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Abstract 

The global pandemic caused by SARS-CoV-2 has highlighted the urgent need for effective antiviral 

drugs. The papain-like protease (PLpro) is a key viral enzyme involved in the replication and 

immune evasion of SARS-CoV-2, making it a promising target for antiviral drug development. In 

this study, we employed an artificial intelligence (AI)-driven drug discovery platform, LIME, to 

generate novel inhibitors of the SARS-CoV-2 PLpro. LIME is based on generative language models 

that can generate diverse, valid, and synthetically accessible compounds. The LIME software was 

used to identify potential inhibitors with strong binding affinity and specificity to the target 

protein. The top 13 hit compounds were tested in vitro, and the top 5 inhibitors with strong 

binding affinity and specificity were selected for further analysis. A top candidate molecule, 

CSEMRS-1376, exhibited similar binding energies and structural similarities to the known SARS-

CoV-2 PLpro inhibitor, XR8-89. Computational analysis of the absorption, distribution, 

metabolism, excretion, and toxicity (ADMET) profiles of the hit compounds and XR8-89 showed 

that both CSEMRS-1376 and XR8-89 demonstrated favorable ADMET profiles. Overall, the LIME 

software successfully identified several novel molecules, including CSEMRS-1376, with strong 

potential as a therapeutic agent against SARS-CoV-2. The study highlights the potential of AI-

driven drug discovery platforms, such as LIME, to accelerate the drug development process and 

pave the way for more efficient and effective therapeutics. 

 

Introduction 

The global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-

2) has led to an unprecedented public health crisis, necessitating the rapid development of novel 

therapeutic strategies to combat the virus (1). Early efforts in this regard were the focus on the 

Spike protein as a therapeutic target. Another key viral enzyme involved in the replication and 

immune evasion of SARS-CoV-2 is the papain-like protease (PLpro) (2). Targeting PLpro with 

effective small molecule inhibitors offers a promising approach for the development of antiviral 

drugs, which could help in managing the disease and mitigating its impact on global health 

(3,12,13). 

In recent years, artificial intelligence (AI) has emerged as a powerful tool in drug discovery, 

accelerating the process of designing and optimizing novel molecular structures with desirable 

pharmacological properties (4). AI-driven platforms have demonstrated their potential in a variety 

of applications, including the identification of potent inhibitors for various protein targets (5). One 
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of the main advantages of using AI in drug discovery is the ability to rapidly generate and assess 

large libraries of molecules, making it possible to explore a vast chemical space in a cost-effective 

and time-efficient manner (6). 

In this study, we leverage our proprietary Generative Language models (GLM) to generate 

molecular structures for synthesis and testing against the SARS-CoV-2 PLpro enzyme. Our aim is 

to design successful molecules that are safe, possess favorable absorption, distribution, 

metabolism, excretion, and toxicity (ADMET) properties, and effectively inhibit the PLpro enzyme, 

thus contributing to the development of potential therapeutic agents against SARS-CoV-2. 

Our proprietary GLM are a type of machine learning model trained with large amounts of data to 

generate text by predicting the next word or character in a sequence. These models have 

demonstrated remarkable capabilities in natural language processing, text generation, and 

various other applications. In the context of drug discovery, GLM can be utilized to generate novel 

molecular structures which can be represented as SMILES strings. By training on large datasets of 

existing drug-like molecules, these models can produce diverse, valid, and synthetically accessible 

compounds. This approach enables the exploration of vast chemical spaces, potentially leading 

to the discovery of innovative therapeutics with desired properties, thereby revolutionizing the 

drug discovery process. 

 

Methods 

The LIME Software and Drug Design Process: The LIME (Learning Iteratively through Molecular 

Evolution) software was employed to generate de novo inhibitors of the SARS-CoV-2 papain-like 

protease (PLpro) (Table 1). The input PDB file (7LBR) was based on the X-ray diffraction data from 

the study that developed the known PLpro inhibitor (XR8-89) (2). The LIME software was used to 

identify potential inhibitors with strong binding affinity and specificity to the target protein.  

Table 1: The LIME de novo drug design process consists of the following steps: 

1. An initial subset of structural starting points is chosen from Phronesis AI's proprietary 

database. 

2. These molecules are analyzed automatically using optimized virtual screening software. 

3. The molecules and their detailed analysis are saved to the database and used for 

subsequent training. 

4. The top-scoring molecules are selected based entirely on user-defined design objectives. 

5. Novel molecules are produced by fine-tuning the molecular generation process. 

6. The novel molecules are iteratively screened and added to the database alongside known 

molecules. 
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7. This optimization process is repeated autonomously and completed over the course of 

approximately 3-5 days. 

As part of the design process, chemical synthetic feasibility, number of synthetic steps, and 

synthetic precursors are also predicted using AI-enabled retrosynthetic analysis to ensure the 

synthetic accessibility of all novel compounds generated by LIME. This approach has provided 

significant improvements over many alternative generative AI applications for drug design by 

preventing the LIME AI model from “cheating” and breaking chemical constraints to produce 

unrealistic molecules during its attempt to perform multi-attribute optimization of complex 

molecular structures. 

LIME’s iterative design process yielded a focused molecular library of roughly ~10,000 novel drug 

candidates along with their respective virtual screening results for AutoDock Vina [14] predicted 

binding energy, AIZynthFinder AI-enabled retrosynthetic analysis [15], and cheminformatic 

molecular descriptors calculated using RDKit Open Source Cheminformatics Software [16]. As an 

additional virtual screening measure, we also performed in-silico analysis of all compounds within 

this focused drug library using Schrodinger Glide [17], our own implementation of the DeepDTA  

AI model [18] for protein-ligand affinity prediction screening, as well as our own proprietary 

affinity prediction AI model. 

To further reduce the time and costs of drug synthesis, we then performed a substructure 

similarity search of our top-scoring drug candidates through a large compound library of 

molecules within the chemical spaces in which our synthetic chemists at OTAVA LTD specialize in. 

This allowed us to reduce the time and cost required for both acquiring the necessary synthetic 

precursors and performing the synthesis, while maintaining the optimized substructures and 

molecular properties identified by LIME’s design process. The top ten molecules were selected 

from LIME’s focused compound library based on a factor of their in silico predicted binding scores 

across the various screening software mentioned above, and these ten compounds were used for 

the substructure similarity search. All molecules within OTAVA LTD’s (https://otavachemicals.com) 

compound library having a substructure similarity greater than or equal to 0.7 with one of more 

of the ten selected molecules were aggregated to form a new cost-effective, focused compound 

library. This new focused library then was screened in-silico using the same methods, and the top 

54 compounds were selected for in-vitro analysis based on factors of predicted binding, ADMET 

properties, and synthetic costs. 

In-vitro testing: The 54 candidates identified by LIME underwent in-vitro testing using the BLI 

(Biolayer Interferometry) assay (OTAVA LTD) to assess their binding affinity to the SARS-CoV-2 

PLpro. Of the top 13 candidates, the top 5 inhibitors with the best binding affinity and specificity 

were selected for further analysis. The basic elements of the BLI assay are presented in Figure 1. 

Figure 1:Overview of the BLI Binding interferometry assay used by OTAVA 
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Figure 1: The important components of the BLI interferometry binding assay. For the purposes of 

this study the important components are the Association phase from baseline followed by the 

Dissociation phase (outlined in GREEN). 

Molecular Docking and Binding Energy Analysis: AutoDock Vina was used to evaluate 9 different 

poses for one of the top candidate molecules, CSEMRS-1376, and the control molecule, XR8-89. 

Binding energy data arrays were obtained, and statistical analysis was conducted to compare the 

binding energies and determine the correlation between the two molecules. 

Visual Analysis: The binding modes and structural similarities of the top 5 hit compounds to the 

control molecule (XR8-89) were visually analyzed and compared to evaluate the performance of 

LIME in generating novel inhibitors. 

ADMET Profile Analysis: Computational analysis of the Absorption, Distribution, Metabolism, 

Excretion, and Toxicity (ADMET) profiles of the top 13 hit compounds and the known PLpro 

inhibitor (XR8-89) was performed using SWISSADME software (7) and DataWarrior/OSIRIS (8). 

 

Results 

The In vitro BLI Binding Study 

Of the 54 candidates evaluated in vitro, 21 demonstrated potentially good/acceptable binding 

affinity but relatively poor specificity. Thirteen of these 21 candidates had modest/acceptable 

binding and variable selectivity and 5 modest/good binders had promising specificity. The binding 

results are presented in Figure 2 below. 

Figure 2: Raw Binding Data from BLI In Vitro assay for 54 test compounds 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 5, 2023. ; https://doi.org/10.1101/2023.04.05.535700doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.05.535700
http://creativecommons.org/licenses/by-nd/4.0/


 

Figure 2: The BLI (Biolayer Interferometry*) assay measures direct binding between the SARS-CoV-2, 

PLpro  enzyme and the 54 test compounds identified by the LIME AI. 

 *Light is passed through samples. If binding occurs the wavelength of the light is distorted. 

 

Comparative Binding Energy Analysis: The Pearson correlation coefficient between the binding 

energy data arrays of CSEMRS-1376 and XR8-89 was found to be 0.901, indicating a strong 

positive correlation. The unpaired t-test and Mann-Whitney U test showed no significant 

difference between the two groups. 

Visual Analysis: A top candidate molecule, CSMERS-1376 was selected from the HITs as the focus 

of the blind test analysis because it exhibited the highest chemical and binding mode similarity 

to the control molecule (XR8-89) and it was also commercially available. 

ADMET Profile Analysis: Both CSEMRS-1376 and XR8-89 demonstrated favorable ADMET profiles 

based on the computational analysis. While CSEMRS-1376 displayed a slightly lower molecular 

weight and higher topological polar surface area than XR8-89, its solubility was estimated to be 

lower. Both molecules were predicted to have high gastrointestinal absorption and good 

bioavailability, with CSEMRS-1376 not being a P-glycoprotein (Pgp) substrate, unlike XR8-89. 

Overall, the LIME software successfully identified novel molecules, like CSEMRS-1376, with similar 

binding energies and structural similarities to the known SARS-CoV-2 PLpro inhibitor, XR8-89. 

Further in-vitro evaluation of the top 5 HITs, including CSEMRS-1376, is warranted to explore their 

potential as therapeutic agents against SARS-CoV-2. 

 

 

Binding Occurs
Promising Candidates
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Discussion 

In this study, we utilized the LIME software, an AI platform based on GLM, to generate de novo 

inhibitors of the SARS-CoV-2 papain-like protease (PLpro). The success of the LIME software in 

identifying novel molecules, including CSEMRS-1376, with strong binding affinity and specificity 

to the PLpro protein demonstrates the potential of GLM in the field of AI-driven drug discovery. 

The rapid and efficient identification of novel drug candidates targeting specific binding pockets 

is crucial for accelerating the drug development process. GLM, like those employed by the LIME 

software, allow for the extraction of complex patterns and chemical features from large datasets, 

enabling the software to generate molecules with high structural similarity to known inhibitors 

(2). In the case of CSEMRS-1376, the LIME software was able to identify crucial substructures 

involved in protein-ligand binding while exploring variations in non-crucial substructures, thus 

providing a balance between maintaining key binding properties and exploring novel chemical 

space. 

The use of AI-driven drug discovery platforms, such as LIME, offers several advantages over 

traditional drug discovery methods. These advantages include the ability to rapidly generate and 

screen large numbers of novel drug candidates, reducing the time and resources required for hit 

identification and lead optimization (3). Additionally, AI platforms can incorporate various aspects 

of drug development, such as ADMET profiling, into the molecule generation process, allowing 

for the identification of drug candidates with more favorable pharmacokinetic and 

pharmacodynamic properties (7, 8). 

Despite the promising results obtained in this study, it is important to recognize the current 

limitations of AI-driven drug discovery platforms. One limitation is the reliance on accurate and 

comprehensive input data to ensure the generation of meaningful predictions. In the case of 

LIME, the success of the software in identifying CSEMRS-1376 and other HITs as potential PLpro 

inhibitors is contingent on the quality of the input PDB file and the annotation of the active site. 

Furthermore, while AI platforms can provide valuable insights into the potential binding affinity 

and ADMET properties of novel drug candidates, in vitro and in vivo validation is still necessary to 

confirm the efficacy and safety of these molecules. 

In conclusion, this study highlights the potential of AI platforms, such as LIME, in the context of 

AI-driven drug discovery. The successful identification of CSEMRS-1376 and other HITs as 

potential PLpro inhibitors demonstrates the power of GLM in generating novel drug candidates 

with favorable binding properties and ADMET profiles. As the field of AI drug discovery continues 

to evolve, it is likely that the integration of AI platforms like LIME into the drug development 

process will become increasingly common, paving the way for more rapid, efficient, and effective 

targeted therapeutics. 
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