1	SARS-CoV-2 utilization of ACE2 from different bat species allows for virus entry and
2	replication in vitro
3	
4	Kelsey Briggs ¹ , Ryan Sweeney ¹ , David S. Blehert ² , Erica Spackman ¹ , David L. Suarez ¹ and
5	Darrell R. Kapczynski ^{1*}
6	
7	
8	¹ Exotic and Emerging Avian Disease Research Unit, Southeast Poultry Research Laboratory,
9	U.S. National Poultry Research Center, Agricultural Research Service, USDA, 934 College
10	Station Road, Athens, GA 30605; ² U.S. Geological Survey, National Wildlife Health Center,
11	6006 Schroeder Road, Madison, WI 53711
12	
12	
13	
14	
15	*Address correspondence to Dr. Darrell R. Kapczynski, Southeast Poultry Research
16	Laboratory/ARS/USDA, 934 College Station Road, Athens, Georgia 30605. Phone:
17	706.546.3471; Fax: 706.546.3161; email: darrell.kapczynski@usda.gov
18	
19	
20	
21	

2
2

ABSTRACT

23	Severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) is believed to have a zoonotic
24	origin. Bats are a suspected natural host of SARS-CoV-2 because of sequence homology with
25	other bat coronaviruses. Understanding the origin of the virus and determining species
26	susceptibility is essential for managing the transmission potential during a pandemic. In a
27	previous study, we established an in vitro animal model of SARS-CoV-2 susceptibility and
28	replication in a non-permissive avian fibroblast cell line (DF1) based on expression of
29	angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2)
30	from different animal species. In this work, we express the ACE2 of seven bat species in DF1
31	cells and determine their ability to support attachment and replication of the original SARS-
32	CoV-2 Wuhan lineage virus, as well as two variants, Delta and Lambda. We demonstrate that the
33	ACE2 receptor of all seven species: little brown bat (Myotis lucifugus), great roundleaf bat
34	(Hipposideros armiger), Pearson's horseshoe bat (Rhinolophus pearsonii), greater horseshoe bat
35	(Rhinolophus ferrumequinum), Brazilian free-tailed bat (Tadarida brasiliensis), Egyptian
36	rousette (Rousettus aegyptiacus), and Chinese rufous horseshoe bat (Rhinolophus sinicus), made
37	the DF1 cells permissible to the three isolates of SARS-CoV-2. However, the level of virus
38	replication differed between bat species and variant tested. In addition, the Wuhan lineage
39	SARS-CoV-2 virus replicated to higher titers $(10^{4.5} - 10^{5.5} \text{ TCID}_{50})$ than either variant virus $(10^{3.5} - 10^{5.5} \text{ TCID}_{50})$
40	$10^{4.5}$ TCID ₅₀) on pass 1. Interestingly, all viruses tested grew to higher titers (approximately 10^{6}
41	TCID ₅₀) when cells expressed the human ACE2 gene compared to bat ACE2. This study
42	provides a practical in vitro method for further testing of animal species for potential
43	susceptibility to current and emerging SARS-CoV-2 viruses.

45 Keywords: SARS-CoV-2, ACE2, bat, infection, replication, model

4

47

INTRODUCTION

The on-going COVID-19 pandemic is caused by severe acute respiratory syndrome 48 coronavirus 2 (SARS-CoV-2; SC2). It was first identified in Wuhan, China in 2019 and declared 49 a global pandemic by the World Health Organization (WHO) in March 2020 (1, 2). Symptoms of 50 SC2 typically include fever, chills, shortness of breath, and loss of smell/taste, but severe disease 51 52 can lead to death. SC2 belongs to the virus family *Coronaviridae*, which are single-stranded, 53 enveloped, positive-sense RNA viruses (3). The family contains several other viruses that cause 54 respiratory illness in humans and animals such as porcine enteric diarrhea (PEDV), infectious 55 bronchitis virus (IBV), and human CoV-NL63 (4-6). Since first detection of SC2 in humans in 2019, it has rapidly spread across the globe and 56 acquired several mutations giving rise to variants. The variants are categorized into three 57 categories by the WHO: variants of interest (VOI), variants of concern (VOC), and variants 58 59 under monitoring (VUM) (1). The original Wuhan strain was quickly replaced by a variant containing a D614G mutation in the spike (S) protein. This mutation was associated with 60 61 increased viral yields in human cells and virus stability (7, 8). Alpha, Beta, and Gamma VOCs followed shortly after with varying degrees of antibody cross neutralization and immunity in 62 humans (1, 9-11). The Delta VOC, which was first detected in India in October 2020, rapidly 63 64 took over as the dominant variant. This was attributed to immune escape, either from natural 65 infection or vaccination, and increased fitness of the variant to replicate in humans. However, in June 2022, Delta was classified as a "previously circulated" VOC (1, 12-14). Some VOIs include 66 Epsilon, Theta, Mu, and Kappa, which all circulated during 2020-2021, whereas the Lambda 67 VOI circulated until March 2022 (1). The Lambda VOI was shown to be more infectious than 68 previous variants, evade neutralizing antibodies, and have the potential to cause antibody-69

5

mediated enhanced disease, all of which contributed to its substantial spread across South
America (15). To date, the dominant VOC circulating is the omicron variant and its subsequent
lineage. Compared to previous variants, this lineage has a substantial number of mutations
throughout the genome, including 30 in the S protein with half of those being in the receptor
binding domain (RBD) (1, 16, 17). The origin of Omicron is currently unknown, but it has been
postulated that it circulated and adapted in animal reservoirs, then transmitted back to humans
(18).

In the past two decades, two other Coronaviruses with high fatality rates in humans, 77 Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS), 78 79 were detected for the first time. Both viruses are believed to have originated in bats before 80 disseminating to intermediate hosts and then humans (19-22). Although, to date, the natural host for SC2 is unknown, it is hypothesized to have come from bats (23, 24). Recent studies have 81 82 shown that bat-borne SC2-like viruses circulate in *Rhinolophus* species in Southeast Asia, but a direct progenitor virus has yet to be found (25). To date, only four bat species have been 83 84 experimentally infected with SC2, whereas roughly 1400 species of bats are estimated worldwide (26-29). To test susceptibility of every bat species to SC2 would be impractical, but 85 less intrusive and lower-cost methods are available to examine if the virus can replicate within a 86 87 bat species.

SC2 utilizes angiotensin-converting enzyme 2 (ACE2) as its receptor for host-cell
attachment by the S protein (30). Many homologues of ACE2 exist in the animal kingdom;
however, mammals have the highest degree of ACE2 conservation, making the potential host
range for SC2 extensive (31). Several studies have examined the possible host range based on
ACE2 sequence relatedness, but most species have yet to be tested in an *in vitro* or *in vivo* model

93	for SC2 susceptibility (31-33). In this work, we expanded on previous studies looking at species
94	susceptibility to SC2 using a chicken cell line that is nonpermissive to SC2 replication (34).
95	Using transposon mutagenesis, different bat species ACE2 genes were individually inserted into
96	the chicken cell genome and their ability to replicate SC2 and two variants, Delta and Lambda,
97	were assessed. These studies were designed to test whether seven bat species could potentially be
98	a natural or intermediate host for SC2. In addition, they provide an <i>in vitro</i> alternative method for
99	testing susceptibility to SC2 in relevant animal species.
100	
101	MATERIALS AND METHODS
102	Viruses. USA/WA1/2020/Wuhan lineage (BEI NR-52286; Washington strain),
103	USA/PHC658/2021/B.1.617.2 (BEI NR-55611; Delta strain), and Peru/un-CDC-2-
104	4069945/2021/Lineage C.37 (BEI NR-55654; Lambda strain) of SARS-CoV-2 were obtained
105	from BEI Research Resources Repository, National Institute of Allergy and Infectious Diseases,
106	National Institutes of Health (35). Experiments with SC2 were performed in a biosafety level-3
107	enhanced facility with procedures approved by the U.S. National Poultry Research Center
108	Institutional Biosafety Committee.
109	Cell lines. DF1 (avian fibroblast) and Vero (African Green monkey kidney, CCL-81) cells were
110	seeded and propagated with standard procedures for adherent cells, in tissue culture flasks,
111	containing Dulbecco's Modified Eagle Medium (DMEM) (ThermoFisher Scientific, Waltham,
112	Massachusetts) supplemented with 10% Fetal Bovine Serum (Atlanta Biologics, Atlanta,
113	Georgia) and 1% Antimicrobial-Antimycotic (Gemini-Bio, Sacramento, California). Vero cells

7

were obtained from the International Reagent Resource (FR-243). DF1 cells were cultured at
39°C whereas Vero cells were cultured at 37°C.

116 Construction of plasmids expressing different bat ACE2 genes using the PiggyBac

transposon vector. GenBank accession numbers used to construct all bat species plasmids can
be found in Table 1. The ACE2 genes from little brown bat (*Myotis lucifugus*), great roundleaf
bat (*Hipposideros armiger*), Pearson's horseshoe bat (*Rhinolophus pearsonii*), greater horseshoe

- 120 bat (*Rhinolophus ferrumequinum*), Brazilian free-tailed bat (*Tadarida brasiliensis*), Egyptian
- 121 rousette (*Rousettus aegyptiacus*), and Chinese rufous horseshoe bat (*Rhinolophus sinicus*) were
- 122 *de novo* synthesized into the PiggyBac® transposon expression plasmids under control of the
- 123 CMV promoter, expressing EGFP (VectorBuilder Inc., Chicago, Illinois). Frozen Escherichia
- 124 *coli* plasmid glycerol stocks containing ACE2 were streaked onto Luria-Bertani (LB) agar plates
- 125 (Invitrogen) containing 100 µg/mL of Carbenicillin (Sigma, St. Louis, Missouri). Single colonies
- were selected and incubated in 200 mL of LB Broth, containing $100 \,\mu$ g/mL of Carbenicillin,
- 127 with gentle agitation overnight in an incubator/shaker at 37°C (Amerex Instruments, Concord,
- 128 California). Plasmid DNA was isolated using ZymoPURE II midiprep plasmid kit (Zymo
- 129 Research, Irvine, California) per the manufacturer's protocol.

130 Creation of Transgenic DF1 cells expressing bat ACE2 and human TMPRSS using

131 **PiggyBac Plasmid Transposon System.** DF1 cells were grown in a T25 flask and transfected

132 with PiggyBac transposon, expressing human TMPRSS2 and an mCherry marker, along with the

- 133 hyperactive PiggyBac Transposase (hyPBase) utilizing Xfect transfection reagent (Takara-Bio,
- 134 San Jose, California). Transposase and Transposon DNA were added at 1:5 ratio in Xfect
- transfection reagent per manufacturer instructions to form the nanoparticle transfection complex.

8

136	Complete media from cells was replaced with DMEM, and Xfect transfection complex was
137	added for 4-6 hours. After incubation, media containing transfection complex was removed and
138	fresh media containing 10% FBS, 1% P/S DMEM was added. Cells were incubated for 48-72
139	hours at 39°C 5% CO ₂ , after which expression was confirmed using fluorescent microscopy
140	(EVOS M5000). Cells were purified by fluorescence-activated cell sorting (FACS) by gating for
141	mCherry (>99%). FACS-purified DF1 cells containing hTMPRSS2 were grown in a T25 flask
142	and transfected with the PiggyBac transposon system in the same manner as above. Bat ACE2
143	transposons contained an EGFP marker. Dual transfected cells were then sorted for both GFP
144	and mCherry (>99%). Cells were periodically sorted to enrich the population of GFP- and
145	mCherry-positive cells.
146	Fluorescent-activation cell sorting (FACS). Transgenic cells expressing ACE2 (EGFP),
147	TMPRSS2 (mCherry), or both were grown to 90% confluence, trypsinized, pelleted by
148	centrifugation (1500 RPM for 10 minutes at room temperature), and strained through a 50- μ m
149	cell strainer (Thermo Fisher Scientific, Carlsbad, California). Cells were sorted for GFP,
150	mCherry, or both at the University of Georgia (Athens, Georgia) Flow Cytometry Core Center
151	using a Bio-Rad S3e cell sorter (Bio-Rad, Irvine, California).
152	RNA extraction and RT-PCR for bat ACE2 and human TMPRSS2 DF1 cell lines. RNA
153	lysates from all cell lines were obtained, including a DF1 (-/-) negative control, as previously
154	described (36). RNA extractions were carried out using the ZYMO Direct-zol Mini-Prep Plus Kit
155	(Zymo Research, Irvine, California) per manufacturer's instructions.

To check expression levels of ACE2, RT-qPCR was performed. RNA was extracted as
previously described, and 7.5 μL of RNA was used per reaction. Human ACE2 primers,

9

158 universal bat ACE2 primers, and chicken 28S primers were used as previously described (34). 159 Luna® Universal One-Step RT-qPCR Kit (NEB, Ipswich, Massachusetts) was used to quantify 160 the RNA samples per the manufacturer's guidelines. Values were normalized to the chicken 28S 161 (house-keeping gene) and DF1 (-/-) was used as the negative control to calculate the $\Delta\Delta$ CT 162 values.

163 **Detection of ACE2 and TMPRSS2 protein expression by immunoblot.** Western blot

164 detection was performed as previously described (37). Cells were lysed from a 6-well plate in

165 2X Laemmli SDS sample buffer plus 2-mercaptoethanol, then boiled at 95°C for 5 minutes.

166 Samples were resolved on a 10% SDS-PAGE gel, then transferred to a polyvinylidene difluoride

167 (PVDF) membrane (Bio Rad, Irvine, California). The blot was then incubated overnight at 4° C

168 in primary antibody in 2% milk. Primary monoclonal antibodies included mouse anti-human

169 ACE2 (1:1500) (Origene, Rockland, Maryland), rabbit anti-human (1:1000) TMPRSS2 (Abcam,

170 Cambridge, United Kingdom), and mouse anti-beta actin (1:2000) (Invitrogen, Carlsbad,

171 California). The blot was washed 3x in PBST, then incubated for 1 hour at room temperature, in

secondary antibody diluted 1:2500 with gentle rocking. Secondary antibodies included Cy3-

173 conjugated goat anti-mouse IgG secondary antibody (Jackson Immuno-Research, West Grove,

174 Pennsylvania), and goat anti-rabbit DylightTM 594 secondary antibody (ThermoFisher, Carlsbad,

175 California). The blot was washed again in PBST and imaged on a G:Box mini6 (Syngene

176 International Ltd, Bengaluru, India).

177 Detection of ACE2 and TMPRSS2 protein expression by immunofluorescence assay. Cells

178 were seeded into an I-Bidi 8-well chambered slide (ThermoFisher, Carlsbad, California) at a

density of 4 x 10^4 in 500 µL DMEM containing 10% FBS, 1% P/S, and grown overnight as

180	above. When cells reached 75% confluence, media was removed and virus was added at MOI of
181	1. After 48 hours, the media was removed and cells were fixed for 5 minutes at 4°C in 1:1 ice
182	cold ethanol:methanol. Cells were then washed twice with cold PBS. Cells were blocked for one
183	1 hour at room temperature, then washed 3 times with PBS. The primary antibody, rabbit anti-
184	Spike MAb (Origene, Rockland, Maryland), diluted 1:250, was added for 1 hour at room
185	temperature. Cells were washed 3 times with PBS and incubated in the secondary antibody, goat
186	anti-rabbit IgG H&L (Cy3-conjugated) (Abcam Cambridge, United Kingdom) diluted 1:500 in
187	PBS, for 1 hour at room temperature. Cells were then washed 3 times with PBS and
188	counterstained with DAPI (Invitrogen, Carlsbad, California) for 5 minutes. Immunofluorescence
189	was visualized with an EVOS 5000 (Invitrogen, Carlsbad, California).
400	
190	Comparison of SARS-Cov-2 replication dynamics among cell lines. Each cell line (bat
191	ACE2, positive control DF1 (+/+), and negative control DF1 (-/-) was infected with SC2 at an
192	MOI of 1 in a 6-well plate in triplicate. For each cell line, media was removed from three wells
193	and 0.4 mL of virus inoculum was added. Virus preparation was performed as previously
194	reported (34). The same volume of sterile medium was used as a sham inoculated control. The
195	plates were incubated for 1 hour at 37°C, 5% CO ₂ . Each well was washed 3 times with sterile
196	PBS prewarmed at 37°C to remove unbound virus. Finally, 3 mL growth medium was added to
197	each well and the plates were incubated at 37°C with 5% CO ₂ . Supernatant (0.2 mL) was
198	collected from each well individually at 2, 6, 24, 48 and 72 hours post inoculation (HPI) for
199	detection of replicating virus by RT-PCR. Cytopathic effect was determined by microscopy
200	(EVOS 5000). After 72 HPI, plates were frozen and thawed at -80°C (3x total), and 0.4 mL of
201	cell culture supernatant was transferred onto fresh 6-well plates containing cells for pass 2. The
202	timepoints were repeated to confirm infectious virions were produced in the avian cells.

11

203	Quantitative real-time RT-PCR to detect SARS-CoV-2 replication. Quantitative RT-PCR	
204	was utilized to detect and determine virus titers in cell culture supernatants. RNA was extracted	
205	with the Ambion Magmax kit (ThermoFisher, Carlsbad, California). The U.S. Centers for	
206	Disease Control N1 primers and probe for SARS-CoV-2 were used with the AgPath ID one-step	
207	RT-PCR kit (38). The cycling conditions for the RT step were modified to accommodate the	
208	recommended kit conditions. A standard curve of RNA from each titrated SC2 virus stock was	
209	run in duplicate to establish titer equivalents of virus, and the viral titer was extrapolated from	
210	the standard curve.	
211	ACE2 and TMPRSS2 genetic analysis. ACE2 and TMPRSS2 protein sequences from human	
212	and bat species were obtained from GenBank. Sequences were aligned with Geneious Prime	
213	(Auckland, New Zealand). A global alignment with free end gaps was performed on available	
214	ACE2 and TMPRSS2 sequences. BIosum45 with a threshold of 0 was used for percent	
215	similarity.	
216	Statistical analysis. Viral titers at 48 HPI were compared with the two-way ANOVA with	
217	Tukey multiple comparison (Prism 9.1.0 GraphPad Software, San Diego, California). Different	
218	lower-case letters indicate statistical significance between compared groups. All statistical tests	
219	used $p < 0.05$ as being statistically significant.	
220		
221	RESULTS	
222		
223	Analysis of bat ACE2 genes. We obtained ACE2 protein sequences from seven different bat	

species for phylogenetic analysis and compared them to other animals previously tested (34).

225	The bat species grouped together, demonstrating that they stemmed from a single ancestral
226	species (Figure 1). Percent similarities ranged from 86-99% between all animals, and 91-99%
227	between bat species (Supplemental Figure 1). Chickens, which are not susceptible to SC2
228	infection, had the lowest similarity to all other animals and was used as an outgroup for the
229	analysis (28, 39). Interestingly, bat ACE2 proteins were generally as similar to horse, pig, and cat
230	ACE2 as human (93-96%) (Figure 1). However, to date, horses do not appear susceptible to SC2
231	infection, and <i>in vitro</i> studies have corroborated this (34, 40). Several unique areas containing
232	less than 80% similarity were observed in the ACE2 alignment. In particular, amino acid regions
233	15-22, 91-94, 209-215, 254-258, 608-624, 671-685, and 788-809 had high degrees of variability
234	(Supplemental figure 2).
235	
236	Development of cell lines expressing ACE2 and hTMPRSS2 from different bat species.
236 237	Development of cell lines expressing ACE2 and hTMPRSS2 from different bat species. The human TMPRSS2 (hTMPRSS2) gene was inserted into an avian DF1 cell line using
236 237 238	Development of cell lines expressing ACE2 and hTMPRSS2 from different bat species. The human TMPRSS2 (hTMPRSS2) gene was inserted into an avian DF1 cell line using lentivirus delivery, followed by a bat ACE2 gene using the PiggyBac Transposon system.
236 237 238 239	Development of cell lines expressing ACE2 and hTMPRSS2 from different bat species.The human TMPRSS2 (hTMPRSS2) gene was inserted into an avian DF1 cell line usinglentivirus delivery, followed by a bat ACE2 gene using the PiggyBac Transposon system.Expression levels of ACE2 and hTMPRSS2 were measured by RT-qPCR (Figure 2 and
236 237 238 239 240	Development of cell lines expressing ACE2 and hTMPRSS2 from different bat species.The human TMPRSS2 (hTMPRSS2) gene was inserted into an avian DF1 cell line usinglentivirus delivery, followed by a bat ACE2 gene using the PiggyBac Transposon system.Expression levels of ACE2 and hTMPRSS2 were measured by RT-qPCR (Figure 2 andSupplemental Figure 3). All bat cell lines had at least 100-fold greater ACE2 activity than the
236 237 238 239 240 241	Development of cell lines expressing ACE2 and hTMPRSS2 from different bat species.The human TMPRSS2 (hTMPRSS2) gene was inserted into an avian DF1 cell line usinglentivirus delivery, followed by a bat ACE2 gene using the PiggyBac Transposon system.Expression levels of ACE2 and hTMPRSS2 were measured by RT-qPCR (Figure 2 andSupplemental Figure 3). All bat cell lines had at least 100-fold greater ACE2 activity than theunmodified, wildtype DF1 cells (DF1 (-/-)) confirming expression of ACE2 by RT-qPCR
236 237 238 239 240 241 242	Development of cell lines expressing ACE2 and hTMPRSS2 from different bat species.The human TMPRSS2 (hTMPRSS2) gene was inserted into an avian DF1 cell line usinglentivirus delivery, followed by a bat ACE2 gene using the PiggyBac Transposon system.Expression levels of ACE2 and hTMPRSS2 were measured by RT-qPCR (Figure 2 andSupplemental Figure 3). All bat cell lines had at least 100-fold greater ACE2 activity than theunmodified, wildtype DF1 cells (DF1 (-/-)) confirming expression of ACE2 by RT-qPCR(Figure 2A). Additionally, ACE2 protein expression was measured by immunoblot using a
236 237 238 239 240 241 242 243	Development of cell lines expressing ACE2 and hTMPRSS2 from different bat species.The human TMPRSS2 (hTMPRSS2) gene was inserted into an avian DF1 cell line usinglentivirus delivery, followed by a bat ACE2 gene using the PiggyBac Transposon system.Expression levels of ACE2 and hTMPRSS2 were measured by RT-qPCR (Figure 2 andSupplemental Figure 3). All bat cell lines had at least 100-fold greater ACE2 activity than theunmodified, wildtype DF1 cells (DF1 (-/-)) confirming expression of ACE2 by RT-qPCR(Figure 2A). Additionally, ACE2 protein expression was measured by immunoblot using ahuman monoclonal ACE2 antibody. Detection of ACE2 protein was variable by immunoblot,
236 237 238 239 240 241 242 243 243	Development of cell lines expressing ACE2 and hTMPRSS2 from different bat species.The human TMPRSS2 (hTMPRSS2) gene was inserted into an avian DF1 cell line usinglentivirus delivery, followed by a bat ACE2 gene using the PiggyBac Transposon system.Expression levels of ACE2 and hTMPRSS2 were measured by RT-qPCR (Figure 2 andSupplemental Figure 3). All bat cell lines had at least 100-fold greater ACE2 activity than theunmodified, wildtype DF1 cells (DF1 (-/-)) confirming expression of ACE2 by RT-qPCR(Figure 2A). Additionally, ACE2 protein expression was measured by immunoblot using ahuman monoclonal ACE2 antibody. Detection of ACE2 protein was variable by immunoblot,and ACE2 from the great roundleaf bat, Brazilian free-tailed bat, and Chinese rufous horseshoe
236 237 238 239 240 241 242 243 243 244 245	 Development of cell lines expressing ACE2 and hTMPRSS2 from different bat species. The human TMPRSS2 (hTMPRSS2) gene was inserted into an avian DF1 cell line using lentivirus delivery, followed by a bat ACE2 gene using the PiggyBac Transposon system. Expression levels of ACE2 and hTMPRSS2 were measured by RT-qPCR (Figure 2 and Supplemental Figure 3). All bat cell lines had at least 100-fold greater ACE2 activity than the unmodified, wildtype DF1 cells (DF1 (-/-)) confirming expression of ACE2 by RT-qPCR (Figure 2A). Additionally, ACE2 protein expression was measured by immunoblot using a human monoclonal ACE2 antibody. Detection of ACE2 protein was variable by immunoblot, and ACE2 from the great roundleaf bat, Brazilian free-tailed bat, and Chinese rufous horseshoe bat did not react with the human ACE2 specific Mab as well as the other bats (Figure 2B), which

13

cells (-/-) did not react with the anti-human ACE2 antibody. These results demonstrate that
human and bat ACE2 was expressed in the avian DF1 cells.

249

250 SARS-CoV-2 infection and growth kinetics in cells expressing bat ACE2 and hTMPRSS2.

251 DF1 cells expressing a bat ACE2 and hTMPRSS2 were infected with either Wuhan lineage,

252 Delta, or Lambda SC2, and their viral titers were measured to evaluate growth kinetics.

253 Replication of the Wuhan lineage SC2 was variable in the cell lines. However, it grew to

significantly lower titers in the cell lines containing a bat ACE2 compared to the DF1 (+h/+h)

control cells, which grew SC2 to $>10^6$ TCID₅₀/mL at peak replication. The cells containing great

roundleaf bat ACE2 had peak SC2 titers of $10^{5.8}$ TCID₅₀/mL resulting in significantly higher

viral titers then the rest of the bat-ACE2 cells. SC2 peaked around 10^{5} - $10^{5.5}$ TCID₅₀/mL in most

of the cells containing a bat ACE2, but the cells containing ACE2 from Egyptian rousette and

259 Chinese rufous horseshoe bat grew significantly lower titers of the virus during the initial

infection reaching only $10^{4.7}$ TCID₅₀/mL and $10^{4.4}$ TCID₅₀/mL, respectively (Figure 3A).

However, after subsequent passage onto fresh cells, the Wuhan lineage isolate grew similarly in

all cell lines, around 10^4 TCID₅₀/mL, except in the DF1 (+h/+h) cells, which grew SC2 roughly

263 2-logs higher (Figure 3B). As previously observed, the DF1 (-/-) cells expressing only chicken

ACE2 did not become infected (data not shown) (30). Cytopathic effect (CPE) caused by the

265 Wuhan lineage SC2 was observed in all cells except for DF1 (-/-), as expected (Figure 3C). SC2

266 S expression was detected using a mouse anti-SARS-CoV-2 S monoclonal antibody. The DF1

267 (+h/+h) cell line demonstrated the highest immunostaining, but S was detected in all cells

expressing bat ACE2 indicating the presence of an infection (Figure 3C). These results indicate

that the bat species tested here are permissible to the Wuhan lineage strain of SC2.

270	Growth of Delta SC2 was less variable in the cell lines expressing a bat species ACE2.
271	All cell lines had peak Delta titers at 10^{4} - $10^{4.3}$ TCID ₅₀ /mL apart from the DF1 (+h/+h) cell line,
272	which had peak Delta titers similar to Wuhan-lineage SC2 (> 10^6 TCID ₅₀ /mL) during the initial
273	round of infection (Figure 4A). During pass 2 of Delta, the titers decreased to approximately 10^3
274	TCID ₅₀ /mL in the cell lines containing a bat ACE2 (Figure 4B). Although Delta titers were much
275	lower in the cells containing a bat ACE2 than the DF1 (+h/+h) control, CPE and S
276	immunostaining was observed in all cell lines (Figure 3C). The data indicate that although the
277	Delta variant can infect all bat ACE2-expressing cell lines tested, replication may be less
278	efficient than Wuhan lineage SC2 in this model.
279	Analysis of Lambda SC2 variant demonstrated significantly lower replication in the bat
280	ACE2 cell lines compared to the DF1 (+h/+h) control cells. However, variability of Lambda
281	growth was greater in these lines. Lambda had peak titers at or above $10^4 \text{ TCID}_{50}/\text{mL}$ in the
282	greater horseshoe ($10^{4.4}$ TCID ₅₀ /mL), Brazilian free-tailed ($10^{4.5}$ TCID ₅₀ /mL), and Pearson's
283	horseshoe ($10^{4.3}$ TCID ₅₀ /mL) bat cells, whereas titers remained below 10^4 TCID ₅₀ /mL in the rest
284	of the cells with bat ACE2 on pass 1 (Figure 5A). Lambda grew the DF1 (+h/+h) control cells
285	comparably to Wuhan lineage and Delta SC2 at $>10^6$ TCID ₅₀ /mL. Consistent with the other two
286	viruses tested, Lambda titers dropped on pass 2. Although the difference in Lambda growth was
287	not significant between any of the bat ACE2 cell lines, the Brazilian free-tailed bat ACE2 cell
288	line grew the virus to slightly higher titers, at $10^{3.4}$ TCID ₅₀ /mL, than the other cell lines tested
289	(Figure 5B). Cytopathic effect and S expression was observed in all cell lines except the
290	negative-control cell line, DF1 (-/-) (Figure 5C). Taken together, the results demonstrate that
291	Lambda can utilize the bat ACE2 for entry into DF1 cells, which were permissible to virus
292	replication.

202	
293	
294	DISCUSSION
295	Since 2019, much work has been done on SC2, but its origin remains unclear. Several
296	established cell lines have been used to study virus growth (Vero, Caco-2, Calu-3, 293T), but
297	most are naturally permissive to the virus and cannot be used for testing host susceptibility (41,
298	42). DF1 cells, however, have been shown to be non-permissive to SC2 and can act as a cellular
299	backbone for testing various animal ACE2 and TMPRSS2 genes (39). We previously showed
300	that DF1 cells expressing the ACE2 and TMPRSS2 genes from different animal species can be
301	used as an <i>in vitro</i> predictive model for virus replication (34). Here we utilize the same method
302	to examine host range and susceptibility in seven bat species.
303	In this study, we used human TMPRSS2 for all bat ACE2 transgenic cells because of the
304	inconsistent availability and reliability of bat TMPRSS2 sequences. In our previous study, we
305	observed that the little brown bat and great round leaf bat cell lines could bind the virus, but only
306	transient viral replication was observed within them. We suspected this was due to wrongly
307	annotated TMPRSS2 genes in GenBank, which resulted in a partial sequence for both species
308	(34). To circumvent this problem and the lack of TMPRSS2 sequences available for some bat
309	species, human TMPRSS2 was used. We postulated that human TMPRSS2 could be used as a
310	substitute because the amino acids in the active site are conserved between bats and humans.
311	Further research is underway to determine the correct TMPRSS2 sequences for several bat
312	species.
313	The DF1 (+h/+h) cell line was previously developed using a lentivirus vector to insert
314	both ACE2 and TMPRSS2, whereas the DF1 cells containing the bat ACE2 gene were
315	developed using a transposon vector system. The lentivirus appears to be a more efficient

16

delivery system and resulted in higher expression of ACE2 and TMPRSS2 in the DF1 (+h/+h)
cells. Additionally, TMPRSS2 was inserted first in the transgenic cell lines resulting in higher
expression compared to ACE2 (Figure 2 and Supplemental figure 3). We cannot exclude the
possibility that the differences in ACE2 expression led to the differences in viral replication
efficiency. However, we demonstrated that the bat-origin ACE2 tested here are viable receptors
for three variants of SC2 and can infer the likely ability of these bat species to become infected
and potentially act as a vector for virus transmission to other species.

323 In this study, we expanded previous work looking at host susceptibility by examining 324 seven different bat species from different parts of the world. The bat species have different ranges, roosting sites, and foraging habits, which affect the amount of contact they have with 325 humans. For example, Egyptian rousettes, Brazilian free-tailed bats, and little brown bats have 326 increased human contact compared to the horseshoe bat species, which tend to live in more rural 327 areas (41). Of particular interest for this study were the *Rhinolophus* (horseshoe) species 328 329 (Pearson's horseshoe bat, greater horseshoe bat, and Chinese rufous horseshoe bat), which are known to carry other bat coronaviruses, and are thought to be a possible host for SC2 (25). Our 330 study shows that all three species of horseshoe bat ACE2 were able to support entry and viral 331 332 replication of all three variants of SC2 (Figures 3-5). To the best of our knowledge, no *in vivo* testing has occurred in a *Rhinolophus* species, but a large study using a SC2 pseudodovirus 333 334 examined viral entry into cells of various bat species. The study used 293T cells transduced with 335 different bat ACE2 orthologues, but did not transduce TMPRSS2, which is required for 336 increased infectivity and viral replication (34, 41). They found that infection efficiency was <5%337 for Pearson's horseshoe bat, greater horseshoe bat, and Chinese rufous horseshoe bat ACE2, and 338 surmised viral replication could not be supported in these species, which greatly differs from our

17

findings. Additionally, great round leaf bat ACE2, which is highly similar to that of the *Rhinolophus* species, did not support SC2 entry in their assay. We found that SC2 growth was
supported using our great round leaf bat ACE2 cell line. Egyptian rousettes, Brazilian free-tailed
bats, and little brown bats were found to support SC2 entry in their study, which our findings
also support (Figures 3-5) (41).

344 Egyptian rousettes were experimentally infected with Wuhan lineage SC2 and found to have prominent viral titers in their respiratory tract and developed neutralizing antibodies (28). 345 346 Our Egyptian rousette ACE2 cells replicated the viruses in a similar manner, but Delta and 347 Lambda had decreased titers at peak replication (Figures 3-5). We observed an overall decrease in Delta and Lambda viral titers in the cells with a bat ACE2, and we postulate this is due to 348 those variants being more human adapted than the Wuhan lineage. More recently, two studies 349 350 looking at the susceptibility of the Brazilian free-tailed bat showed that the species can become 351 infected (without showing symptoms) and develop antibodies to SC2. However, both studies 352 found no evidence of viral transmission to uninfected bats (26, 27). Our results correlate with these findings as the Brazilian free-tailed bat ACE2 cell line was able to replicate all three 353 variants of SC2 (Figures 3-5). Interestingly, big brown bat (*Eptesicus fuscus*) was found to be 354 355 resistant to an infectious challenge with SC2 (29). Big brown bat susceptibility or that of a highly similar bat species has yet to be tested in our model. 356

Predictive *in silico* analyses of animal ACE2 sequences provide limited knowledge about species susceptibility, and *in vivo* SC2 challenges with wild animals present numerous logistical and ethical issues. The development of *in vitro* assays has been essential in determining SC2 susceptibility and host range. Here we expand on a previously reported rapid and economical method to screen susceptibility of ACE2 from seven bat species to three variants of SC2 (34).

18

362

363 Acknowledgements

- 364 We thank Scott Lee, Suzanne DeBlois, and Tim Olivier for excellent technical assistance. This
- research was supported by funding from U.S. Fish and Wildlife Service agreement #
- 4500148748; USDA, APHIS, VS IAA # 22-9206-0593-IA; and USDA, ARS, CRIS project
- 367 #6040-32000-081-00D. The USA/WA1/2020/Wuhan lineage (BEI NR-52286; Wuhan lineage
- 368 strain), USA/PHC658/2021/B.1.617.2 (BEI NR-55611; Delta strain), and Peru/un-CDC-2-
- 4069945/2021/Lineage C.37 (BEI NR-55654; Lambda strain) of SARS-CoV-2 was obtained
- 370 from BEI Research Resources Repository, National Institute of Allergy and Infectious Diseases,
- 371 National Institutes of Health. Vero African Green Monkey Kidney Cells (ATCC® CCL-81TM),
- FR-243, were obtained through the International Reagent Resource, Influenza Division, WHO
- 373 Collaborating Center for Surveillance, Epidemiology and Control of Influenza, Centers for
- 374 Disease Control and Prevention, Atlanta, Georgia, USA. Any use of trade, firm, or product
- names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

376

377 Data availability

The data are available from the senior author upon request.

19

379 **References**

- 380 1. World Health Organization. 2022. Tracking SARS-CoV-2 variants.
- 381 <u>https://www.who.int/activities/tracking-SARS-CoV-2-variants</u>. Accessed
- 2. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu
- P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W. 2020. A novel coronavirus
- 384from patients with pneumonia in China, 2019. New England Journal of Medicine

385 382:727-733.

- 386 3. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses.
- 387 2020. The species Severe acute respiratory syndrome-related coronavirus: classifying

388 2019-nCoV and naming it SARS-CoV-2. Nature Microbiology 5:536-544.

- Brian DA, Baric RS. 2005. Coronavirus genome structure and replication. Curr Top
 Microbiol Immunol 287:1-30.
- S. Cui J, Li F, Shi ZL. 2019. Origin and evolution of pathogenic coronaviruses. Nat Rev
 Microbiol 17:181-192.
- 393 6. Lin S-Y, Li Y-T, Chen Y-T, Chen T-C, Hu C-MJ, Chen H-W. 2016. Identification of an
- 394 infectious bronchitis coronavirus strain exhibiting a classical genotype but altered
- antigenicity, pathogenicity, and innate immunity profile. Scientific Reports 6:37725.
- 396 7. Plante JA, Liu Y, Liu J, Xia H, Johnson BA, Lokugamage KG, Zhang X, Muruato AE,
- 397 Zou J, Fontes-Garfias CR, Mirchandani D, Scharton D, Bilello JP, Ku Z, An Z, Kalveram
- B, Freiberg AN, Menachery VD, Xie X, Plante KS, Weaver SC, Shi P-Y. 2021. Spike
- mutation D614G alters SARS-CoV-2 fitness. Nature 592:116-121.
- 400 8. Yurkovetskiy L, Wang X, Pascal KE, Tomkins-Tinch C, Nyalile TP, Wang Y, Baum A,
- 401 Diehl WE, Dauphin A, Carbone C, Veinotte K, Egri SB, Schaffner SF, Lemieux JE,

402		Munro JB, Rafique A, Barve A, Sabeti PC, Kyratsous CA, Dudkina NV, Shen K, Luban
403		J. 2020. Structural and functional analysis of the D614G SARS-CoV-2 spike protein
404		variant. Cell 183:739-751.e8.
405	9.	Volz E, Mishra S, Chand M, Barrett JC, Johnson R, Geidelberg L, Hinsley WR, Laydon
406		DJ, Dabrera G, O'Toole Á, Amato R, Ragonnet-Cronin M, Harrison I, Jackson B, Ariani
407		CV, Boyd O, Loman NJ, McCrone JT, Gonçalves S, Jorgensen D, Myers R, Hill V,
408		Jackson DK, Gaythorpe K, Groves N, Sillitoe J, Kwiatkowski DP, Flaxman S, Ratmann
409		O, Bhatt S, Hopkins S, Gandy A, Rambaut A, Ferguson NM. 2021. Assessing
410		transmissibility of SARS-CoV-2 lineage B.1.1.7 in England. Nature 593:266-269.
411	10.	Hoffmann M, Arora P, Groß R, Seidel A, Hörnich BF, Hahn AS, Krüger N, Graichen L,
412		Hofmann-Winkler H, Kempf A, Winkler MS, Schulz S, Jäck HM, Jahrsdörfer B,
413		Schrezenmeier H, Müller M, Kleger A, Münch J, Pöhlmann S. 2021. SARS-CoV-2
414		variants B.1.351 and P.1 escape from neutralizing antibodies. Cell 184:2384-2393.e12.
415	11.	Li Q, Nie J, Wu J, Zhang L, Ding R, Wang H, Zhang Y, Li T, Liu S, Zhang M, Zhao C,
416		Liu H, Nie L, Qin H, Wang M, Lu Q, Li X, Liu J, Liang H, Shi Y, Shen Y, Xie L, Zhang
417		L, Qu X, Xu W, Huang W, Wang Y. 2021. SARS-CoV-2 501Y.V2 variants lack higher
418		infectivity but do have immune escape. Cell 184:2362-2371.e9.
419	12.	Dhar MS, Marwal R, Vs R, Ponnusamy K, Jolly B, Bhoyar RC, Sardana V, Naushin S,
420		Rophina M, Mellan TA, Mishra S, Whittaker C, Fatihi S, Datta M, Singh P, Sharma U,
421		Ujjainiya R, Bhatheja N, Divakar MK, Singh MK, Imran M, Senthivel V, Maurya R, Jha
422		N, Mehta P, A V, Sharma P, Vr A, Chaudhary U, Soni N, Thukral L, Flaxman S, Bhatt S,
423		Pandey R, Dash D, Faruq M, Lall H, Gogia H, Madan P, Kulkarni S, Chauhan H,
424		Sengupta S, Kabra S, Gupta RK, Singh SK, Agrawal A, Rakshit P, Nandicoori V,

425		Tallapaka KB, Sowpati DT, et al. 2021. Genomic characterization and epidemiology of
426		an emerging SARS-CoV-2 variant in Delhi, India. Science 374:995-999.
427	13.	Mlcochova P, Kemp SA, Dhar MS, Papa G, Meng B, Ferreira I, Datir R, Collier DA,
428		Albecka A, Singh S, Pandey R, Brown J, Zhou J, Goonawardane N, Mishra S, Whittaker
429		C, Mellan T, Marwal R, Datta M, Sengupta S, Ponnusamy K, Radhakrishnan VS,
430		Abdullahi A, Charles O, Chattopadhyay P, Devi P, Caputo D, Peacock T, Wattal C, Goel
431		N, Satwik A, Vaishya R, Agarwal M, Mavousian A, Lee JH, Bassi J, Silacci-Fegni C,
432		Saliba C, Pinto D, Irie T, Yoshida I, Hamilton WL, Sato K, Bhatt S, Flaxman S, James
433		LC, Corti D, Piccoli L, Barclay WS, Rakshit P, et al. 2021. SARS-CoV-2 B.1.617.2 Delta
434		variant replication and immune evasion. Nature 599:114-119.
435	14.	Planas D, Veyer D, Baidaliuk A, Staropoli I, Guivel-Benhassine F, Rajah MM, Planchais
436		C, Porrot F, Robillard N, Puech J, Prot M, Gallais F, Gantner P, Velay A, Le Guen J,
437		Kassis-Chikhani N, Edriss D, Belec L, Seve A, Courtellemont L, Péré H, Hocqueloux L,
438		Fafi-Kremer S, Prazuck T, Mouquet H, Bruel T, Simon-Lorière E, Rey FA, Schwartz O.
439		2021. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization.
440		Nature 596:276-280.
441	15.	Kimura I, Kosugi Y, Wu J, Zahradnik J, Yamasoba D, Butlertanaka EP, Tanaka YL, Uriu
442		K, Liu Y, Morizako N, Shirakawa K, Kazuma Y, Nomura R, Horisawa Y, Tokunaga K,
443		Ueno T, Takaori-Kondo A, Schreiber G, Arase H, Motozono C, Saito A, Nakagawa S,
444		Sato K. 2022. The SARS-CoV-2 Lambda variant exhibits enhanced infectivity and
445		immune resistance. Cell Reports 38:110218.
446	16.	He X, Hong W, Pan X, Lu G, Wei X. 2021. SARS-CoV-2 Omicron variant:
447		Characteristics and prevention. MedComm 2:838-845.

- 448 17. Wang L, Cheng G. 2022. Sequence analysis of the emerging SARS-CoV-2 variant
- 449 Omicron in South Africa. J Med Virol 94:1728-1733.
- 450 18. Du P, Gao GF, Wang Q. 2022. The mysterious origins of the Omicron variant of SARS-
- 451 CoV-2. Innovation (Cambridge (Mass)) 3:100206-100206.
- 452 19. Forni D, Cagliani R, Clerici M, Sironi M. 2017. Molecular evolution of human
- 453 coronavirus genomes. Trends Microbiol 25:35-48.
- 454 20. Han HJ, Wen HL, Zhou CM, Chen FF, Luo LM, Liu JW, Yu XJ. 2015. Bats as reservoirs
 455 of severe emerging infectious diseases. Virus Res 205:1-6.
- 456 21. Song HD, Tu CC, Zhang GW, Wang SY, Zheng K, Lei LC, Chen QX, Gao YW, Zhou
- 457 HQ, Xiang H, Zheng HJ, Chern SW, Cheng F, Pan CM, Xuan H, Chen SJ, Luo HM,
- 458 Zhou DH, Liu YF, He JF, Qin PZ, Li LH, Ren YQ, Liang WJ, Yu YD, Anderson L,
- 459 Wang M, Xu RH, Wu XW, Zheng HY, Chen JD, Liang G, Gao Y, Liao M, Fang L, Jiang
- 460 LY, Li H, Chen F, Di B, He LJ, Lin JY, Tong S, Kong X, Du L, Hao P, Tang H, Bernini
- 461 A, Yu XJ, Spiga O, Guo ZM, et al. 2005. Cross-host evolution of severe acute respiratory
- 462 syndrome coronavirus in palm civet and human. Proc Natl Acad Sci U S A 102:2430-5.
- 463 22. Müller MA, Corman VM, Jores J, Meyer B, Younan M, Liljander A, Bosch B-J,
- 464 Lattwein E, Hilali M, Musa BE, Bornstein S, Drosten C. 2014. MERS coronavirus
- 465 neutralizing antibodies in camels, Eastern Africa, 1983-1997. Emerging Infectious
- 466 Diseases 20:2093-2095.
- 467 23. Hu B, Zeng LP, Yang XL, Ge XY, Zhang W, Li B, Xie JZ, Shen XR, Zhang YZ, Wang
- 468 N, Luo DS, Zheng XS, Wang MN, Daszak P, Wang LF, Cui J, Shi ZL. 2017. Discovery
- 469 of a rich gene pool of bat SARS-related coronaviruses provides new insights into the
- 470 origin of SARS coronavirus. PLoS Pathog 13:e1006698.

471	24.	Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, Wang H, Crameri G, Hu Z, Zhang H,	
472		Zhang J, McEachern J, Field H, Daszak P, Eaton BT, Zhang S, Wang LF. 2005. Bats are	
473		natural reservoirs of SARS-like coronaviruses. Science 310:676-9.	
474	25.	Temmam S, Vongphayloth K, Baquero E, Munier S, Bonomi M, Regnault B,	
475		Douangboubpha B, Karami Y, Chrétien D, Sanamxay D, Xayaphet V, Paphaphanh P,	
476		Lacoste V, Somlor S, Lakeomany K, Phommavanh N, Pérot P, Dehan O, Amara F,	
477		Donati F, Bigot T, Nilges M, Rey FA, van der Werf S, Brey PT, Eloit M. 2022. Bat	
478		coronaviruses related to SARS-CoV-2 and infectious for human cells. Nature 604:330-	
479		336.	
480	26.	Bosco-Lauth AM, Porter SM, Fox KA, Wood ME, Neubaum D, Quilici M. 2022.	
481		Experimental infection of Brazilian free-tailed bats (Tadarida brasiliensis) with two	
482		strains of SARS-CoV-2. Viruses 14.	
483	27.	Hall JS, Hofmeister E, Ip HS, Nashold SW, Leon AE, Malavé CM, Falendysz EA, Rocke	
484		TE, Carossino M, Balasuriya U, Knowles S. 2023. Experimental infection of Mexican	
485		free-tailed bats (Tadarida brasiliensis) with SARS-CoV-2. mSphere 8(1).	
486	28.	Schlottau K, Rissmann M, Graaf A, Schön J, Sehl J, Wylezich C, Höper D, Mettenleiter	
487		TC, Balkema-Buschmann A, Harder T, Grund C, Hoffmann D, Breithaupt A, Beer M.	
488		2020. SARS-CoV-2 in fruit bats, ferrets, pigs, and chickens: an experimental	
489		transmission study. The Lancet Microbe 1:e218-e225.	
490	29.	Hall JS, Knowles S, Nashold SW, Ip HS, Leon AE, Rocke T, Keller S, Carossino M,	
491		Balasuriya U, Hofmeister E. 2021. Experimental challenge of a North American bat	
492		species, big brown bat (Eptesicus fuscus), with SARS-CoV-2. Transbound Emerg Dis	
493		68:3443-3452.	

		24
494	30.	Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens
495		TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S. 2020. SARS-
496		CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven
497		protease inhibitor. Cell 181:271-280.e8.
498	31.	Damas J, Hughes GM, Keough KC, Painter CA, Persky NS, Corbo M, Hiller M, Koepfli
499		K-P, Pfenning AR, Zhao H, Genereux DP, Swofford R, Pollard KS, Ryder OA, Nweeia
500		MT, Lindblad-Toh K, Teeling EC, Karlsson EK, Lewin HA. 2020. Broad host range of
501		SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates.
502		Proceedings of the National Academy of Sciences 117:22311-22322.
503	32.	Guo Q, Li M, Wang C, Guo J, Jiang X, Tan J, Wu S, Wang P, Xiao T, Zhou M, Fang Z,
504		Xiao Y, Zhu H. 2021. Predicting hosts based on early SARS-CoV-2 samples and
505		analyzing the 2020 pandemic. Scientific Reports 11:17422.
506	33.	Mollentze N, Keen D, Munkhbayar U, Biek R, Streicker DG. 2022. Variation in the
507		ACE2 receptor has limited utility for SARS-CoV-2 host prediction. eLife 11:e80329.
508	34.	Kapczynski DR, Sweeney R, Spackman E, Pantin-Jackwood M, Suarez DL. 2022.
509		Development of an in vitro model for animal species susceptibility to SARS-CoV-2
510		replication based on expression of ACE2 and TMPRSS2 in avian cells. Virology 569:1-
511		12.
512	35.	Gralinski LE, Menachery VD. 2020. Return of the Coronavirus: 2019-nCoV. Viruses 12.
513	36.	Jiang H, Yang H, Kapczynski DR. 2011. Chicken interferon alpha pretreatment reduces
514		virus replication of pandemic H1N1 and H5N9 avian influenza viruses in lung cell

cultures from different avian species. Virol J 8:447. 515

		25
516	37.	Kapczynski DR, Tumpey TM, Hidajat R, Zsak A, Chrzastek K, Tretyakova I, Pushko P.
517		2016. Vaccination with virus-like particles containing H5 antigens from three H5N1
518		clades protects chickens from H5N1 and H5N8 influenza viruses. Vaccine 34:1575-1581.
519	38.	Lu X, Wang L, Sakthivel SK, Whitaker B, Murray J, Kamili S, Lynch B, Malapati L,
520		Burke SA, Harcourt J, Tamin A, Thornburg NJ, Villanueva JM, Lindstrom S. 2020. US
521		CDC real-time reverse transcription PCR panel for detection of severe acute respiratory
522		syndrome coronavirus 2. Emerg Infect Dis 26.
523	39.	Suarez DL, Pantin-Jackwood MJ, Swayne DE, Lee SA, DeBlois SM, Spackman E. 2020.
524		Lack of susceptibility to SARS-CoV-2 and MERS-CoV in poultry. Emerg Infect Dis
525		26:3074-3076.
526	40.	Lawton KOY, Arthur RM, Moeller BC, Barnum S, Pusterla N. 2022. Investigation of the
527		role of healthy and sick equids in the COVID-19 pandemic through serological and
528		molecular testing. Animals 12:614.
529	41.	Yan H, Jiao H, Liu Q, Zhang Z, Xiong Q, Wang B-J, Wang X, Guo M, Wang L-F, Lan
530		K, Chen Y, Zhao H. 2021. ACE2 receptor usage reveals variation in susceptibility to
531		SARS-CoV and SARS-CoV-2 infection among bat species. Nature Ecology & Evolution
532		5:600-608.
533	42.	Mautner L, Hoyos M, Dangel A, Berger C, Ehrhardt A, Baiker A. 2022. Replication
534		kinetics and infectivity of SARS-CoV-2 variants of concern in common cell culture

535 models. Virology Journal 19:76.

536

26

538 Figure Legends

Figure 1. Phylogenetic analysis of ACE2 proteins. Amino acid sequences were obtained from
Genbank and aligned using Geneious Prime. A global alignment with free end gaps was
performed on the ACE2 sequences. Phylogenetic tree illustrates the relative distances between
different ACE2 proteins. Chicken ACE2 was chosen as outgroup because it is not recognized by
SC2 spike protein. Distances are labeled and scale bar is shown.

544

Figure 2. Expression of ACE2 in DF1 cells. DF1 cells lines containing bat ACE2 and human 545 546 TMPRSS2 were examined for expression of ACE2. (A) ACE2 mRNA levels were measured in 547 the cell lines using RT-qPCR. Values were normalized to the chicken 28S housekeeping gene. DF1 (-/-) cells were used as a negative control to calculate the $\Delta\Delta$ CT values. (B) ACE2 protein 548 549 expression was measured by western blot. Cell lysates were resolved by SDS-PAGE and then 550 transferred to a PVDF membrane. The blot was probed with a mouse anti-human ACE2 and a 551 rabbit anti-human actin antibody, followed by a Cy3-conjugated goat anti-mouse IgG and goat 552 anti-rabbit DylightTM 594 secondary antibody for detection.

553

554 Figure 3. Growth of SARS-CoV-2 (Wuhan lineage) in DF1 cells expressing bat ACE2,

555 human TMPRSS2. DF1 cells expressing bat ACE2 and human TMPRSS2 cells were infected

with the Wuhan lineage strain of SC2 at an MOI of 1. At 2, 6, 24, 48, and 72 HPI supernatant

samples were taken for RNA extraction, and viral titers were determined by RT-qPCR. The

values shown are the mean with standard deviation of triplicate samples. Two-way analysis with

559 Tukey's multiple comparison test was performed on viral titers at 48 HPI to determine the

27

560	statistical significance of viral titer between cell lines. Different lowercase letters indicate
561	significant differences (p<0.05). (A) Pass 1 of the virus in cell culture. (B) Pass 2 of the virus in
562	cell culture. After 72 HPI, supernatants from pass 1 were transferred onto fresh monolayers for 1
563	hour, washed with PBS, and replaced with fresh media. The time points from pass 1 were
564	repeated. (C) DF1 cells expressing bat ACE2 and human TMPRSS2 were grown on glass
565	chamber slides. Cells were infected at an MOI of 1. At 48 HPI, cells were imaged to examine
566	CPE. Images of uninfected and infected cells were taken. Cells were also fixed and stained with
567	a rabbit-anti-SARS-CoV-2-S antibody followed by a goat anti-rabbit Cy3-conjugated secondary
568	antibody. Cells were counterstained with DAPI and visualized on an EVOS 500 microscope.

569

570 Figure 4. Growth of SARS-CoV-2 (Delta) in DF1 cells expressing bat ACE2, human

TMPRSS2. DF1 cells expressing bat ACE2 and human TMPRSS2 cells were infected with the 571 Delta strain of SC2 at an MOI of 1. At 2, 6, 24, 48, and 72 HPI supernatant samples were taken 572 573 for RNA extraction, and viral titers were determined by RT-PCR. The values shown are the mean with standard deviation of triplicate samples. Two-way analysis with Tukey's multiple 574 comparison test was performed on viral titers at 48 HPI to determine the statistical significance 575 of viral titer between cell lines. Different lowercase letters indicate significant differences 576 (p<0.05). (A) Pass 1 of the virus in cell culture. (B) Pass 2 of the virus in cell culture. After 72 577 578 HPI, supernatants from pass 1 were transferred onto fresh monolayers for 1 hour, washed with 579 PBS, and replaced with fresh media. The time points from pass 1 were repeated. (C) DF1 cells expressing bat ACE2 and human TMPRSS2 were grown on glass chamber slides. Cells were 580 581 infected at an MOI of 1. At 48 HPI, cells were imaged to examine CPE. Images of uninfected and infected cells were taken. Cells were also fixed and stained with a rabbit-anti-SARS-CoV-2-582

28

S antibody followed by a goat anti-rabbit CY3-conjugated secondary antibody. Cells were
counterstained with DAPI and visualized on an EVOS 500 microscope.

585

586 Figure 5. Growth of SARS-CoV-2 (Lambda) in DF1 cells expressing bat ACE2, human

587 TMPRSS2. DF1 cells expressing bat ACE2 and human TMPRSS2 cells were infected with the

Lambda strain of SC2 at an MOI of 1. At 2, 6, 24, 48, and 72 HPI supernatant samples were

taken for RNA extraction, and viral titers were determined by RT-PCR. The values shown are

the mean with standard deviation of triplicate samples. Two-way analysis with Tukey's multiple

comparison test was performed on viral titers at 48 HPI to determine the statistical significance

592 of viral titer between cell lines. Different lowercase letters indicate significant differences

593 (p<0.05). (A) Pass 1 of the virus in cell culture. (B) Pass 2 of the virus in cell culture. After 72

HPI, supernatants from pass 1 were transferred onto fresh monolayers for 1 hour, washed with

PBS, and replaced with fresh media. The time points from pass 1 were repeated. (C) DF1 cells

596 expressing bat ACE2 and human TMPRSS2 were grown on glass chamber slides. Cells were

597 infected at an MOI of 1. At 48 HPI, cells were imaged to examine CPE. Images of uninfected

and infected cells were taken. Cells were also fixed and stained with a rabbit-anti-SARS-CoV-2-

599 S antibody followed by a goat anti-rabbit CY3-conjugated secondary antibody. Cells were

- 600 counterstained with DAPI and visualized on a EVOS 500 microscope.
- 601
- 602
- 603
- 604

29

606 **Table 1**

Species	ACE2	TMPRSS2
Human	NM_021804.1	NM_005656.4
Little brown bat (<i>Myotis</i>	XM_023753670.1	
lucifugus)		
Great roundleaf bat	XM_019667391.1	
(Hipposideros armiger)		
Pearson's horseshoe bat	EF569964.1	
(Rhinolophus pearsonii)		
Greater horseshoe bat	AB297479.1	
(Rhinolophus		
ferrumequinum)		
Brazilian free-tailed bat	MT663956.1	
(Tadarida brasiliensis)		
Egyptian rousette (Rousettus	XM_016118926.2	
aegyptiacus)		
Chinese rufous horseshoe bat	MT394181.1	
(Rhinolophus sinicus)		

607

Table 1. Table of ACE2 and TMPRSS2 gene accession numbers. Genbank accession

609 numbers and genes used in this study.

611 Figure 1

615 Figure 2

32

619 Figure 3

620

622 Figure 4

623 624

625 Figure 5

