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Abstract
Motivation: A patient’s disease phenotype can be driven and determined by specific groups of cells whose
marker genes are either unknown, or can only be detected at late-stage using conventional bulk assays such as
RNA-Seq technology. Recent advances in single-cell RNA sequencing (scRNA-seq) enable gene expression profiling
in cell-level resolution, and therefore have the potential to identify those cells driving the disease phenotype
even while the number of these cells is small. However, most existing methods rely heavily on accurate cell type
detection, and the number of available annotated samples is usually too small for training deep learning predictive
models.
Results: Here we propose the method ScRAT for clinical phenotype prediction using scRNA-seq data. To train
ScRAT with a limited number of samples of different phenotypes, such as COVID and non-COVID, ScRAT
first applies a mixup module to increase the number of training samples. A multi-head attention mechanism is
employed to learn the most informative cells for each phenotype without relying on a given cell type annotation.
Using three public COVID datasets, we show that ScRAT outperforms other phenotype prediction methods. The
performance edge of ScRAT over its competitors increases as the number of training samples decreases, indicating
the efficacy of our sample mixup. Critical cell types detected based on high-attention cells also support novel
findings in the original papers and the recent literature. This suggests that ScRAT overcomes the challenge of
missing marker genes and limited sample number with great potential revealing novel molecular mechanisms
and/or therapies.
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Introduction
Accurate prediction of clinical phenotypes for patients in
given cohorts is critical in advancing diagnosis, prognosis,
and therapy (Ching et al., 2018). Heterogeneous clinical
symptoms may lead to ambiguous predictions (Morley et al.,
2021), and therefore the analyses based on high-throughput
omics data have started to enter clinical routine in the
last decade (Chen et al., 2021). A challenging step in these
analyses is to dissect cellular content from patients’ genomic
profiles, including the detection of cell types defined by
gene expression profiles and their proportions in different
patients (Newman et al., 2019). While clinical phenotype
information, such as tumor metastasis, disease stage, and

treatment response for bulk tissue samples are widely
collected from various consortia, their gene expression
profiles are measured by averaging cells across the whole
tissue, which often do not reveal the full complexity of
diverse cell types within patients.

Recent advances of single-cell and single-nuclei RNA-
Sequencing (sc/snRNA-Seq) enable gene expression
profiling at the unprecedented single-cell resolution. While
this technology improves our understanding of cell-type
markers and disease-specific signatures, analysis of large-
scale cohorts is not clinically practical, especially for cancer
research, for the following reasons. (1) Dependence of
accurate cell type identification which might be biased
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or unavailable. Most scRNA-seq analysis starts with
detecting cell types using unsupervised clustering, followed
by cell-type annotations based on marker genes. Clinical
phenotypes are then predicted by distributions of cell types
or identifying specific types. However, accurate cell type
identifications are affected by the marker gene information
that might be suboptimal or missing, and the proper
clustering resolution for a sample. Therefore, many existing
scRNA-seq analysis methods even require users to provide
the number of cell types, which is unknown before analysis,
or set up a universal value to provide the corresponding
analysis results. (2) Limited number of samples. Most
well-annotated scRNA-seq datasets involve few than 20
samples, whose statistical power is too weak to support
the phenotype prediction and the findings of phenotype-
specific cell types. Such small size of samples can also lead
to serious overfitting for most machine learning models
and significantly affect their prediction performance. (3)
Lack of interpretability. Many computational methods try
to resolve the above issues but rarely provide users much
insight into cell types and molecular mechanisms driving or
related to phenotypes. Due to the above reasons, scRNA-
seq often needs to be integrated with bulk assays in the
analysis, and people mainly apply these methods to study
compositions of single tissues rather than their clinical
phenotypes for diagnosis and prognosis applications.

Here we present ScRAT, a clinical phenotype prediction
framework that can learn from limited numbers of
scRNA-seq samples with minimal dependence on cell-
type annotations. Compared to most available scRNA-seq
analysis algorithms that model gene expression profiles of
different cell clusters by separate Gaussian distributions (He
et al., 2021; Zeng et al., 2022), the first contribution
in ScRAT is that we utilize the attention mechanism to
measure interactions between cells as their correlations, or
attention weights. For each cell, we incorporate all of its
interaction patterns and attention weights to establish its
connections with the corresponding phenotypes. Secondly,
we introduce a mixup module in our framework as a data
augmentation approach to mitigate the potential overfitting
issue caused by the high model capacity together with the
very limited number of labeled samples. Lastly, ScRAT
establishes the connection between the input (cells) and
the output (phenotypes) of the Transformer model simply
using the attention weights. This is cost-effective compared
to existing approaches from literature that tend to be
computationally expensive, such as gradients propagation
or training probing classifiers (Chefer et al., 2021b,a; Clark
et al., 2019). ScRAT hence selects cells containing the
most discriminative information to specific phenotypes, or
critical cells, using their attention weights. It provides a
natural way to construct phenotype-specific subpopulations
in clinical cohorts that suggests prognostic markers and
potential therapeutic information.

We evaluate ScRAT on three public COVID datasets
compared to five baseline frameworks. In each dataset,
we would split the samples into two clinical phenotypes
based on the given annotation: COVID vs non-COVID,
mild/moderate vs severe/critical, or convalescence vs

progression. We also reduce the number of training samples
to investigate the predictive power of each framework.
ScRAT achieves the best AUC in all comparisons and
provides leading precision and recall in most scenarios.
The performance edge of ScRAT over its competitors
increases as the number of training samples decreases,
indicating the efficacy of our sample mixup module. Since
these public datasets come with cell type annotations
in various resolutions, we also examine the connections
between phenotypes and subpopulations enriched with
high-attention cells. What’s more, our experiment shows
that ScRAT can detect disease-critical and phenotypic-
driver subpopulations using high-attention cells, and these
information can potentially help to identify novel conditions
of druggable populations.

In short, ScRAT is the first deep neural network based
method to predict clinical phenotypes from scRNA-Seq, and
among the first attention-based framework for scRNA-seq
analysis. Our integration of attention mechanism and mixup
allows ScRAT to be independent of cell-type annotations,
capable of learning from a limited number of training
samples. Lastly, we propose a simple method to explain the
prediction of Transformer that is more cost-effective than
the existing methods. This indicates ScRAT can provide
interpretable information to guide biologists.

Related Work
Deep Learning in Single-cell RNA-seq Analysis.

Single-cell RNA-seq has become a popular tool for gene
expression analysis at a single-cell resolution. However,
analyzing scRNA-seq data is a challenging task, and
traditional bioinformatics methods may not be able to
handle the complexity and heterogeneity of the data.
Deep learning techniques have been applied to scRNA-seq
analysis, showing promising results on many related tasks.
For example, Yin et al. (2022) propose an autoencoder-
based classification framework to obtain compressed
representations of scRNA-seq data. These representations
are then fed into subsequent classifiers to predict the cell
types. Ravindra et al. (2020) use graph attention networks
(GAT) to construct a graph representation of the scRNA-
seq data, where each node represents a cell and each edge
represents the similarity between two cells. Then the disease
state for each cell is predicted based on the learned graph
representations.

Phenotype Prediction Using Bulk-cell RNA-Seq.

Gene expression profiling has been used to predicting
phenotypes in many clinical settings (Lonsdale et al., 2013;
Uhlen et al., 2017). PAM50 classifies breast tumor based
on expression profiles of 50 genes (Perou et al., 2000).
Molecular phenotypes of prostate cancer also relie on
gene expression profiling (Cancer Genome Atlas Research
Network, 2015), and multiple expression-based diagnosis
tests have also been developed. For example, The Prolaris
cell-cycle progression (CCP) predicts aggressiveness for
prostate cancer using expressions of 31 genes from the
cell cycle proliferation pathway (Cuzick et al., 2012). A
signature of 157 genes was developed to predict lethal
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prostate cancer (Penney et al., 2011). Oncotype Dx genomic
prostate score (Cullen et al., 2015) and Decipher Biopsy
score (Erho et al., 2013) also identify gene signatures
to predict the risk of metastasis as the tumor outcome.
These methods are mainly developed using bulk assays,
and can not benefit from cell-level resolution information
in scRNA-seq to improve diagnosis and prognosis.

Phenotype Prediction Using Single-cell RNA-Seq.

CloudPred (He et al., 2021) models the individual points
as samples from a mixture of Gaussians, probabilistically
assigns points to clusters, then estimates prevalence of
the subpopulations and use it to predict the phenotype
of that patient. scPheno (Zeng et al., 2022) constructs
gene expression profiles by a joint distribution of cell
states and disease phenotypes based on a deep generative
probabilistic model, and feeds the distribution as the
predictive features to support vector machine (SVM) for the
phenotype prediction. One of the main weaknesses of these
methods is that neither of them uses deep neural networks,
which indicates limited model capacity, although it also
allows these methods to work under a limited number of
labeled training data. Besides, the assumption of modeling
single cell population as Gaussian is doubted, and useful
information might be ignored in that case.

Problem definition
A cell is the most basic unit in scRNA-seq experiments and
will be denoted by a vector c over m genes including the
measure of gene expression level, e.g. the count of Unique
Molecular Identifiers (UMIs). The ultimate prediction unit
is denoted as a sample, which is extracted from a single
patient. A sample consists of n cells and is represented
as an n ⇥ m matrix S, where Sij corresponds to the
raw or normalized UMIs of the j-th gene in the i-th
cell. Each sample is associated with a specific one-hot
encoded phenotype label from a pre-defined set P =
{P 1, P 2, · · ·P o}. Based on that, we formally define our
problem as follows:
Problem: Phenotype prediction for scRNA-seq samples.
Given: A set of labeled samples represented by scRNA-seq
matrices D = {S1, S2, · · · , SK}, and their corresponding
labels Y = {P1, P2, · · · , PK}; a set of unlabeled samples
D0 = {S0

1, S
0
2, · · · , S

0
L
}.

Find: A prediction model which maps S0
i
2 D0 to P i 2 P.

Method
In this section, we present a neural-network-based method
called ScRAT to predict the phenotype of an scRNA-seq
sample. An overview of ScRAT is presented in Fig. 1, which
consists of three major modules: Sample Mixup, Attention
Layer and Phenotype Classifier. Our method takes an
scRNA-seq sample from a single patient as input. Note that
the order of cells within each sample does not matter and
the size of each sample is variable. To alleviate the possible
over-fitting issue, we employ a data augmentation technique
called “sample mixup” during the training time to increase
the amount and diversity of training samples. The backbone

of ScRAT is a multi-head attention layer (Vaswani et al.,
2017) which aims to learn a task-orientated embedding
for each cell within the sample. Considering its poor
scalability (Tay et al., 2020), a cropping strategy is applied
to the input sample before passing it to the attention layer.
As the last step, a one-layer Multi-Layer Perceptron (MLP)
takes the output of the attention layer and predicts the
phenotype as a probability distribution over the different
values of the phenotype. In the following subsections, we
delve into these three modules of ScRAT in detail.

Sample Mixup
The size of currently available scRNA-seq datasets is very
small, and it is expected to remain relatively small in
the near future, which will likely result in overfitting
when training a deep learning model. Mixup and its
variants (Zhang et al., 2017; Verma et al., 2019) are
interpolation-based and widely-adopted data augmentation
techniques for regularizing neural networks and improving
model generalizability (Carratino et al., 2020). For instance,
in computer vision setting, mixup convexly combines
random pairs of images and their associated labels to
generate new training data. Inspired by this, for scRNA-
seq analysis, we introduce a simple but efficient data
augmentation method, sample mixup, to generate new
samples during training process. Specifically, given two
scRNA-seq samples S and S0 together with a fixed � 2 [0, 1],
sample mixup is defined as follows (Zhang et al., 2017):

{x̃ | x̃ = �xi + (1 � �)x0
i
},

ỹ = �y + (1 � �)y0,
(1)

where xi and x0
i

are gene expression profile of cells drawn
from S and S0, and y and y0 are corresponding one-hot
phenotype label encodings.

Compared to the computer vision setup, samples here
correspond to images, cells in each sample correspond to
pixels in each image, and phenotypes of samples correspond
to labels of images. The main differences between these
two scenarios are that pixels in one image can only be
mixed with pixels in the same spatial location of another
image, and mixup can only be applied to images having
the same size. scRNA-seq data is not limited by these two
constraints.

The proposed scRNA-seq sample mixup aims to increase
the number and diversity of samples. Specifically, given
a pair of samples S1 and S2 with the same or different
phenotypes, we first randomly sample a batch S11

containing N cells only from S1, and sample another
batch S21 with the same amount of cells only from S2.
Each batch is allowed to include duplicate cells during
sampling. Then mixup is applied to S11 and S21 based on
Eq. 1, where � ⇠ Beta(↵,↵), for ↵ 2 (0,1) (Zhang et al.,
2017; Carratino et al., 2020), to generate N augmented
cells forming a new sample S3 called pseudo-sample, with
the phenotype label equals to the linear combination of
phenotype labels of S1 and S2.

Notably, since cells of different populations are
biologically very different, it does not make much sense
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Fig. 1. An overview of ScRAT, which consists of three main modules: Sample Mixup, Attention Layer and Phenotype Classifier. It takes a
scRNA-seq sample (a set of cells) as input, and outputs the predicted phenotype for the input sample.

to directly apply mixup to them. Therefore, although our
model does not require cell type information, during the
sample mixup, we only mix cells of the same cell population,
assuming that this information has either been annotated
by a human expert or been determined automatically by
state-of-the-art annotation methods such as MARS (Brbić
et al., 2020). For cell populations that appear only in one of
the samples, we add Gaussian noise to the gene expression
profile of cells that belong to those unique cell populations
during the mixup.

Sample mixup also ensures that the proportion of
each cell population in the pseudo-sample is the linear
combination of the proportions of that cell population in
two original samples. For example, given � = 0.2 and the
proportions of cell population A in two original samples are
30% and 20% respectively, then the proportion of A in the
pseudo-sample is calculated as: 0.2⇥30%+0.8⇥20% = 22%.

The effectiveness of sample mixup has been evaluated
in our ablation study (Section 5.2.1).

Attention Layer
Attention mechanisms (Bahdanau et al., 2014) have
achieved state-of-the-art performance in a wide range of
machine learning tasks which take a set of elements as input,
such as words (Devlin et al., 2018) and pixels (Dosovitskiy
et al., 2020). An attention mechanism pays more attention
to the relatively important elements by assigning high
weights to them during the forward pass. Multi-head
Attention is one of the most popular version of this
mechanism which was first proposed in (Vaswani et al.,
2017), and we use attention as a synonym for this version
here. Compared with classical neural nets such as MLP
and CNN (Krizhevsky et al., 2017), attention can not
only deal with variable-sized inputs but also assign weights
to different elements dynamically, which is necessary for
unordered inputs.

Specifically, the input of the attention layer is a set of
cell embeddings c = {~c1,~c2, . . . ,~cN} ,~ci 2 Rdin , where N

is the number of cells, and din is the number of features

in each embedding. Following the previous work (Vaswani
et al., 2017) closely, our attention layer maps the input
embeddings to three different kinds of vectors: key, query
and value using three weight matrices with the same shape
respectively: Wq,Wk,Wv 2 Rdkqv⇥din , where dkqv is the
dimensionality of key, query and value. Afterwards, a self-
attention with scaled dot-product is applied to each pair
of cells to compute their attention weights based on their
key and query vectors:

sij =
dot-product (Wq~ci,Wk~cj)p

dkqv

(2)

which denote the importance of cell j to cell i and are
normalized using the softmax function:

aij = softmaxj (sij) =
exp (sij)P

N

k=1 exp (sik)
. (3)

These attention weights are then treated as the weights
in the following linear combination process which outputs
a new embedding for each cell based on the value vectors
of all cells:

~hi =
NX

j=1

aijWv~cj . (4)

To extract information at different positions as well as
make the training process more stable (Liu et al., 2021),
multi-head attention (Vaswani et al., 2017) is applied
in our attention layer. Specifically, instead of utilizing
only one attention head with one group of Wq,Wk,Wv,
we utilize K attention heads with K different groups of
mapping matrices and run them in parallel. Afterwards,
we concatenate the outputs from each head and apply an
additional linear layer to it at the end.

In a nutshell, our attention layer is formulated as:

Attention(~ci) = Concat
⇣
~h1

i
, . . . ,~hK

i

⌘
Wo (5)

where Wo 2 RKdkqv⇥dout is a weight matrix, ~hk

i
is the

output of the k-th head based on Eq. 4.
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One limitation of existing attention-based models is
that they cannot handle very long sequences as input since
the self-attention operation has quadratic run-time and
memory complexity (Beltagy et al., 2020; Zhou et al., 2021).
Therefore, after augmenting the whole dataset using mixup,
we introduce a cropping strategy to both training and test
data, which randomly selects several subsets from each
sample and only use these subsets to train the model. We
call these subsets of cells “fixed-size samples” in this paper.

More specifically, for each sample, we randomly select
NC cells as one fixed-size sample, and generate NS fixed-
size samples for each sample. During the training process,
each fixed-size sample is calculated a loss which is added
up in the final loss computation used to update the model
parameters; while during the testing process, we assign a
(categorical) predicted label to each fixed-size sample by
setting a threshold, and use majority vote to assign the
predicted label to each sample based on their fixed-size
samples. Here, NC and NS are both hyper-parameters
which can be tuned by the users. Since NC could be
relatively small, this cropping strategy improves the model
scalability. Moreover, this strategy is an analogy to the
cropping in the computer vision setting, and therefore can
also be treated as a useful data augmentation approach. In
the next section, comprehensive experiments demonstrate
its effectiveness.

Phenotype Classifier
The output of the attention layer are the embeddings of
all cells within the input sample. Similar to the way the
average pooling function operates in image classification, we
aggregate the cell embeddings for each sample by computing
the average value along each dimension. While this method
may cause some loss of information, it is a commonly
used and effective technique to simplify the feature map
representation and improve the model’s generalization
performance. Moreover, it ensures that the cell order
does not affect the final results. Finally, the aggregated
embedding is passed to the phenotype classifier, a one-layer
MLP, which outputs the predicted phenotype for the input
sample, i.e. a probability distribution over the different
values of the phenotype.

Experiments
We evaluate the performance of ScRAT on three large-scale
public COVID scRNA-seq datasets, and compare it with
five state-of-the-art methods. We perform an ablation study
to determine the impact of the different ScRAT components.
Finally, we design a cost-effective method to convert cell
attention weights in ScRAT as the relevance score which
determines the relevance of a given cell population with
respect to the clinical phenotype. Our biological analysis
demonstrates the potential of revealing disease mechanisms
based on the critical cell types identified using attention
weights in ScRAT.

Experimental Setup
Datasets
Our experiments include four tasks based on the
following three scRNA-seq COVID19 cell datasets. For
COMBAT (COvid-19 Multi-omics Blood ATlas (COMBAT)
Consortium, 2022) and Haniffa (Stephenson et al., 2021)
datasets, we perform the task of disease diagnosis (i.e.,
COVID vs Non-COVID). For SC4 (Ren et al., 2021)
which includes mostly COVID samples, we perform two
separate tasks of predicting severity (i.e., mild/moderate
vs severe/critical) and stage (i.e., convalescence vs
progression). See Table 1 for more information.

Design of Experiments
To reflect the limited number of labeled scRNA-seq samples
in real applications, we first define the Training Ratio for
each task as the number of samples included in the training
data divided by total number of samples in the dataset,
and split the original dataset into the training and test
datasets accordingly. For each given training ratio ranging
from 9% to 50% in our design, we run the experiments for
100 random splits to better evaluate the performance of
different methods. Considering the high dimensionality of
scRNA-seq data which is likely to result in serious over-
fitting, we map the original input to a low dimensional
latent space and keep only 50 principal components by
PCA (Halko et al., 2011). The area under the receiver of
characteristic curve (AUC) is used as the evaluation metric
in the following discussions.

Baselines
We compare ScRAT with five popular phenotype prediction
methods, including two pseudo-bulk methods and three
single-cell methods. For pseudo-bulk methods, we first
average the gene expression across all cells in one sample
to simulate a pseudo bulk assay as the input to the
prediction model. We choose naive linear layer and feed-
forward layer as two such prediction models which are
denoted as Linear and Feedforward (bulk) respectively
in this paper. For single-cell methods, single-cell resolution
information can be used by two different strategies, either
processing each cell separately, or processing all cells in one
sample interactively. Simple models such as linear layer and
feed-forward layer can be only used for the first strategy
since their weights are position-specific, the prediction
results change according to the order of cells, which makes
it difficult to process multiple cells as a whole. In the
experiment, we use feed-forward layer for this strategy
and denote this baseline as Feedforward (single). For
the second strategy of interactively analyzing all cells, the
encoding of a given cell will be affected by others in the same
sample and can potentially capture correlations between
cells. Vanilla attention layer (Vaswani et al., 2017) and
CloudPred (He et al., 2021) are selected as the methods
for this strategy, which are denoted as Attention and
CloudPred. We set 10 as the number of clusters in
Cloudpred since it achieves the highest AUC among most of
the experiments compared with other numbers of clusters
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Dataset Phenotype #Cells #Samples #Samples in Class 1 #Samples in Class 2

Combat Disease Diagnosis 835,937 121 77 44
Haniffa Disease Diagnosis 528,438 105 71 34

SC4
Disease Severity 501,943 91 29 62
Disease Stage 1,289,496 229 138 91

Table 1. Summary of 3 Datasets. We exclude any samples with less than 500 cells or unclear clinical phenotype annotations
from the original datasets. Note that one patient can be sampled multiple times and contribute to multiple samples. For Combat
and Hannifa, the numbers of samples in Class 1 and 2 correspond to the number of COVID and non-COVID samples. Class 1 and 2
in SC4 correspond to mild/moderate vs severe/critical phenotypes among 91 samples of progression for the severity prediction, and
convalescence vs progression for the stage prediction. See Supplementary Table 1 - 3 for detailed information.

we try (5 and 20). Notably, baseline Attention is equivalent
to using the ScRAT without sample mixup module.

Configuration of ScRAT
Throughout our experiments, we observed that the
performance of the model remained largely unaffected
when the number of pseudo-samples exceeded 250 (Fig. 2).
Therefore, for each experiment of ScRAT, we apply mixup
to generate 300 pseudo-samples with 10,000 cells in each
from the original training samples, and only use these
300 pseudo-samples to train the model. ↵ in the beta-
distribution of mixup is set to 0.5. For the cropping strategy,
we set the number of cells in each fixed-size sample (NC )
to 500, and set the number of the fixed-size samples (NS)
to 20 and 50 for training and testing respectively. We only
use one attention layer, and set the number of attention
heads K to 8 and the dimension of each head dkqv to 16.
We use Adam optimizer with learning rate as 1e-2. All
the hyper-parameters are decided using the 5-fold cross
validation technique.

Fig. 2. Impact of the number of the pseudo-samples on ScRAT
AUC. Our experimental results indicate that ScRAT’s performance
(AUC) is not significantly impacted by the number of pseudo-samples
generated by Sample Mixup once it exceeds 250.

Prediction Results
We compare ScRAT with five baseline methods on four

tasks, and provide the AUC of all methods in Fig. 3. In
general, we have the following observations: (1) ScRAT
consistently outperforms all baseline methods on four tasks,
which demonstrates the effectiveness and generalizability of

ScRAT. More specifically, the performance edge of ScRAT
over the second best method (usually the vanilla attention)
increases as the training dataset size (number of samples)
decreases, verifying the usefulness of our proposed sample
mixup as a data augmentation approach. For example, at
training ratio = 9%, the p-value of the t-test between AUCs
of ScRAT and vanilla attention is much smaller than 0.01
in all but the SC4-Severity tasks. (2) Vanilla attention layer
is the second best model for all four tasks, which indicates
the strengths of the attention mechanism in phenotype
prediction task using scRNA-seq data. (3) Feed-forward
(single) has the highest recall in both COMBAT and
Haniffa but low precision compared to the attention model
and ScRAT, suggesting the necessity of simultaneously
considering information from all cells (Fig.1&2 in the
supplementary material).

Ablation Study
Impact of Mixup Strategies. To investigate the

impacts of applying mixup only to cells from the same
population, we use the Haniffa dataset to compare the
performance between ScRAT (i.e., mixup of cells from the
same population) and an alternative method that applies
mixup to random pairs of cells regardless of their cell
populations. The results are shown in Fig. 3(a). Following
the predefined clusterings of 9/18/12 cell populations
in Combat/Haniffa/SC4, sample mixup can improve the
phenotype prediction performance and increases the AUC
by up to 1.4% compared to the alternative method, which
indicates the efficacy of applying mixup to cells from the
same population.

What’s more, given the number of cells in these datasets,
these clusterings are considered low-resolution and can be
achieved automatically without human intervention. This
indicates that the sample mixup of ScRAT has a minimal
dependency of accurate cell type annotations, and can
avoid the common challenges of finding the best resolution
in scRNA-seq analysis. Moreover, our experiment shows
that even without any predefined population information,
the random mixup can still be applied to overcome the
bottleneck of a limited number of training samples without
dramatically hurting the performance.
Impact of Attention Weights. Despite the wide
discussions (Serrano and Smith, 2019; Jain and Wallace,
2019; Wiegreffe and Pinter, 2019), the usefulness of
the attention mechanism in interpretability is still
controversial. Inspired by a recent work about top k
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Fig. 3. Comparison of different methods on four different tasks. For each task, we report the prediction results of all methods
using AUC ± 95% confidence intervals for 10 different training ratios. ScRAT outperforms other methods in all settings, followed by vanilla
attention (The p-value of t-test between ScRAT and vanilla attention << 0.01 in all but the SC4-Severity tasks at Training Ratio=9%).
The performance edge of ScRAT over vanilla attention increases as the training ratio decreases, especially for the Combat datasets. See
Supplementary Table 4 - 7 for detailed information.

attention weights (Gupta et al., 2021), we provide a new
perspective for the attention mechanism interpretation by
building a bridge between attention weights and the model
performance. We design the following two experiments to
empirically achieve this goal: given a sample with N cells,
we modify the N ⇥ N self-attention matrix described in
Eq. 3 in two different ways:

Top k: For each row of the matrix, we only keep
entries with top k largest attention weights, denoted as
(a1, . . . , ak), and set attention values of all remaining

entries uniformly as
1�

P
k

j=1
aj

N�k
.

Random k: For each row of the matrix, we only keep
attention weights for k randomly selected entries, denoted
as (a0

1, . . . , a
0
k
), and set the attention values of remaining

entries uniformly as
1�

P
k

j=1
a

0
j

N�k
.

The results of the above two experiments on Haniffa
dataset are presented in Fig. 4(b), where we set k to 5.
The AUC of the top k attention method is almost the
same as the vanilla attention, which indicates that the
top k attention weights are sufficient for the prediction
task. On the other hand, the performance of the random
k method drops significantly, suggesting the necessity of
keeping high attention weights. In this way, we empirically
prove the connections between the attention weights and the
model performance, and provide an attention mechanism
interpretation for ScRAT.

Biological Interpretation of Cell Attention
The accuracy of predicting phenotypes using ScRAT
relies heavily on high-attention cells, indicating a strong
connection between these cells and the critical-cell-types-
driving clinical phenotypes. While ScRAT calculates
attention weights without cell type annotation, we use

Fig. 4. Ablation Study. Left(a): Sample Mixup corresponds to
the current procedure of ScRAT that only mixes cells from the
same population. Random Mixup means that we apply mixup to any
pairs of cells. The result indicates the validity of current sample
mixup method. Right(b): We compare the performance of various
attention matrix re-construction strategies to show that attention
weights are related to the model performance. For each row of the
attention matrix, Top k keeps the top k largest attention weights,
and Random k keeps k randomly selected attention weights, before
normalizing the matrix for the remaining fields. Here, k is set to 5.
The results of ScRAT using the original attention matrix described
in Eq. 3 is denoted by Vanilla Attention. The result shows that top
k method achieves AUC comparable to using all attention weights,
and they are both better than random k attention. This provides
strong evidence of the connection between high attention weights
and model performance.

the manually annotated cell types provided by the
authors of the COVID datasets to examine the biological
meaningfulness of high-attention cells. We demonstrate
that the most relevant cell types among the high-attention
cells, such as specific monocytes and platelets, support
findings in the original paper and the recent literature. Our
analyses confirm the relevance of high-attention cells to
clinical phenotypes, and their potential for determining
critical cell types for other diseases.
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We first define the relevance of a cell with respect to
the phenotype prediction as follows. Given a trained model
with H attention heads and an input sample Sj with N

cells, ScRAT generates one attention matrix per attention
head. For a cell ci in Sj , its High-attention Occurrence
Value (HOV) is defined as the total number of times its
attention weight ranked top k in a row across all rows and
all H attention matrices, or

HOV
Sj

i
=

HX

h=1

NX

n=1

I
⇣
a
Sj

hni
� k

Sj

hn

⌘
, (6)

where I(·) is the indicator function, a
Sj

hni
is the attention

weight at the n-th row and i-th column of the h-th
head’s attention matrix, and k

Sj

hn
denotes the k-th highest

attention weight in the same row of the same attention
matrix.

Once we have cell annotations for all cells in Sj , we
extend the cell-level HOV to derive the Relevance score
(R-score) for any given cell type T with respect to sample
Sj by adding together the HOVs of all the cells in T \ Sj ,
and normalize it:

R-scoreSj

T =

P
N

i=1 I
⇣
ci 2 C

Sj

T

⌘
HOV

Sj

i

|CSj

T |
, (7)

where C
Sj

T is the set of all the cells of cell type T in Sj .
For every phenotype, we then average the R-scores of

the same cell type across all samples of this phenotype. The
top k0 cell types with the highest averaged R-scores are
then selected as the critical cell types of this phenotype.

Here we use the Haniffa dataset, the most
comprehensively analyzed one among the three datasets
used in the experiments, to demonstrate the clinical
relevance of high-attention cells and critical cell types
reported by ScRAT. The top 10 critical cell types (among
51 cell groups defined in the original paper) ranked by
R-score are shown in Table 2. Assuming critical cell types
would better separate patients of different phenotypes, we
test how well a phenotype can be predicted using only cells
from that cell type and a simple feed-forward network. The
AUC reported in Table 2 corresponds to a 50% training
ratio. Most of our critical cell types have AUC > 0.85. We
repeat the experiment for all 51 cell types and the AUC
of critical cell types selected by ScRAT are among top 10
AUC except for RBC and pDC, which demonstrates the
relevance of cell types with a high R-score for phenotype
prediction.

Next we compare these critical cell types to the
corresponding analysis in the original paper (Stephenson
et al., 2021), and discover that their major findings are
related to the critical cell types listed in Table 2: (1)
Humoral immune response. ScRAT detected multiple
subtypes of Plasma cells as critical, i.e., Plasmablasts,
Plasma_cell_IgG, and Plasma_cell_IgA, which are the
key effectors of the humoral immunity that produce
antibodies. Consistent with our finding, the authors of
the original paper also reported a larger population of
Plasmablasts, Plasma_cell_IgA, and Plasma_cell_IgG

in COVID-19 patients with severe symptoms. Notably,
one characteristic of the humoral response against SARS-
CoV-2 is the short-lived neutralizing antibodies, both IgG
and IgA, manifested in the different humoral responses
during COVID-19 infection and of other inflammatory
conditions (Nguyen et al., 2022). More than 21% of
cells from these 3 subtypes have high-attention weight,
suggesting that ScRAT can detect the significance of
humoral immune response during COVID-19 infection.
(2) Impacts of monocytes. ScRAT also identified
CD14_mono as critical cell types. The data in (Stephenson
et al., 2021) implies that CD14+ monocytes preferentially
replenish the bronchoalveolar macrophages in health,
while a much smaller and specific subset of monocytes,
namely the C1QA/B/C+/CD16+ monocytes, replenish the
bronchoalveolar macrophages of the COVID-19 patients.
The latter denoted as C1_C16_mono ranks 13th based on
the R-score, and its population expansion is also more often
observed in patients admitted to ICUs. The differential
behaviors of these monocytes constitute a distinguishing
feature between COVID-19 and non-COVID-19 patients.
(3) Monocytes and platelet aggregates. Pathological
monocyte-platelet interactions have been associated with
aberrant coagulation and thrombosis formation in COVID-
19 patients (Levi et al., 2020; Hottz et al., 2020). Since
such interaction requires receptor-ligand interactions, the
original authors suggested several receptor-ligand pairs
between monocytes and platelets that may contribute
to the aberrant interactions in COVID patients. This
finding supports the selection of more than 40% of platelet
cells as critical by ScRAT. (4) Hematopoietic stem

cells. HSC_CD38pos are early hematopoietic progenitors
and are rarely observed in PBMC samples. The authors
hypothesized that their presence in the PBMC samples
of COVID-19 patients reflected perturbations of the bone
marrow homeostasis during COVID-19 infection. Since
HSC_CD38pos only constitutes less than 0.27% of cells
in the dataset, this demonstrates that ScRAT can detect
important phenotype-specific cell types of very small size.

We also want to highlight the detection of DC3 at the
bottom of Table 2. This newly identified dendritic cell type
has been shown to promote inflammatory functions of CD4+
and CD8+ T cells (Villar and Segura, 2020), but their
specific functions are yet to be deciphered. There are recent
reports about their association with COVID, including an
increased of CD163+ CD14+ cells within the DC3 cell
type in COVID patients with severe symptoms (Winheim
et al., 2021). Although the exact roles of these DC3 cells
in COVID infection are yet to be uncovered, their high R-
scores show the ability of ScRAT to detect cells of interest
in a specific biological context.

These analyses suggest that the critical cell types
reported by ScRAT are indeed phenotype-specific,
consistent to, and supported by verified biological
knowledge and the latest findings.
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Critical Cell Types R-score AUC

pDC 2.58 0.58
RBC 2.20 0.68

Plasmablast 2.13 0.94
Platelets 2.13 0.86

HSC_CD38pos 1.69 1.00
Plasma_cell_IgG 1.62 0.95

CD83_CD14_mono 1.56 0.89
CD14_mono 1.50 0.94

Plasma_cell_IgA 1.24 0.92
DC3 1.18 0.77

Table 2. Top critical cell types with their R-score and

AUC of phenotype classification when using only the

corresponding critical cell type. We rank these critical cell
types based on their R-score of COVID phenotype. The larger
R-score indicates the higher relevance to the phenotype. We
use the Feedforward (single) model to predict the phenotype
using only cells from single cell type. The AUC is based on 50%
training ratio, using half of patients as the training data and the
other half of patients for testing. Most critical cell types selected
by ScRAT also achieve high AUC except for RBC and pDC. A
cell type of higher AUC is more discriminative in predicting
different phenotypes, and hence more likely a real critical call
type. The concordance between cell types with high R-scores
and high AUCs shows that high-attention cells detected by
ScRAT are phenotype-specific. See Supplementary Table 8 for
detailed information.

Conclusion
In this paper, we introduce the problem of phenotype
prediction using scRNA-seq data. We present ScRAT, an
attention-based method that is designed to learn from
limited samples without prior knowledge of marker genes
or critical cell types, and provides accurate phenotype
predictions. ScRAT consists of three sub-modules: Sample
Mixup, Attention Layer and Phenotype Classifier. Sample
Mixup increases the size of training data to avoid overfitting.
The Attention Layer models interactions between cells
without any given cell-type annotations, and provides a way
to extract critical cells important in phenotype predictions.
The Phenotype Classifier takes the latent representation
of the input data produced by the attention layer and
predicts the phenotype. We perform experiments on four
tasks from three benchmarks and demonstrate that ScRAT
consistently outperforms five baselines. We also show the
biological meaningfulness of the cell types which ScRAT
determines to be critical for phenotype prediction, through
an analysis of the papers of the consortia which create
the benchmarks and of several more recent studies. These
findings suggest that ScRAT has the potential to discover
phenotypic-driver cell types that suggest novel molecular
mechanisms and/or targeted therapies.

Future Work
While we use COVID datasets as our testbed due to
the greater availability of public domain datasets, our
ultimate goal is to predict clinical phenotypes and discover
phenotype-specific cell types for cancers that are one of

the most heterogeneous ecosystems with high variance
among patients. In our future work, we plan to collect
scRNA-seq cancer datasets to investigate the efficacy of
ScRAT for diagnosis and prognosis for various types of
cancer. The current design of ScRAT does not offer an easy
integration of data from different cohorts, such as learning
a model on data from one consortium and applying it to
predict clinical phenotypes on the data of other consortium
data. The challenges are differences in sequencing protocols,
patient-level variance, and batch effects observed in all atlas
initiatives (Luecken et al., 2022). Differences in analysis
protocols, including cell-type annotation ontologies, create
further challenges. We will explore ways to employ recent
advances in transfer learning to increase the transferability
of ScRAT models.
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1 Summary of COVID scRNA-seq Atlases
This section provides the breakdown of samples from each atlas in our experiment. A single patient can be
sampled multiple times and contribute to multiple samples. Since we exclude samples with less than 500
cells, we define effective samples as those samples with at least 500 cells, and effective cells as the collections
of all cells from effective samples used in our experiments.

Labels COVID Annotations Number of Number of Number of Samples Number of Number of
status Samples Cells < 500 cells effective samples effective cells

HV No Healthy 10 92,205 0 10 92,205
FLU No Influenza Acute 12 19,233 1 11 19,058
Sepsis No Sepsis acute(IP) 23 164,128 0 23 164,128

COVID_MILD Yes Mild 17 114,418 0 17 114,418
COVID_SRV Yes Severe 30 247,799 0 30 247,799
COVID_CRT Yes Critial 17 93,982 1 16 93,969
COVID_LDN Yes Low-dose Naltrexone 2 15,485 0 2 15,485

COVID_HCW_MILD Yes Community COVID-19 13 88,898 1 12 88,875

Table 1: Overview of Combat scRNA-seq dataset.

Labels COVID Annotations Number of Number of Number of Samples Number of Number of
status Samples Cells < 500 cells effective samples effective cells

Healthy No Healthy 24 97,039 0 24 97,039
LPS No LPS 12 7,884 6 6 6,403

Non-covid No Non-covid 5 15,157 0 5 15,157
Asymptomatic Yes Asymptomatic 12 33,601 1 11 33,227

Critical Yes Critical 16 63,854 0 16 63,854
Mild Yes Mild 19 93,835 0 19 93,835

Moderate Yes Moderate 29 179,012 1 28 178,688
Severe Yes Severe 7 40,235 0 7 40,235

Table 2: Overview of Hannifa scRNA-seq dataset.

Labels Number of Number of Number of Samples Number of Number of
Samples Cells < 500 cells effective samples effective cells

Disease Stage
convalescence 140 787,987 2 138 787,553
progression 116 509,715 25 91 501,943

Disease Severity
mild/moderate 33 164,286 4 29 162,741
severe/critical 83 345,429 21 62 339,202

Table 3: Overview of SC4 scRNA-seq dataset.

2 Evaluations of Phenotype Prediction Accuracy
We provide the precision and recall for different methods on 4 tasks as the complementary information to
AUC values described in the main text. Some alternative methods provide better measurements than ScRAT
in some specific tasks with some trade-off. For example, Linear provides higher precision in Combat but low
recall, and Feedforward (single) provides better recall in most tasks but low precision. These results support
that ScRAT provides the best accuracy of phenotype prediction by compromising between precision and
recall.
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Figure 1: Comparison of different methods on four different tasks based on precision. For each
task, we report the prediction accuracy of all methods using precision for 10 different training ratios. ScRAT
outperforms other methods in all settings with one exception on the Combat dataset.

3 Distribution of High-Attention Cells in the Haniffa Dataset
In addition to the High-attention Occurrence Value (HOV) discussed in the main text, we also provide the
number of high-attention cells for each cell type of the Haniffa dataset in Table 8. The main differences
between this table and the R-score in Table 2 of the main text is that, R-score also considered the occurrence
for each cell. Some critical cell types, such as DC3 or CD83_CD14_mono, getting higher rank based on
the R-score compared to the one using the ratio of high-attention cells. This indicates that high-attention
cells in these cell types are getting high-attention values more often than average. Comprehensive analysis of
high-attention cells from these cell types will be the most important goal in the next stage of development of
ScRAT.
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Figure 2: Comparison of different methods on four different tasks based on recall. For each task, we
report the prediction accuracy of all methods using recall for 10 different training ratios. Feedforward (single)
provides the best recall rates but low precision. This suggests the necessity of simultaneously considering
information from all cells to better predict the phenotype of a sample.

Haniffa Dataset
Training Ratios

9% 10% 11% 12.5% 14% 17% 20% 25% 33% 50%
Number of Training Samples 9 11 12 13 15 18 21 26 35 53
AUC

ScRAT 0.7532 0.7596 0.7699 0.7806 0.8092 0.8314 0.8456 0.8706 0.8937 0.9207
Attention 0.7168 0.7208 0.7368 0.7444 0.7735 0.8009 0.8224 0.8488 0.8816 0.9168

Linear 0.6052 0.6119 0.6323 0.6372 0.6543 0.6519 0.7077 0.7126 0.7239 0.7788
Feedforward (bulk) 0.6545 0.6526 0.6597 0.6784 0.6964 0.7031 0.7512 0.7554 0.7971 0.8436

CloudPred 0.6071 0.6009 0.6175 0.6227 0.6476 0.6681 0.6797 0.7169 0.7675 0.8418
Feedforward (single) 0.6851 0.6915 0.7023 0.7145 0.7335 0.7414 0.7812 0.7977 0.8290 0.8839

Precision
ScRAT 0.7980 0.8031 0.8010 0.8070 0.8197 0.8309 0.8324 0.8548 0.8662 0.8888

Attention 0.7799 0.7823 0.7873 0.7943 0.8073 0.8228 0.8272 0.8468 0.8650 0.8900
Linear 0.7559 0.7602 0.7704 0.7726 0.7803 0.7821 0.8123 0.8207 0.8215 0.8596

Feedforward (bulk) 0.7571 0.7520 0.7528 0.7561 0.7615 0.7668 0.7839 0.7838 0.8052 0.8134
CloudPred 0.7255 0.7216 0.7213 0.7227 0.7371 0.7441 0.7508 0.7694 0.7884 0.8283

Feedforward (single) 0.7148 0.7128 0.7234 0.7243 0.7333 0.7391 0.7589 0.7635 0.7745 0.7861
Recall

ScRAT 0.7566 0.7662 0.7816 0.7899 0.8203 0.8363 0.8512 0.8822 0.8871 0.9178
Attention 0.7795 0.7853 0.8009 0.8059 0.8347 0.8364 0.8632 0.8779 0.8877 0.8996

Linear 0.5437 0.5506 0.5722 0.5667 0.5771 0.5787 0.6002 0.5909 0.6120 0.6157
Feedforward (bulk) 0.7241 0.7466 0.7694 0.8002 0.8186 0.8088 0.8379 0.8607 0.8580 0.9116

CloudPred 0.6960 0.7135 0.7242 0.7444 0.7808 0.8012 0.7919 0.8316 0.8579 0.8849
Feedforward (single) 0.8520 0.8714 0.8921 0.9182 0.9196 0.9266 0.9334 0.9461 0.9568 0.9744

Table 4: Comparison for different methods on the Haniffa dataset. Best results of AUC, precison,
and recall for each training ratio are marked with bold typeface. ScRAT has the highest AUCs in all training
ratios while Feedforward (single) provides higher recall with the cost of low precision.
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COMBAT Dataset
Training Ratios

9% 10% 11% 12.5% 14% 17% 20% 25% 33% 50%
Number of Training Samples 11 12 13 15 17 21 23 30 40 61
AUC

ScRAT 0.9089 0.9164 0.9238 0.9381 0.9414 0.9533 0.9584 0.9629 0.9710 0.9789
Attention 0.8349 0.8523 0.8615 0.8929 0.9025 0.9240 0.9380 0.9505 0.9624 0.9707

Linear 0.8041 0.8326 0.8379 0.8729 0.8708 0.8994 0.9247 0.9468 0.9691 0.9813
Feedforward (bulk) 0.7661 0.7908 0.7882 0.8382 0.8068 0.8343 0.8868 0.9230 0.9541 0.9715

CloudPred 0.7314 0.7503 0.7622 0.7768 0.7970 0.8201 0.8548 0.8954 0.9485 0.9657
Feedforward (single) 0.7685 0.7909 0.8052 0.8575 0.8189 0.8644 0.9087 0.9337 0.9610 0.9736

Precision
ScRAT 0.8607 0.8639 0.8707 0.8856 0.8946 0.9071 0.9158 0.9235 0.9359 0.9477

Attention 0.7901 0.8018 0.8102 0.8369 0.8483 0.8709 0.8898 0.9053 0.9258 0.9399
Linear 0.8405 0.8606 0.8632 0.8892 0.8864 0.9049 0.9249 0.9433 0.9614 0.9715

Feedforward (bulk) 0.7896 0.8064 0.7988 0.8354 0.8074 0.8182 0.8650 0.8984 0.9298 0.9405
CloudPred 0.7403 0.7536 0.7616 0.7717 0.7734 0.7963 0.8181 0.8430 0.8697 0.8976

Feedforward (single) 0.7422 0.7692 0.7653 0.8039 0.7669 0.7877 0.8242 0.8602 0.8930 0.9057
Recall

ScRAT 0.9074 0.9154 0.9150 0.9266 0.9334 0.9357 0.9424 0.9483 0.9546 0.9601
Attention 0.8850 0.8960 0.8985 0.9140 0.9177 0.9296 0.9399 0.9450 0.9522 0.9553

Linear 0.7047 0.7191 0.7294 0.7540 0.7618 0.7928 0.8156 0.8348 0.8589 0.8870
Feedforward (bulk) 0.7802 0.7968 0.8053 0.8226 0.8449 0.8795 0.8839 0.8890 0.9067 0.9323

CloudPred 0.7729 0.7803 0.7991 0.8081 0.8294 0.8333 0.8621 0.8853 0.8957 0.9347
Feedforward (single) 0.8839 0.8912 0.9025 0.9205 0.9380 0.9377 0.9582 0.9578 0.9700 0.9779

Table 5: Comparison for different methods on the COMBAT dataset. Best results of AUC, precison,
and recall for each training ratio are marked with bold typeface. ScRAT has the highest AUCs in most
training ratios while Linear and Feedforward (single) provides higher precision or recall with the cost of low
recall/precision.

SC4 Dataset: Stage Prediction
Training Ratios

9% 10% 11% 12.5% 14% 17% 20% 25% 33% 50%
Number of Training Samples 21 23 25 29 32 39 46 57 76 115
AUC

ScRAT 0.7432 0.7589 0.7677 0.7808 0.7980 0.8160 0.8359 0.8510 0.8817 0.9012
Attention 0.7172 0.7343 0.7465 0.7589 0.7729 0.7855 0.8052 0.8178 0.8446 0.8768

Linear 0.6854 0.6878 0.7002 0.7139 0.7370 0.7450 0.7822 0.8123 0.8385 0.8667
Feedforward (bulk) 0.6976 0.6996 0.7119 0.7155 0.7403 0.7464 0.7880 0.8162 0.8422 0.8690

CloudPred 0.6619 0.6695 0.6768 0.6843 0.6992 0.7028 0.7553 0.7734 0.7892 0.8066
Feedforward (single) 0.6388 0.6355 0.6505 0.6406 0.6675 0.6834 0.7245 0.7707 0.8060 0.8389

Precision
ScRAT 0.6566 0.6730 0.6818 0.6974 0.7119 0.7329 0.7578 0.7774 0.8143 0.8336

Attention 0.6242 0.6466 0.6543 0.6672 0.6808 0.7029 0.7276 0.7349 0.7678 0.8065
Linear 0.5608 0.5647 0.5792 0.5954 0.6119 0.6249 0.6604 0.6985 0.7359 0.7889

Feedforward (bulk) 0.6034 0.6116 0.6333 0.6433 0.6745 0.6744 0.7220 0.7637 0.7883 0.8447
CloudPred 0.5481 0.5592 0.5604 0.5672 0.5932 0.5878 0.6248 0.6452 0.6508 0.6805

Feedforward (single) 0.4505 0.4560 0.4861 0.4584 0.5067 0.5243 0.5858 0.6827 0.7419 0.8381
Recall

ScRAT 0.6020 0.6204 0.6316 0.6393 0.6569 0.6761 0.6903 0.7079 0.7488 0.7960
Attention 0.5799 0.5962 0.6175 0.6297 0.6517 0.6624 0.6819 0.6885 0.7221 0.7722

Linear 0.6168 0.6141 0.6130 0.6236 0.6433 0.6491 0.6757 0.6938 0.7145 0.7210
Feedforward (bulk) 0.5376 0.5310 0.5240 0.5137 0.5461 0.5462 0.5963 0.6181 0.6523 0.6669

CloudPred 0.5284 0.5407 0.5515 0.5556 0.5719 0.5888 0.5778 0.6133 0.6272 0.6375
Feedforward (single) 0.4294 0.4072 0.4040 0.3617 0.3995 0.4135 0.4450 0.4979 0.5347 0.5350

Table 6: Comparison for different methods on the Stage prediction task for SC4 dataset. Best
results of AUC, precison, and recall for each training ratio are marked with bold typeface. ScRAT has the
highest AUCs in all training ratios and also achieve best precision and recall for most training ratios.
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SC4 Dataset: Severity Prediction
Training Ratios

9% 10% 11% 12.5% 14% 17% 20% 25% 33% 50%
Number of Training Samples 8 9 10 11 13 15 18 23 30 46
AUC

ScRAT 0.6091 0.6124 0.6185 0.6328 0.6352 0.6450 0.6644 0.6800 0.7038 0.7410
Attention 0.5986 0.6064 0.6137 0.6242 0.6174 0.6374 0.6485 0.6709 0.7028 0.7197

Linear 0.5672 0.5767 0.5957 0.6012 0.6108 0.6214 0.6379 0.6668 0.6986 0.7007
Feedforward (bulk) 0.5901 0.6016 0.6102 0.6170 0.6251 0.6315 0.6425 0.6646 0.6993 0.6898

CloudPred 0.5819 0.6078 0.6069 0.6001 0.6140 0.6176 0.6114 0.6337 0.6446 0.6541
Feedforward (single) 0.5778 0.5869 0.5930 0.5897 0.5941 0.5911 0.5983 0.6103 0.6620 0.6422

Precision
ScRAT 0.7689 0.7721 0.7722 0.7769 0.7771 0.7799 0.7857 0.7944 0.8106 0.8252

Attention 0.7568 0.7580 0.7621 0.7624 0.7595 0.7662 0.7674 0.7757 0.7921 0.8066
Linear 0.7465 0.7494 0.7564 0.7545 0.7575 0.7588 0.7625 0.7724 0.7886 0.7936

Feedforward (bulk) 0.7472 0.7543 0.7553 0.7518 0.7528 0.7473 0.7505 0.7532 0.7801 0.7693
CloudPred 0.7544 0.7532 0.7458 0.7497 0.7489 0.7495 0.7446 0.7418 0.7493 0.7654

Feedforward (single) 0.6472 0.6398 0.6679 0.6977 0.7213 0.7295 0.7349 0.7268 0.7472 0.7340
Recall

ScRAT 0.6499 0.6582 0.6825 0.7099 0.7242 0.7390 0.7450 0.7460 0.7595 0.7798
Attention 0.6784 0.6923 0.7175 0.7401 0.7597 0.7765 0.7817 0.7788 0.7950 0.8127

Linear 0.5953 0.6104 0.6443 0.6576 0.6753 0.7020 0.7244 0.7736 0.7953 0.8040
Feedforward (bulk) 0.6610 0.6792 0.7218 0.7421 0.7723 0.7990 0.8262 0.8507 0.8400 0.8705

CloudPred 0.6314 0.6481 0.6833 0.6860 0.7200 0.7166 0.7424 0.7534 0.7895 0.7953
Feedforward (single) 0.6591 0.6540 0.7306 0.7664 0.8270 0.8632 0.8830 0.8805 0.8540 0.8892

Table 7: Comparison for different methods on the Severity prediction task for SC4 dataset. Best
results of AUC, precison, and recall for each training ratio are marked with bold typeface. ScRAT has the
highest AUCs and precision in all training ratios while Attenion and Feedforward (single) provides higher
recall with the cost of low precision.
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High-Attention Cells in the Haniffa Dataset
Number of Cells Number of High-Attention Cells Ratio of High-Attention Cells in a Cell Type

Cell Type NonCOVID COVID NonCOVID COVID NonCOVID COVID Overall
Platelets 2,899 9,645 903 4348 0.3115 0.4508 0.4186

RBC 307 1,652 156 630 0.5081 0.3814 0.4012
pDC 678 3,384 334 1,083 0.4926 0.3200 0.3488

C1_CD16_mono 198 3,825 61 1,068 0.3081 0.2792 0.2806
Plasmablast 97 3,477 22 899 0.2268 0.2586 0.2577
CD4.Prolif 44 494 14 111 0.3182 0.2247 0.2323

HSC_erythroid 101 608 37 123 0.3663 0.2023 0.2257
Plasma_cell_IgG 171 2,722 35 574 0.2047 0.2109 0.2105

HSC_prolif 7 158 3 30 0.4286 0.1899 0.2000
HSC_MK 0 46 0 9 0.0000 0.1957 0.1957

HSC_CD38pos 87 1,458 24 266 0.2759 0.1824 0.1877
HSC_CD38neg 17 461 3 80 0.1765 0.1735 0.1736

Plasma_cell_IgA 182 1,947 61 291 0.3352 0.1495 0.1653
B_immature 959 3,249 208 470 0.2169 0.1447 0.1611
B_exhausted 552 1,855 75 311 0.1359 0.1677 0.1604

B_non-switched_memory 745 1,940 119 295 0.1597 0.1521 0.1542
NK_prolif 273 3,897 57 539 0.2088 0.1383 0.1429
CD8.Prolif 95 1,084 18 143 0.1895 0.1319 0.1366

DC3 975 2,134 130 270 0.1333 0.1265 0.1287
ASDC 16 79 3 9 0.1875 0.1139 0.1263

B_switched_memory 1,450 4,666 200 544 0.1379 0.1166 0.1216
NK_56hi 2,429 6,431 248 699 0.1021 0.1087 0.1069

CD83_CD14_mono 6,772 42,403 1,053 4,034 0.1555 0.0951 0.1034
DC2 1,052 1,981 136 176 0.1293 0.0888 0.1029

HSC_myeloid 4 46 1 4 0.2500 0.0870 0.1000
Plasma_cell_IgM 88 826 11 79 0.1250 0.0956 0.0985

ILC1_3 213 446 17 42 0.0798 0.0942 0.0895
ILC2 36 48 3 4 0.0833 0.0833 0.0833
Treg 78 223 6 19 0.0769 0.0852 0.0831

B_naive 7,181 29,420 824 2165 0.1147 0.0736 0.0817
NKT 987 2,573 93 176 0.0942 0.0684 0.0756

Mono_prolif 4 593 1 39 0.2500 0.0658 0.0670
gdT 5,134 9,261 314 567 0.0612 0.0612 0.0612

MAIT 3,849 6,126 200 385 0.0520 0.0628 0.0586
CD8.EM 7,001 9,376 328 603 0.0469 0.0643 0.0568
CD4.EM 195 1,329 15 68 0.0769 0.0512 0.0545
NK_16hi 17,104 56,053 1,001 2,748 0.0585 0.0490 0.0512
CD8.TE 8,949 29,672 465 1,508 0.0520 0.0508 0.0511

CD14_mono 3,774 49,231 278 1,785 0.0737 0.0363 0.0389
CD16_mono 3,007 11,664 238 328 0.0791 0.0281 0.0386
DC_prolif 6 102 1 3 0.1667 0.0294 0.0370
CD4.Th1 104 291 3 9 0.0288 0.0309 0.0304

CD8.Naive 8,744 18,951 268 505 0.0306 0.0266 0.0279
CD4.Tfh 826 7,482 51 164 0.0617 0.0219 0.0259
CD4.IL22 7,261 10,324 130 325 0.0179 0.0315 0.0259
CD4.Th2 18 28 0 1 0.0000 0.0357 0.0217
CD4.CM 7,745 26,952 159 494 0.0205 0.0183 0.0188

CD4.Naive 16,080 39,678 334 692 0.0208 0.0174 0.0184
DC1 104 240 0 2 0.0000 0.0083 0.0058

CD4.Th17 1 6 0 0 0.0000 0.0000 0.0000

Table 8: Number of high-attention cells for each cell type in the Haniffa dataset. Compared
to the HOVs that weight each cell using the high-attention Occurrence, here we only count the number of
high-attention cells for each cell type. In other words, we force the HOVs = 1 for all high-attention cells
to understand their distribution. Note that the NonCOVID, COVID, and Overall values in the "Ratio of
High-Attention Cells in a Cell Type" section correspond to the ratio of high-attention cells in a cell type for
NonCOVID patients, COVID patients, and all patients respectively. The differences between the rankings
based on these ratios and the R-score (in Table 2 of the main text) suggest that some specific cell types
include cells getting high-attention values more often than average. More analysis of these cells has the
potential to improve our understanding of attention mechanisms in the domain of single-cell biology.
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