effect is barely visible for agents under
18. Because vaccinations were no longer administered strictly by age during the winter 2021/2022
booster campaign, it can be speculated that younger individuals had a shorter interval between 2nd
and 3rd vaccination than older individuals.
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Figure 3: Protection against infection according to model for different variants and age groups.
The color coding is as follows: blue: unvaccinated, red: vaccinated, green: boostered.
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protection in young children; hence, accordmg to our model, potentlal vaccines for this age group
could have a significant effect. In addition, it is clear that a vaccine adapted to the new variants
would be helpful for all ages, since the mean protection in July of 2022 in all age groups is only
about 50% or less.

2.3 Discussion

In the previous sections, we have shown two exemplary use cases that demonstrate the capabilities
of our approach to model an individual’s antibody level and, based on that, an individual’s level
of protection against infection. The data needed for our model is usually available from public
sources. The presented findings for the study-area of Cologne demonstrate that the model can
produce realistic results. In particular, it is possible to derive immune protection of individuals—or
the entire population—as a function of time, age, vaccination status and, specifically, virus variant.
It should be noted that the model is currently parameterized only for SARS-CoV-2 and its variants.
It is possible, however, to adjust the model to be applicable to other infectious diseases, such as
influenza.

The presented model is based on certain assumptions and simplifications. We assume, for
instance, that there is a direct correlation between antibody levels and protection against infection.
Moreover, we currently do not distinguish between the effects of vaccinations and infections, except
for the individual’s first immunization event. In addition, we assume a constant antibody level
half-life, regardless of whether the antibodies come from infections or vaccinations (see Sec.
for details). This can be improved in the future when more bio-medical research on SARS-CoV-2
becomes available.

3 Summary & Conclusion

We have presented an approach on how to model the variant-specific neutralizing effect of antibodies
and how to convert it into a protection against infection. The presented use cases demonstrate that
the model produces valid results that match the observed historical data in Germany very well.
Further, we have shown how this approach can be used within an agent-based modelling framework
to allow computation of infection dynamics. In the (current) situation of high population immunity,
considering immune protection is essential for achieving realistic simulation results.

Our simulation results show that in summer 2022 there was still a significant difference in
immune protection between unvaccinated and vaccinated individuals. According to the model, the
lack of vaccination is not fully compensated by infections. This effect also becomes clear when
looking at the age groups: according to the model, children have a significantly lower protection
against infections than adults. In addition, the model allows quantification of the protection against
the immune escape variants. These results suggest that the protection against the Omicron variants
is significantly lower than against the original (wild-type) variant. This matches the available data.

The necessary model parameters have either been taken from the available literature or are
based on calibration to available data. This process necessarily includes modelling choices. Given
the solid agreement between our model results and the available data, we are confident that sensible
parameters and fitting parameter values have been identified. This is also confirmed by simulation
results that have been achieved by using the presented antibody model in conjunction with our own
agent-based model (see, for example, [Mul+22a] and |[Miil+22b]). These results demonstrate once
more that the agent-based model with the presented antibody-model extension is able to soundly
replicate many important parameters, such as case numbers, R-values, and hospitalizations. This
is a significant improvement based on the explicit antibody model for each agent.

To the best of our knowledge—and based on the our literature review—no other currently
available model allows both (1) the integration of antibody levels as a proxy for protection against
infection and (2) the modelling of individual immunization histories. While a small number of
models implemented one of these, we haven’t encountered any that implement both. In consequence,
our approach could help others to integrate any permutation of immunization events, as well as
waning, into their COVID-19 models.

3.1 Limitations of the study

The model, as it is, works well for the presented use cases. However, limitations and possible
improvements exist, and will be briefly described in the following.

On the technical side, the model is currently designed to be compatible with ABMs, such as
ours [Mul+21]. However, adaption to other models types would be straightforward, since the
entire source code [Rak+22| and data [Bal+21] is publicly available. From a data perspective, the
presented approach is based on the immunization histories of individuals, which we generated based


https://doi.org/10.1101/2023.03.31.535072
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv prepriohdiaiatitpd ddiorg/iestid e 028038465350 MRighisdesiongldsfed Marghi3h@oA%aTiumsonysighe haddestion thig preprint

(which was ot esrified by neer feview) fs he authorundar, whohas granied bIoRiive anse 1@ igplay, % ISR BEREUIRY ! s made
such as home location, income, or number of household members could be integrated into the model
as well. We did not evaluate the effect of this additional information, but we intend to in a future
version. The main limitation of our model from a bio-medical standpoint is that not all necessary
model parameters can be derived from the literature; the reason is that the studies simply haven’t
yet published. However, our approach for parameter estimation seems to work well for the presented
use cases.

4 STAR Methods

4.1 Resource availability

Lead Contact Further information and requests for source code and data should be directed to
and will be fulfilled by the lead contact, Sebastian Miiller (mueller@vsp.tu-berlin.de).

Materials availability This study did not generate new materials.

4.2 Method Details

In the following, we describe how our model computes antibody levels and how it calculates the
ensuing protection against infection with SARS-CoV-2. We explain how the model parameters were
chosen using both available data and our own calibration, which was necessary to fill data gaps.

The model is composed of two layers: 1) Modelling the antibody level, based on real-world
measurements of antibody titers. 2) Translation of the antibody level into protection against
infection, as this is the relevant parameter to calculate the infection probability.

The model is designed as an extension to our agent-based model presented in [Miil4+21]. The
protection is integrated as an additional parameter into the infection model, described on page 5 of
that paper. The principle is simple: the higher the antibody level, the higher the protection. And
the higher the protection, the lower the probability of infection, given contact with an infectious
agent.

4.2.1 Background

We used the models of [Coh+21] and [Cro+22], with details for the latter in [Kho+21|, as starting
points for the process of integrating antibodies into our agent-based model. They both postulate a

logistic model of type
1

1+ exp(—B - (log(Nay) — log(Nso)))
for vaccine effectiveness, where N, is the measured antibody level, N5y is the antibody level at

which VE is 50%, and 8 determines the slope at Ny, = N5o. Translated into relative risk, which
we here call immFac, this can be rearranged to

VE

1 1 1
1 +exp(B- (log(Nap) — log(Nso))) 1+ (Ngp/Nsg)? 1+ NB’

immFac=1—-VE =

where N as a strain-specific relative antibody level and is defined as N := N,;/N5¢ (see Sec.
for a detailed explanation). N is unit-less and would need to be multiplied with N5 to be expressed
in laboratory units. Note that N is time-dependent, as antibodies decrease over time and increase,
when an infection or vaccination occurs (see Sec. . The value for S is chosen through calibration
(see also Sec. . The equation shows that a relative antibody level of 0 leads to an immunity
factor of 1, i.e. a VE of 0%. An antibody level of 1 leads to an immunity factor of 0.5, i.e. a VE
of 50%. An antibody level above 1 corresponds to an immunity factor below 0.5, i.e. a V E higher
than 50%.

4.2.2 Integration with a dose-response model

Our agent-based model [Miil+21] uses the following well-established dose-response model to calcu-
late the probability of infection (|[Wat+10;[SC10; Kri+21)):

Ping =1 —exp(—0O -d) ,

where d is the viral dose, and O is a calibration parameter, which depends on the transmissibility
of the virus under consideration.

The open question was how to include immFac into the above dose-response infection model;
since most simulations use a compartmental approach, they do not need to resolve this issue. A
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given that the virus eventually overcomes the antibodies if the ratio of virus to antibodies is large
enough.

As a consequence, we put immFac into the exponent, as such:
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, , d
p%’lfm“mwd =1—exp(—0O-d-immFac) =1—exp (—@ . 1—|—Nﬂ> . (1)

Note that this has the consequence that in a virus-limited environment, where dose d is small,
immFac becomes a risk reduction for situations in virus limited environments:

nizz?f:::liied _ 1 —exp(—immFac-© -d) ~ immFac-0 -d — smmPFac . @)
Pit 1—exp(—0©-d) ©-d

This linear approximation in a virus-limited environment follows from 1 —exp(—z) =~ = when z > 0
and sufficiently small.

That is, a model that was originally developed for a macroscopic situation is now used at a
more microscopic level. The epidemiological risk reduction would come out as an average over
many exposures with different values of d.

Eq. shows how antibodies reduce the likelihood of becoming infected (reduced susceptibility).
However, we also included the fact that agents with antibodies have reduced probability to pass on
on the virus (reduced infectivity). Thus, when an unvaccinated agent has contact with a vaccinated
agent, the unvaccinated agent indirectly benefits from the vaccinated agent’s antibodies because the
probability of infection is reduced. If both agents are vaccinated, the probability is further reduced.
This is in accordance with findings by [Eyr+22|. In our model, the infectivity is reduced according
to the same principle as explained above, but to a lesser extent. The effect of the antibodies on the
infectivity is 25% of the effect they have on the susceptibility. Thus, if an agent has a 50% reduced
probability of infection due to their antibodies, the probability of transmission is reduced by only
12.5%.

4.2.3 Modelling the antibody level

In the next step, the relative antibody levels (N in Eq. ) are modelled. For every simulated day
and agent, the model updates the agent’s relative antibody level with respect to each SARS-CoV-2
strain. A relative antibody level of 0 corresponds to no protection, while a relative antibody level
of 1 corresponds to 50% protection (see Sec. for details). At the beginning of the simulation,
all agents are initialised with a relative antibody level of 0. Immunization events (vaccinations and
infections) increase an agent’s relative antibodies. On days on which no immunization event occurs,
the antibody levels follow an exponential decay curve, as shown in Eq. :

N(t) = No- 2710100, (3

where N(t) is the antibody level on day ¢ after the most recent immunization event, Ny is the
antibody level immediately after the most recent immunization event and tg 5 is the half-life, which
is 60 days in this case. The value of 60 days is rather on the lower end of what can be found in the
literature ([Cro+22], [Yam+22|, [Gil+22]). However, the value is the result of our calibration: at
60 days, our model best matches the literature in terms of the declining level of protection against
infection acquired through vaccination (due to waning antibody levels). See also Sec. for more
details.

The general principle of the model is shown as an example in Fig. The left figure shows
how the antibody level of an example agent develops over time. The spikes in relative antibodies
correspond, in this illustrative example case, to a SARS-CoV-2 infection, an mRNA vaccination, and
an infection with the Delta variant. On days without an immunization event, the waning becomes
apparent. In addition, it becomes clear that we distinguish between the different virus variants.
As a result, this means that agents are less protected against the immune escape variants after
vaccination. The right plot shows how we translate the antibodies into protection. See Sec. [£.2.1]
and Sec. [£.2.2] for details.
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Figure 4: Exemplary immunization history. The agent gets infected with the wild-type on day 50,
receives the mRNA vaccine on day 200 and gets infected with the Delta variant on day 600. Left:
Neutralizing antibody levels, Right: Resulting protection against infection (Protection is computed
as follows: 1 —immFac = VE).

Initial Immunization: As noted above, we assume that initially (at the beginning of the pan-
demic) all agents have an antibody level of 0. The first immunization event generates a strain-
dependent initial antibody level, which is shown in Tab. The agent’s antibodies have varying
neutralizing effects against different SARS-CoV-2 strains. Thus, we model that an agent has a
different relative antibody level per strain. As shown in Tab. [I} an infection with Delta provides
more relative antibodies against a reinfection with Delta than against an infection with an Omi-
cron variant. Similarly, the vaccinations were designed to protect against the wild-type and Alpha
variants; thus, the vaccinations provide more relative antibodies against these strains than for later
variants.

Tab. [1] is based on studies that examined protection against (symptomatic) infection and on
various studies that measured antibody titers after vaccination or infection (|[Ros+22b], [Ros+22a)).
Here, protection obtained through vaccination with the mRNA vaccines developed by Moderna
(mRNA-1273), and by BioNTech-Pfizer (BNT162b2) are summarized under ‘mRNA’, while the
vector vaccines developed by AstraZeneca (ChAdOx1-S) and Johnson & Johnson (Ad26.COV2.S)
are summarized under ‘vector’. In consequence, we do not distinguish between vaccine brands, but
only between vaccine types.

The starting point for Tab. [1| was protection after vaccination with an mRNA vaccine against
the wild-type, the Alpha, the Delta and the Omicron BA.1 variant (marked with * in Tab. . For
these cases, studies that assess vaccine effectiveness over time are available ([NBN22|, [And+22;
UKH22a; [UKH22b; [Che+22b]). To match these studies, the corresponding initial antibody values
in Tab. [I| were calibrated. In the same step, the half-life of 60 days from Eq. was estimated
(for the calibration process see Sec. and for the conversion between vaccine effectiveness and
neutralizing antibodies see Eq. (4))).

In the next step, we used measurements from |[R0s+22b| and |[Ros+22a] to populate the other
entries. For example, the second row of Tab. [1| represents the relative antibodies versus various
strains resulting from a vector vaccination. For Alpha, [R0s+22b| measure a neutralizing effect
of approximately 700 after mRNA vaccination and approximately 210 after vector vaccination (we
obtained these values from Figure 1 in [R0s+22b]). We used this ratio to calculate the relative
antibodies against Alpha after vector vaccination: 29.2 - 210/700 = 8.76. The remaining entries in
the table were filled following the same logic.

The measurements by [R6s+22b; [Ros+22a] and others show that there is virtually no neutral-
izing effect if the initial immunization event is an Omicron infection, so we assume a very low value
(0.01) here. We do not use 0, as it is to be expected that at least a small protection is present in
the case of repeated infections.

For Omicron BA.2 and BA.5 we did not have accurate measurements at the time of the study,
so we calibrated the immune escape by using our agent-based model. Here, we take the values for
BA.1 from Tab.[[Jand divide them by a factor. The factor was calibrated so that our model correctly
replicates the infection dynamics, in particular the initial growth of BA.2 and BA.5, respectively.
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mRNA 29.20* 29.20* | 10.90* | 1.90*
vector 8.76 8.76 5.45 0.38
SARS_CoV_2 12.5 12.5 2.33 0.57
Alpha 12.5 12.5 2.33 0.57
Delta 8.76 8.76 16.4 0.76
BA.1 0.01 0.01 0.03 0.21

Table 1: Initial relative antibodies per variant after certain immunization events. Based on cali-
bration (%, see Sec. for details) and |[R0s+22bj Ros+22a]. ‘mRNA’ means a vaccination with
an mRNA vaccine (either mRNA-1273 or BNT162b2), ‘vector’ means a vaccination with a vector
vaccine (either ChAdOx1-S or Ad26.COV2.S), and ‘SARS_CoV_2/Alpha/Delta/BA.1’ means an
infection with the ‘SARS_CoV_2/Alpha/Delta/Omicron BA.1’ variant.

Agent heterogeneity: To account for the fact that immune response towards vaccinations or
infections varies across the population, we assign an immuneResponseMultiplier to each agent.
The lowest possible immuneResponseMultiplier is 0.1, which is an attempt to adequately depict
the immunocompromised population; the maximum multiplier is 10.0. Tab. [1| presents the initial
antibodies for an individual with an average response to immunization events (immuneResponse-
Multiplier = 1.0); for low and high responders, the antibodies shown in the table are multiplied
by an agent’s immuneResponseMultiplier to calculate the antibodies gained in response to an im-
munization event. A log-normal distribution of immuneResponseMultiplier with a median of 1.0 is
applied to the population.

Subsequent Immunizations: If the agent is subject to an additional immunization event, their
antibody levels will be multiplied by a factor of 15 across the board for vaccinations and infections
([Atm+22]). The maximum antibody level that an agent can have is 150 (which corresponds to a
protection of nearly 100%). If multiplication by 15 still leads to a lower protection than indicated
in Tab. [T} then the value from Tab. [I]is used. This means that, at minimum, the initial antibody
level from Tab. |1} is always reached.

4.2.4 Calibration

As not all necessary parameters were available in the literature when we built this model, some
had to be estimated. These estimations were based on studies on vaccine effectiveness and Eq. .
The relative risk of an immunized individual vs. a non-immunized individual given dose d is

immunized

p,f;_me Vaccine effectiveness is defined as one minus this relative risk:
inf
. ] d
pzzn;nmuzed 1— exp (_@ . W)
VE=1- not—immunized 1-
Pt 1—exp(—© -d)
This depends on the dose d; for example, for d — 0 one obtains VE — 1 — ﬁ , while for d — oo

one obtains VE — 0. That is, according to the model, immunity can be overcome by a sufficiently
high dose. This is similar to the distinction between virus-rich and virus-limited environments,
where protection measures such as masks only make a difference in virus-limited environments
[Che+-21].

We performed the calibration for the exemplary value of © - d = 0.001. We also tested the
calibration for values other than 0.001 and obtained very similar results, so that the value can be
understood as a placeholder. In the model of [Mul+21], a value of 0.001 corresponds to contact
with a contagious person for about 1000 sec without protection (e.g, masks) in a room of 20 sz'

From the above, one obtains the following equation that can be used to convert immFac (and
therefore the antibody level) to vaccine effectiveness against infection and vice versa:

1 — exp(—0.001 - immFac(t))

E(t) =1
VE(?) 1 — exp(—0.001)

(4)

By use of the above equation we performed parameter estimations for:

® to_5 in Eq
e Entries marked with * in Tab. [I]

LA typical value for © in the model of [Miil4+-21] is of the order of 107°. At the same time, without protection
(e.g. masks) d = 7/(rs - ae), where 7 is the time of exposure in seconds, rs is room size in m?, and ae is the air
exchange rate per hour. Assume rs = 20m? and ae = 0.5/h, typical values for a two-person office or a smallish living
room, and 7 = 1000sec of exposure time. These values result in © - d = 0.001.
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To this end, for the Wild—%\//f)"e%ﬁf)?ldae,r HEBE g74§11|atef?1%“(tﬂ%lllf8?8§16'BA.1 variants, Eq. was
fitted to data points taken from studies ([NBN22; |And+22; |Che+22b; [UKH22a; [UKH22b]) by
minimizing the mean squared error. For this, we used R (version 4.1.1) and the optim function
from the stats package (|JR C21]). Optim can be used for general purpose optimization as it is
based on Nelder—-Mead, quasi-Newton and conjugate-gradient algorithms. The results can be seen
in Fig. [5] where the dots are values taken from the studies mentioned above, and the lines show the
vaccine effectiveness VE(t) in our model when using the calibrated values. The increased vaccine
protection after 210 days is related to booster vaccinations.

100%

75%

50%

Vaccine Effectiveness

25%

Days Since Vaccination

¢ Nordstrém, Delta UKHSA, Delta Booster UKHSA, Alpha =— model Omicron
* UKHSA, Delta * UKHSA, Omicron UKHSA, Omicron booster =—— model Alpha
* Andrews, Delta Chemaitelly, Omicron = model Delta

Figure 5: Calibration results. Dots were taken from the literature, lines are the fitted curves. On
day 210 the agent receive a booster dose, which increases their level of protection.

4.3 Antibody Models for Epidemiological Predictive Modelling of COVID-
19: A Literature Search

The previous section described our approach for modelling antibody levels in an epidemiological
context. In this section, we present an overview of similar approaches that exist in the literature,
as of July 2022. We compiled a list of all models that have been listed in one of the following
resources: (a) the Covid-19 Forecast Hubﬂ (|Cra+21]), (b) the European Cowvid-19 Forecast Hubﬂ
([She+22a; |She+22b]), and (c) the European Covid-19 Scenario Hulﬂ (|[Eur22]). The final list
contains 90 models. Additionally to the 86 models from the three resources, we also included four
more models that we found through a PubMed literature search. The full list can be found in
Appendix [A] To get the relevant information for the individual models, we went to the respective
websites, and analyzed connected publications and available source codes (e.g. from GitHub). We
were in particular interested in models that either (1) related antibodies and protection against
infection and integrated this into their model or (2) acknowledged and integrated into their model
the waning of protection against infection (after vaccination and/or infection).

From this literature review, we conclude that, apart from Covasim ([Ker+21; |[Coh+21]), whose
influence on our model has been discussed in Sec. and which can be found as model #1
in Appendix , none of the reviewed models explicitly integrate antibody levels as part of their
infection sub-model. This is also due to the fact that many models focused on the prediction
of hospitalization numbers and thus do not need to explicitly model individual antibody levels.
However, some approaches seem to have integrated some kind of vaccination or antibody sub-
model, but no detailed description is available. This includes (see table for details): THME, UC3M-
EpiGraph, ECDC-CM_ONE, and SIMID-SCM.

5 Data and code availability
The data used in this study are all available from public resources that have been appropriately

cited within the manuscript. Any additional information required to run the model is available
from the lead contact upon request.

2From the community sub-section, as of 07/21/22.
3From the community sub-section, as of 07/21/22.
4From the models sub-section, as of 08/31,/22.
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A Appendix

A.1 Literature Review

EMI: (YES, NO, N/A) Explicit Modelling of immunisation events (distinguish between infection, immunisation etc.) AND/OR of waning AND/OR of a relation between
antibodies and protection against infection. If the model description solely mentions any of the criterion above, but provides no details, we still set EMI = N/A. If the

same model was, under a slightly different name, part of multiple of our sources, we put down all names separated by a “/”.

| # | Model | EMI | Source | Model description
1 Covasim YES Lit. Agent-based model that simulates the transmission of COVID-19. Individual may pass through the following
Search infection stages: susceptible, exposed, infectious, and recovered (SEIR). The associated GitHub repository has
last been committed to in January 2022 and their paper [Ker+21|, which was published in July 2021 mentions
that they will incorporate waning efficacy, but no more recent information or model description could be found.
Their additional methods preprint [Coh+21|, which does not explicitly mention Covasim but is noted on their
project website, served as the basis for our antibody model and has been discussed in Sec. m
2 CovidSim N/A Lit. Agent-based model developed by MRC Centre for Global Infectious Disease Analysis hosted at Imperial College,
Search London. Model documentation, as part of the associated GitHub repository (|Cen|), has last been updated in
February 2021. No mentions of vaccines, waning or antibodies.
3 CoSim N/A Lit. Expanded SEIR model containing 27 compartments (as of December 2021) (|[Leh]). COVID-19 related metrics
Search are computed on German federal state level. Checking both the model description on their website as well as
the FAQs for their simulator (which have last been updated in December 2021), no information on waning or
antibodies could be acquired.
4 OpenCOVID YES Lit. A stochastic, discrete-time, individual-based transmission model of infections and disease dynamics. In their
Search paper ([Sha+22]), dating from December 2021, the authors note that they did not consider waning im-
munity in this study. But, in the supplementary material, they model the probability of transmission as
p(transmission) = B - v;(1) - ¢1 - 0(t) - (1 — ps), where v1(t) € [0,1] denotes the viral load of the infectious
individual and 7 denotes they days following infection. ¢; denotes the infectivity factor of the SARS-CoV-2
variant with which the infectious individual is infected, o(¢) denotes the season factor at date ¢ and us denotes
the immunity of the susceptible individual. Here, pus = 83% for recovered individuals (independent of disease
severity, risk group or age) and ps = 80% for vaccinated individuals. GitHub repository has last been com-
mitted to in January 2022. Hence, we could not determine whether or not they are still continuing their work
and if they have by now integrated waning immunity into their model.
5 KITmetriclab NO Covid-19 Models from the COVID-19 Forecast hub are ranked according to their performance over the previous four
Forecast weeks and then ensembled and weighted iteratively to achieve a combined forecast.
Hub
6 CovidAnalytics  at | N/A Covid-19 Expanded SEIR model. Their technical report (|Li+20]) was published in July 2020 and consequently does
MIT/MIT_CovidAnalytics- Forecast not contain vaccinations, waning or antibodies.
DELPHI Hub, Eu-
ropean
Covid-19
Forecast
Hub
7 UMass-Ambherst N/A Covid-19 Model is based on the ‘HHS Protect daily Covid-19 hospital’ admission data. Creating a set of simple time-series
Forecast baseline models, which are then combined into a single ensemble forecast of hospitalizations. No documentation
Hub provided.
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8 Johns Hopkins | NO Covid-19 Age-stratified SEIR model to estimate mid-term case loads and provide additional outputs relating to the
University  Applied Forecast associated healthcare burden on county level. No mention of waning immunity and antibodies could be found.
Physics Lab — Bucky Hub

9 MOBS Lab at North- | NO Covid-19 Usage of the Global Epidemic and Mobility (GLEAM) model, an individual-based, stochastic, and spatial
eastern Forecast epidemic model. Four week forecast of weekly hospitalizations and deaths and US state and national level.

Hub Projections have not been updated since April 2022, no mention of waning or antibodies.

10 | Masaryk N/A Covid-19 Newest forecasts on their website are for late 2021 /early 2022. They claim that methods of statistical time

University /MUNI- Forecast series analysis are used, but no further explanation is provided.

ARIMA /MUNI- Hub, Eu-

LaggedRegARGIMA / ropean

MUNI-Var Covid-19
Forecast
Hub

11 | GT NO Covid-19 Deep learning model that is data-driven and learns the dependence of hospitalization and mortality rate based

Forecast on a variety of syndromic, demographic, mobility and clinical data. Their preprint ([Rod+21]) from March [2
Hub 2021 presents their model in detail, but does not mention vaccinations, waning immunity or antibodies. %

12 | COVID-19 Forecast | N/A Covid-19 Baseline predictive model to forecast number of cases. No documentation provided on website or associated |&

Hub Forecast GitHub repository. é

Hub (]

13 | HKUST NO Covid-19 Deep neural networks to forecast cumulative deaths on the US state level. Here, deaths, cases and hospitaliza- §
Forecast tion data are taken into account. o

Hub n

14 | QJHong NO Covid-19 “Encounter Density” (which is based on cell phone data) is used to predict the future reproduction number E
Forecast and confirmed cases. °©

Hub =

15 | Predictive  Science | N/A Covid-19 Associated GitHub repository provides no documentation. Hence, no information about the model could be (3
Inc Forecast acquired. =)

Hub 2

16 | IDSS COVID-19 | NO Covid-19 Curve-fitting model to make short-term (for the following two weeks) predictions on number of cases and deaths |
Collaboration  (Iso- Forecast in the US, on state and federal level. Based on the assumption that the metric of interest (i.e. the number of @
lat) at MIT Hub deaths) can be explained by the sum of a set of Gaussian curves.

17 | Steve McConnell N/A Covid-19 Forecasts deaths in the US, work is submitted to CDC to integrate into their ensemble model. No description

Forecast of model provided.
Hub

18 | Robert NO Covid-19 Website has not been updated since 2021. According to the author, no epidemiological parameters are used.
Walraven/Robert Walraven- Forecast Contrarily, he uses a skewed Gaussian distribution to fit the available case data and a second skewed Gaussian
ESG Hub, Eu- | distribution to fit the available deaths data.

ropean
Covid-19
Forecast
Hub

19 | Carnegie Mellon Del- | NO Covid-19 Creation and evaluation of an ensemble forecast.
phi Group (COVID- Forecast
cast) Hub
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20 | Predictive Science N/A Covid-19 The associated GitHub repository states that this is a “R package for modeling and forecasting direct-contact
Forecast and vector-borne infectious diseases”. No further documentation provided.
Hub
21 | UT N/A Covid-19 Consortiuum, which both surveils and forecasts the infection dynamics of covid. In their paper from February
Forecast 2022 they present their age- and risk-structured SEIR model and note the necessity for forecasting models
Hub to integrate dynamics of infection-acquired and vaccine-acquired immunity. At the time of our screnning, no
publications nor documentation on the website which included acquired immunities, vaccines or antibodies
could be found.
22 | LUcompUncertLab N/A Covid-19 Associated GitHub repository states that they forecast infectious disease dynamics by combining forecasts of
Forecast computational models and human judgement. No documentation provided.
Hub
23 | UCSD_NEU NO Covid-19 A hybrid mechanistic and deep learning model for short-term (up to 4 weeks ahead) predictions of deaths on
Forecast US state level.
Hub

24 | University of Vir- | N/A Covid-19 Multi-method model (integrating multiple statistical, machine learning and mechanistic methods) forecasting |2
ginia, Biocomplexity Forecast the new confirmed cases on US state, county and national level. These model forecasts are combined using %
COVID-19 Re- Hub, Eu- | Bayesian model averaging [Adi+21]. In the publication from August 2021, neither antibodies nor waning are |&
sponse Team/UVA- ropean mentioned. é
Ensemble/UVA- Covid-19 Q
EpiHiper Forecast o)

Hub, Eu- o
ropean ;
Covid-19 E
Scenario o
Hub =
25 | MIT-Cassandra N/A Covid-19 Associated GitHub states that this is a Markov Decision Process inference model to capture the dynamics of 3
Forecast the growth rates of cases and deaths. No documentation provided. §'
Hub =
26 | University of Central | N/A Covid-19 The associated GitHub repository contains a variety of CSV files, but no documentation. Hence, no information §
Florida Forecast on the model could be gathered. 3
Hub
27 | Columbia University | N/A Covid-19 Use a metapopulation SEIR model to forecast for the upcoming 42 days of daily new cases, infections and
Forecast hospitalized individuals on US state, county and national level. The model documentation, which we scanned,
Hub dates from 2020 and hence does not mention antibodies or waning. No more recent documentation was found.

28 | Hussain Lab at | N/A Covid-19 Associated GitHub repository states that this is an SIR-based compartmental model, which takes into account
Texas Tech Univer- Forecast the possible immunity loss for recovered individuals. No documentation provided and linked preprint is from
sity Hub July 2020. Hence, this does not contain any valuable information for this study.

29 | CU Boulder NO Covid-19 Associated GitHub repository states that they predict COVID-19 cases at the county-level in the US using a

Forecast stacked long short-term memory model (LSTM). In their paper ([LVK22|), neither antibody levels or waning
Hub are mentioned as a necessity for their model. Same group as in ‘CUB_PopCouncil’ below.
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30 | ’Swiss Data Science | NO Covid-19 Short-term (1 week ahead) predictions of cases and deaths, very little documentation provided on website. In
Center/University of Forecast their preprint| they clarify that they implemented a piecewise trend estimation method based on the robust
Geneva’ /SDSC_ISG- Hub, FEu- | Seasonal Trend decomposition procedure based on LOESS (STL).

TrendModel ropean
forecast
hub

31 | Karlen Working | N/A Covid-19 Usage of discrete-time difference equations with long periods of constant transmission rate. Their model

Group Forecast description from July 2020 does not mention waning or immunity, but they provide some presentation slides,
Hub, Eu- | which mention the integration of waning into their model. No further documentation is provided and antibodies
ropean are not mentioned.

Covid-19
Forecast
Hub

32 | University of South- | N/A Covid-19 Usage of their own SIkJa model to forecast cumulative cases on US state, county and national level as well as in-
ern California/USC- Forecast ternationally. Their preprint ([SXP20]) dating from July 2020 does not mention antibodies or waning, but their |2
SlkJalpha/USC- Hub, Eu- | website notes that they are accounting for vaccines and all current variants. Here, no further documentation %
SlkJalpha_update ropean could be found. =

Covid-19 5
Forecast 3
Hub, Eu- 5
ropean 8
Covid-19 ;
Scenario >
Hub’ 5
33 | CUB_PopCouncil NO Covid-19 Associated GitHub repository provides very little documentation According to the repository, this is code for |2
Forecast predicting COVID-19 hospitalizations at the state-level in the US. Hereby, a stacked long short-term memory |3
Hub model (LSTM) is used. g

34 | John Hopkins ID | N/A Covid-19 SEIR model incorporating the uncertainty in the effectiveness of NPIs to project different possible epidemic [
Dynamics COVID- Forecast trajectories and healthcare impacts. Associated GitHub repository has last been updated in September 2020 §
19 Working Group Hub and paper (|Lem+21|) dates from April 2021. Paper does not yet consider vaccines and mentions neither g

waning nor antibodies. No more recent documentation could be acquired.

35 | BPagano N/A Covid-19 Death-based SIR model to project cumulative confirmed cases, confirmed cases per day, cumulative deaths,

Forecast deaths per day and some additional metrics for a variety of individual countries and on US state and county
Hub level. Neither antibodies nor waning immunity are mentioned in the model description.
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36 | Institute for Health | YES Covid-19 (0) Blog post dating from December 2021 [Rei21|, which describes their model update in detail. Their new
Metric and Evalua- Forecast model is a system of integro-differential equations. (1) Individuals are placed in different compartments based
tion (IHME) Hub on variant by which they were more recently infected and round of vaccination they most recently got —

One compartment for each combination of vaccinations and infections (at the time of the blog post they are
considering 24 compartments); (2) Time since last vaccination and/or infection is tracked; (3) Protection from
infection and vaccine interact multiplicatively. In other words, if € is the protection (against a variant) acquired
from vaccination and ¢ is the protection acquired from infection, then a person’s risk of infection is (1—¢)(1—¢)
times the risk of a naive individual. Hence, an individual’s risk of infection depends on the variant and time of
their last infection, the brand and time of their last vaccination and the variant they’re currently confronted
with. They estimate the average protection in a particular susceptible compartment to a specific variant. This
is then integrated into their integro-differential equations which describe the transitions between compartments.
In the appendix of their recent publication [RCM22| it is noted that to estimate waning protection against
infection following vaccionation they used Bayesian meta-regression with a monotonically decreasing spline
on time since second dose. Waning curves are estimated by vaccine and a lower bound of a 10% efficacy is
introduced. 2

37 | BIOCOMSC- N/A European | Description of their (early) empirical model can be found in their report from March 2020. Hence, no mention |2

Gompertz Covid-19 of partial (immunity), antibodies or waning. Unfortunately, large parts of the website are in Catalan, so they [=
Forecast were not considered in this review. S

Hub )

38 | bisop-seirfilter NO European | Unfortunately, their website is only available in Czech. However, in their preprint ([Smi+21]) from February [0
Covid-19 2021 they describe their SEIR compartmental model. Neither immune waning, nor antibodies are mentioned. 8

Forecast ;

Hub N

39 | bisop-seirfilterlite NO European | Same people as for ‘bisop-seirfilter’. o
Covid-19 =

Forecast 3

Hub §.

40 | CovidMetrics- N/A European | Short-term (for the following 10 days) predictions of cases for Germany and its federal states. Apart from that, [
epiBATS Covid-19 visualizations of different metrics, no documentation provided. §

Forecast 3
Hub
41 | DirkBeckmann- N/A European | Accessed the associated GitHub repository, which did not provide any documentation. Hence, no documenta-
Gompertz Covid-19 tion about the model could be acquired.

Forecast
Hub

42 | DSMPG-bayes N/A European | Bayesian inference and forecast of different COVID-19 related metrics like the effective growth rate, daily new
Covid-19 reported cases and the total of reported cases.
Forecast
Hub

43 | ECDC-hosp_model N/A European | Ensemble model forecasts by the European COVID-19 forecast hub predict the numbers of cases, hospital
Covid-19 admissions and deaths to be reported for the upcoming two weeks for every EU country. ECDC’s forecasts of
Forecast ICU admissions are currently not displayed, as the model is undergoing adjustments. Apart from description
Hub of data sources, no documentation could be found.
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44 | epiforecasts- NO European | Estimate and forecast effective reproduction number and confirmed cases based on case and death notifications
arimareg Covid-19 while accounting for reporting delays.
Forecast
Hub
45 | epiforecasts- NO European | Leads to the same website as ‘epiforecasts-arimareg’.
caseconv Covid-19
Forecast
Hub
46 | epiforecasts- NO European | Leads to the same website as ‘epiforecasts-arimareg’.
EpiExpert_direct Covid-19
Forecast
Hub
47 | epiforecasts- NO FEuropean | Leads to the same website as ‘epiforecasts-arimareg’.
EpiExpert_Rt Covid-19
Forecast 2
Hub =
48 | epiforecasts- NO FEuropean | Leads to the same website as ‘epiforecasts-arimareg’. =3
EpiExpert Covid-19 é
Forecast @
Hub “9’)
49 | epiforecasts- NO European | Package to estimate the effective reproduction number, growth rate and doubling time. &
EpiNow2 Covid-19 n
Forecast E
Hub o
50 | epiforecasts- NO European | Leads to the same website as ‘epiforecasts-arimareg’. =
tsensemble Covid-19 3
Forecast §'
Hub 2
51 | epiforecasts- N/A European | Leads to the personal website of Sam Abott, who is also involved in the models mentioned above. No model é
weeklygrowth Covid-19 documentation could be acquired. @
Forecast
Hub
52 | epiMOX-SUIHTER N/A European | Depicts data of the COVID-19 pandemic at the national Italian as well as on a regional (20 Italian regions) level.
Covid-19 Their paper ([Par+21|) from July 2021 neither mentions antibodies nor immune waning, but rather evaluates
Forecast the ability of their dashboard to provide fast and in-depth analyses of the past trends of the pandemic in Italy
Hub and supply predictions on its evolution based on their compartmental model, named SUTHTER.
53 | EuroCOVIDhub- N/A European | Forecasts and reports can be found on the European Covid-19 Forecast Hub website, but no documentation
baseline Covid-19 could be found.
Forecast
Hub
54 | EuroCOVIDhub- N/A European | Same as above.
ensemble Covid-19
Forecast

Hub
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55 | FIAS_FZJ.EpilGer N/A European | Broken URL, no information could be acquired.
Covid-19
Forecast
Hub
56 | fohm-c19inbel N/A European | Broken URL, no information could be acquired.
Covid-19
Forecast
Hub
57 | HZI- N/A European | They are currently conducting a multi-local and serial cross-sectional prevalence study on antibodies in Ger-
AgeExtendedSEIR Covid-19 many, but no model (description) on infection dynamics could be found on their website.
Forecast
Hub
58 | ICM-agentModel N/A European | Predict confirmed cases, occupied hospital beds and critical cases for the following two months in Poland.
Covid-19 Agent based model, but hardly any model documentation provided on website. Their preprint ([Zie421})
Forecast from September 2021 does neither mention antibodies nor waning, describes their agent based model (not [2
Hub, Eu- | mentioning the influence of multiple vaccine jabs/infections) and focuses on finding an optimal lockdown %
ropean strategy for Poland. In said preprint, they define they probability of infection as pinfection = 1 — exp(—al). |&
Covid-19 Here, o is the transmission coefficient and I is the total infectivity defined via I =) _w.I., where the sum is é
Scenario over the different infection contexts (household, workplace, preschool, school, university, large university, street, |2
Hub and travel), w, is the time dependent contact rate of context ¢ and I, is the time dependent context infectivity &
depending the number of (a)symptomatic and all agents at context ¢, the fraction of symptomatic agents who 8
don’t self-isolate and a curbing parameter for the infectivity of the asymptomatic agents. Consequently, no ;
protection acquired from infection/vaccination is included. N
59 | IEM-Health- N/A European | Al based disease model to predict the number of new cases during the following seven days in the USA. |o
CovidProject Covid-19 Dashboard has not been updated since April 2021, no model description available. =
Forecast 3
Hub §.
60 | ILM-EKF N/A European | Leads to a GitHub user page on which no documentation is provided. Unable to acquire information. =
Covid-19 §
Forecast 3
Hub
61 | Imperial-DeCa NO European | Short-term forecasts of COVID-19 deaths in multiple countries. Produce ensemble forecasts from the output
Covid-19 of three different models.
Forecast
Hub
62 | Imperial-Rtl0 NO European | Leads to same website as ‘Imperial-DeCa’.
Covid-19
Forecast
Hub
63 | Imperial-sbkp NO European | Leads to same website as ‘Imperial-DeCa’.
Covid-19
Forecast
Hub
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64 | itwm-dSEIR N/A European | Link provided on the European COVID-19 Forecast Hub leads to the general website of Fraunhofer-Institut fiir
Covid-19 Techno- und Wirtschaftsmathematik ITWM. There, no information on any sort of COVID-19 related model
Forecast could be acquired.
Hub
65 | ITWW-county_repro | N/A European | Leads to same GitHub user page as ‘ILM-EKF’.
Covid-19
Forecast
Hub
66 | JBUD-HMXK N/A European | Projections for various scenarios and countries. “News” subpage has not been updated since December 2021,
Covid-19 no documentation provided. Associated GitHub repository has last been updated in April 2022, but does not
Forecast provide documentation either.
Hub, Eu-
ropean
Covid-19
Scenario
Hub
67 | KITmetricslab- N/A European | GitHub repository simply states that this is a simple model of a branching process for delta and non-delta
bivar_branching Covid-19 cases in Germany. No additional documentation available.
Forecast
Hub
68 | LANL-GrowthRate NO European | Their model description (dating from October 2020) introduces their model COFFEE, which is a probabilistic
Covid-19 model that forecasts daily reported cases and deaths. Additionally, the top of their website states that they
Forecast made their last real-time forecast in September 2021. Hence, we assume that they discontinued their work. No
Hub mention of antibodies or waning.
69 | LeipzigIMISE- N/A FEuropean | Forward to a GitHub repo which does not provide any documentation and has last been committed to in April
SECIR Covid-19 21.
Forecast
Hub
70 | MIMUW-StochSEIR | N/A FEuropean | Unfortunately, their website is only available in Polish and has last been updated in July 2021. Hence, no
Covid-19 information could be acquired.
Forecast
Hub
71 | MOCOS-agent1 N/A European | Short-term forecasts (up to one month) of cases and deaths in Poland. Both their reports and linked papers
Covid-19 are from 2020. No model documentation in English could be found.
Forecast
Hub, Eu-
ropean
Covid-19
Scenario
Hub
72 | MUNI.LDMS_SEIAR | N/A FEuropean | Unfortunately, their website is only available in Czech. Hence, no information could be acquired.
Covid-19
Forecast

Hub
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73 | PL_GRedlarski- N/A European | Unfortunately, their website is only available in Polish. No information could be acquired.
DistrictsSum Covid-19
Forecast
Hub
74 | prolix-euclidean NO European | Unfortunately, the website is mostly in French and has last been updated in May 2022. Their preprint (|Pot21]),
Covid-19 dating from April 2021, states that the forecast the number of ICU patients in France. No mention of waning
Forecast or antibodies.
Hub
75 | Statgroupl9- NO European | Unfortunately, website is only available in Italian. Associated blog is in English, but has not been updated
richards Covid-19 since September 2021. Their paper ([Ala+21]) was published in July 2021 and introduces their parametric
Forecast regression model, which is motivated by incidence indicators such as the number of hospitalized, deceased,
Hub recovered and isolated cases. No mention of (partial) immunity, waning or antibodies.
76 | Statgroupl9- NO European | Leads to same website as Statgroupl9-richards above.
spatialrichards Covid-19
Forecast 2
Hub =
77 | UB-BSLCoV N/A European | Broken URL, no information could be acquired. &
Covid-19 §
Forecast @
Hub 3)
78 | UC3M-EpiGraph N/A European | Agent-based model, whose infection model is a SEIR++ model with 17 different compartments. A different R- 3
Covid-19 value is associated with every compartment. The compartments for the different stages of infection differentiate ;
Forecast between vaccinated and unvaccinated individuals. Additionally, their vaccination model considers a decrease E
Hub, Eu- | in protection as well as an age-dependent efficacy and the risk of vaccine failure. How these properties are |
ropean incorporated is not described. =
Covid-19 3
Scenario §'
Hub =
79 | LZF-SEIRC19SI N/A European | Unfortunately, their website is solely available in Slovenian. Hence, no information could be acquired. §
Covid-19 @
Forecast
Hub
80 | UMass-MechBayes N/A European | GitHub repository has not been updated since July 2021. Apart from the repository, there is no documentation
Covid-19 available.
Forecast
Hub
81 | UMass-SemiMech N/A European | Same repository as for ‘UMass-MechBayes’ is provided.
Covid-19
Forecast
Hub
82 | UNED-PreCoV2 N/A European | Unfortunately, the website is only available in Spanish. They note that in late March 2022 a new strategy for
Covid-19 the surveillance and control of COVID-19 as implemented. As a consequence, the daily data that feeds into
Forecast their model is no longer available and they discontinued their work. Due to the language barrier, no model
Hub documentation could be acquired.
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83 | UNIPV- NO European | Developed the ‘COVID Atlas’, which provides visual analytics on several aspects of the pandemic. Here, health
BayesINGARCHX Covid-19 (i.e. data regarding the pandemic progression), socio-economic and socio-political data are integrated. The
Forecast atlas lets the user visualize data on multiple layers, but does not contain its own disease digression model.
Hub
84 | UpgUmibUsi- NO European | GitHub repository has not been updated since January 2021. In their paper (|[BPM21]) from August 2021,
MultiBayes Covid-19 their Bayesian multinomial and Dirichlet-multinomial autoregressive models are proposed. Here, time series of
Forecast numbers of patients in exclusive categories (for example hospitalized in regular wards, in ICU units, deceased)
Hub are estimated. No mention of (partial) immunity, antibodies or waning.
85 | USyd- N/A European | GitHub repository has last been comitted to in April 21. Use global linear models to reproduce forecasts on
OneModelMan Covid-19 COVID-19 daily cases. No documentation provided.
Forecast
Hub
86 | ECDC-CM_ONE N/A European | From the GitHub repository of the Scenario Hub we learned that they integrate that protection against infection
Covid-19 wanes based on decaying antibody titers. No detailed model description or publications associated with this
Scenario model were found. Hence, we are unable to discuss the antibody integration in this model o
Hub =
87 | MODUS_Covid- YES European | Our own project. =3
episim Covid-19 é
Scenario @
Hub 3)
88 | RIVM-vacamole NO European | GitHub repository states that this determinisitc, age-structured, and extended (severe disease outcomes, vac- 3
Covid-19 cinations) SEIR model was developed to investigate different vaccination strategies. No mention of antibodies ;
Scenario or waning in documentation. E
Hub o
89 | SIMID-SCM N/A European | Their paper from June 2021 |Abr+21] introduces their stochastic age-structured discrete time compartmental |3
Covid-19 model to describe the transmission of COVID-19 in Belgium. In their technical report from September 2022 3
Scenario [Con22| the SIMID consortium notes a constant waning rate of 1/240d based on the assumptions of the §'
Hub European Scenario Hub. No additional information is provided, antibodies are not mentioned. =
90 | TUWien- NO European | Their paper from May 2021 ([Bic+21]) introduces their stochastic agent—based model, which evaluates contact §
AustrianCoVABM Covid-19 tracing policies in 2020. Hence, (partial) immunity is of no concern and neither waning nor antibodies are [®
Scenario mentioned.
Hub

Table 2: Models, which were discovered through (a) the Covid-
19 Forecast Hub, (b) the European Covid-19 Forecast Hub, (c)
the European Covid-19 Scenario Hub, or (d) a literature search.

(a) and (b) were accessed on 07/21/22, while (c) was accessed on
08/31/22.
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