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Abstract

Background: Sketching the major portraits of the COVID-19 epidemic when
variants of the pathogen emerge is critical to inform the dynamics of disease
transmission, reproduction (i.e., the average counts of individuals of secondary
infections generated by an index individual infected by the virus) strength of
the pathogen, and countermeasure strategies. Multiple approaches, including
log-linear, EpiEstim (an R package generally utilized to estimate the evolution
traits of epidemics), and near-log-linear techniques, have been exploited to
evaluate the principal parameters such as basic and effective reproduction
numbers of an epidemic outbreak.
Objective: This study focuses on the kink corner (i.e., sharp alternation of
direction of the transmission curve) presenting differentiated log-quadratic
traits where more infectious variants of viruses emerge at the diminishing
transmission phase of an infectious disease.
Methods: A novel log-quadratic trending framework was proposed to project
potentially unidentified cases (i.e., forward imputing approximately one week
ahead) of COVID-19 around the kink, where the transmission of the pandemic
initially lowered and accelerated subsequently, and exercised with the updated
framework of classic EpiEstim and Log-linear model. I first compared the
performance near the kink using the proposed technique versus the two
traditional models taking into account a variety of levels of transmissibility,
data distribution (Weibull, Gamma, and Lognormal distributions), and
reporting rates (0.2, 0.4, 0.6, 0.8 and 1.0 respectively). Thereafter I utilized the
revised framework on the outbreak data of four settings including Bulgaria,
Japan, Poland, and South Korea from June to August 2022.
Results: The proposed framework reduced the estimation bias versus
traditional EpiEstim and log-linear methods near the kink. The coverage
estimates of 95% confidence intervals improved. The proposed
forward-imputation method implied generally a consistent ascending trend of
effective reproduction number estimation applying to a precipitous transition
from diminishing to diverging scenarios versus the irregular zigzagging
outcomes in classic methods when more contagious variants of the virus were
present in the absence of effective vaccines.
Conclusions: The log-quadratic correction accounting for transmissibility,
data distribution, reporting rates, sliding windows, and generation intervals
improved the basic and effective reproduction numbers estimation at the kink
corner versus the classic EpiEstim and log-linear models by refined
amendment of curve fitting. This is of concern when essentially the
fundamental transmission traits of a pandemic alter expeditiously and
countermeasures are needed at the earlier variant phases of the transiting
climax with the advancement of the pandemic.
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Introduction

The COVID-19 pandemic witnessed multiple waves of variants such as alpha,
beta, delta, and omicron since the outbreak was officially established in late
2019 [1]. Findings reveal that the effectiveness of vaccines is compromised on
average by existing variants of COVID-19 [1,2]. These variants have introduced
significant challenges in curtailing the transmission of the pathogen and the
treatment of infections. The fundamental traits of mutations include
intensification of virus replication and thus excessive transmissibility identified
recently by Delta and Omicron [3]. The latter was partially or completely
resistant to neutralization and escaped most therapeutic monoclonal
antibodies. Sera from recipients of the Pfizer or AstraZeneca vaccine >
5 months after vaccination scarcely inhibited Omicron [4,5]. Multiple
sublineages of SARS-CoV-2 Omicron have been reported worldwide. These
variants were more infectious than their previous counterparts and were
known to spread rapidly [5,6].

Attributable to factors such as limited testing capacities, compromised service
quality of healthcare, vaccination hesitancy, substantial pre-symptomatic or
asymptomatic infections, and change of control strategies, some settings have
recognized the dilemma in connection with undetected and under-reported
infections [6,7,8]. For instance, the change in relaxing public health suspension
of vaccine passes, and social measures were found to associate with the
increased transmissibility of the Omicron variant in South Korea [7]. Japan
likewise experienced a high level of COVID-19 infections with an average of
nearly 200 thousand new infections per day nationwide during a short period
from July to August 2022 [8]. Some countries had other problems such as
vaccine hesitancy, for instance, Bulgaria reported a hesitancy level of 62% and
Poland reported a similar issue in older age cohorts [9]. On the other hand,
available data by July 2022 suggest that variants of COVID-19 specifically the
BA.2, BA.4, and BA.5 subvariants escape neutralizing antibodies to a
significant extent, which complicated the transmission of the pandemic
[10-17].
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The series of mutations of the pathogen usually is associated with idiosyncratic
traits of the epidemic curve: a kink that potentially alters considerably the
direction of the trajectory. Evaluation of the transmission potential and
reproduction numbers near the kink corner is meaningful for signaling the
potential of disease infection and the subsequent strategies of responses
[11-20]. Hence, one critical problem remains to be the concern: how do the
principal parameters (e.g., basic and effective reproduction numbers)
regulating the trajectory of the pandemic behave close to the turning kink? It is
of necessity that the fundamental traits of the kink are captured to reflect the
transmission dynamics of the pandemic by using available data in the early
phases of transition when the healthcare system, the preparedness of the
public or the countermeasures are not in the status of equilibrium [21]. Basic

( 0R ) and effective ( tR ) reproduction numbers are two fundamental metrics to

measure the infectiousness of the virus transmitted from one individual to
another. In this context, I revisited the fundamental concepts of basic and
effective reproduction numbers respectively, and conceived a novel

log-quadratic framework. Conceptually basic reproduction number 0R is

defined merely at the onset of a pandemic when all individuals are completely
susceptible, representing the average cases of secondary infections that an

index infected individual generates. The transmission of disease holds if 0R >1

and ceases if 0R <1 [11-14]. In contrast, effective reproduction number

tR denotes the average cases of secondary infections caused by a single

infectious individual at a given time t [15-17]. These two parameters
potentially reflect critical information inherent in the pandemic, including the
infectiousness of the pathogen, the strength of social measures, the behavior
changes of individuals, the environmental factors, and the crude threshold of
herd immunity [13-20], and are indispensable to proposing subsequent
countermeasures [14-24].

A variety types of techniques have been employed to investigate these

questions. Luis Alvarez et al. [15] appraised tR by inverting the renewal

equation in connection with the observed incidence curve. Raúl et al. [16]

utilized a fitting model for 0R with statistical distributions and a Bayesian

approach relying on prior information to project posterior distributions. Jie Y
et al. [17] used log-transformation of the daily infections to infer the impact of
COVID-19. Cori et al [18] developed the EpiEstim framework and it has been
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known as an effective technique to estimate the instantaneous reproduction

number tR . However, EpiEstim and other statistical models suffer from

systematic bias in the early stages of an epidemic, and whether the
performance can be generalized to the kink in association with variants of
infectious diseases is not known [18,19]. By extending the log-linear and
EpiEstim concepts and their subsequent refined frameworks [19, 20], I
propose a novel method by accounting for potentially incorrect or missing
information about the outbreak near the kink corner and utilizing transformed
simulation data to scrutinize the effectiveness versus the other two classic
models. I evaluated how the novel framework entails a reduction in the
estimation bias of the basic reproduction number close to the kink in
comparison with traditional EpiEstim and log-linear models. Lastly, I
appraised the estimates produced by the proposed model on the early-variant
transition stage outbreak data of four representative countries, where kink
traits of disease transmission were observed.

Methods

Classic EpiEstimModel

The effective reproduction number, tR , can be estimated by the ratio of the

cases of new infections tI generated at time step t , to the total infectiousness

of infected individuals at time t that is governed by   
t

s st wI
1  , where sw is

the infectiveness of infected individuals [20]. Consequently, if t represents a

time point, the form of tR is transformed to the instantaneous reproduction

number at a specific time point; in contrast, if t denotes an interval of period,
the definition is converted to a sliding window portraying relatively stable
transmission of the pathogen within that time slot. I focus on the period from
June to August 2022 and four settings including Bulgaria, Japan, Poland, and
South Korea. Studies have identified that methods including EpiEstim
overestimate reproduction numbers during the preliminary stages of epidemic
trending and the magnitude of bias increases with the degree of data missing.
This can potentially engender misleading conclusions about the transmission
dynamics of the epidemic and the subsequent countermeasures of social efforts
[12-24].
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Kink and Log-quadratic Transformation
The new framework assumes that the transmission of COVID-19 follows a
log-quadratic polynomial form attributable to the emergence of novel variants
of the pathogen, the major traits of which are characterized by the kink
remarkably switching the direction of the transmission. The log-quadratic

mathematical model is asymptotically given by cdaybdayacases  **)log( 2

where ,,ba and c denote respectively the day-squared, day-term, and

constant coefficients of the quadratic form. And for generalization assume

0a and 0b . Hence the kink of the preceding equation is determined by

0*2  bdaya , that is to say, at the time
a
bday

2
* 
 the minimum cases of

log-transformation are derived as
a
bac

4
4 2 . If the time satisfies

a
bday

2


 ,

the daily increment of infections slows down and the pandemic tends to

eradicate ultimately, in contrast, if the time satisfies
a
bday

2


 , the daily

increment of infections increases.

Proposal: Correction of EpiEstim and Log-linear Framework
I propose an updated calibration to account for potentially incorrect statistics
of infections around the kink corner where more infectious variants occur.
Specifically, I suppose that the epidemic follows a log-quadratic distribution
close to the kink to forward-impute the subsequent infections. As the
transmission is generally rapid, which is reflected in the change of
reproduction numbers and consequently I assume that the period of
forward-imputation is not more than 7 days. Our framework can be
implemented by complying with the mechanism illustrated in Figure 1. Initially,
I apply a log-quadratic model on the transformed simulation observations to
attain the growth rate. Then, I utilize the log-quadratic structure to
forward-impute subsequent infections one week ahead, for which inaccuracy of
data reporting occurs partially attributable to factors such as the low capacity
of testing, ineffectiveness of vaccines, vaccination hesitancy and considerable
sub-clinical infections at the early-stage transition occurrence of variants.
Thereafter I follow the general schema depicted in [20] to identify the
generation interval (conceptually defined as the infection time between the
infector and the infected.) necessary for the forecast. I include the
forward-imputation cases in the final sample and run the log-quadratic model
with the EpiEstim framework to appraise the updated performance.
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Figure 1. Illustration of the log-quadratic trending calibration appraised with
simulation data. Logarithm transformation of the initial dots (cyan points) is utilized to
fit a log-quadratic model. The novel quadratic model is then utilized to forward-impute
cases (orange dots) to compensate for the incorrectly reported or missing data beyond that
point during the early stage of the variants transition. Simulation parameters: simulation
times are set to 500, the reporting rate  of infections is 1.0, the time slot of
forward-imputation is 7 days, and the window of sliding is 3 days.

Design of Simulations
I appraised the outcome of the proposed novel framework versus traditional
EpiEstim and Log-linear methods. As the region near the kink corner
incorporated the key points mostly altering the transmission from convergence

to divergence, I assessed 0R that was close to threshold value one by taking

values of 0.9, 0.95, 1, and 1.2 with 50 simulations respectively. These values
potentially capture the principal traits of the transmission. The number of
individuals was equal to 1e8 and the epidemic was initiated by 5 initial cases by
assumption. The average time exhausted in the exposed and infectious
compartments was supposed to be 3 and 4 days respectively, from which
generation interval was calculated [6, 20]. I follow the two types of imperfect
reporting sketched in [20], assuming the kink points approximately distribute
at day 80 in the simulation data. A variety level of under-reporting rates
ranging from 0, 0.2, 0.6, and 0.8 is utilized, which corresponds to the
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differentiated preparedness of the healthcare system and the population. I
assume the observations followed binomial distributions with the likelihood of
correct reporting identical to the reporting rate divided by five.

Ethical considerations
None applicable.

Results

Performance Comparison of Different Frameworks
I apply the log-linear, EpiEstim, and proposed framework to the simulation
data assuming a Weibull distribution of generation interval. For other
distributions including Gamma and Lognormal, I obtained similar outcomes
(Supplementary Figures S18-S21). Figure 2 compares the effect of three
different models around the kink and the true values of reproduction number

are set to equal to 0.9, 0.95, 1, and 1.2 respectively. I set the reporting rate 

as 0.8. The result indicates that in all scenarios with kink, the log-linear
model underestimates the values of the basic reproduction number. These
trends are evaluated for other types of  (Supplementary Figures S10-S17),
implying consistency in the estimates obtained with different reporting rates.
On the other hand, the EpiEstim framework overestimates the basic

reproduction number close to the kink when 10 R and underestimates the

value when 10 R . Our adjustment enhances the range accuracy of 0R by

improving the estimation of the confidence interval and performs effectively at
threshold one. The average widths of 95% confidence interval are illustrated in
Figure 3. Under different scenarios, the range estimation of the true
reproduction number is increased using the proposed model versus the
log-linear and EpiEstim models.
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Figure 2. Distribution of average 0R estimates. Assuming a fixed reporting rate

8.0 with 50 times simulation and population number 1e+8. Each sub-panel shows

the distribution of the mean 0R estimates obtained for a given true 0R value around the

kink (red dashed line). Abbreviations: LogLinear, growth rate follows log-linear
distribution; EpiEstim, classic EpiEstim framework; EpiEstimLogquad, Log-quadratic
adjustment of EpiEstim framework.
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Figure 3. Estimation of 95% Confidence Interval corresponding to Figure 2.
The generation interval of the mean is equal to 7 days and the standard deviation is 5 days.
Method abbreviations: EpiEstim model (EE); EpiEstim Log-quadratic model (ELQ);
Log-linear model (LL).

Application to Outbreak Data
The performance of the proposed model has been examined over simulation
data, in this section I applied it to the observation data of COVID-19 in practice
reported by the John Hopkins Center for Systems Science and Engineering
database focusing on four countries from June to August 2022 where kink trait
was observed [15, 16]. These settings include Bulgaria, Japan, Poland, and
South Korea, all of which experienced a substantial growth of cases around
mid-June 2022 and a kink was observed. Different countries might not share
the same reasons associated with the precipitous change. For each country, I
fitted the incidence data with a log-quadratic regression model and then
project the trajectory over the subsequent time window versus the EpiEstim
model. I compared the trending difference of the resulting effective
reproduction number by utilizing a sliding window of 3 days. For a varying
range of sliding windows covering from 2 to 5 days, the qualitative outcome of
estimates does not change (Supplementary material Figure S1-S6). The mean
and standard deviation of the generation interval is 6 and 2 days respectively
[17]. Figure 4 shows that the adjustment model generally led to upward

trending of tR for all four countries, generating higher values of tR than

their counterparts estimated through the traditional EpiEstim model. On the
other hand, the estimates by EpiEstim are more irregular and zigzag-shaped,
the estimates are curtailed to values below one within some specific intervals,

deviating from the increasing spread of the pandemic. On average, tR is

increasing over time using the proposed model, and it is more unpredictable
over time with the EpiEstim model.
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Figure 4. Comparison of tR estimates. Obtained with (red and blue curves) and

without (black points) adjustment of COVID-19 data in 4 countries: Bulgaria, Japan,
Poland, and South Korea. Each sub-figure includes the log-transformation of the data and

the regression line with confidence interval (left) and the tR estimates one week ahead

(right) obtained using a sliding window of 3 days and a generation interval of mean 6 days
and standard deviation of 2 days. Abbreviations: LogLinear, growth rate follows log-linear
distribution; EpiEstim, classic EpiEstim framework; EpiEstimLogquadratic,
Log-quadratic adjustment of EpiEstim framework.

The violin plots corresponding to Figure 4 are illustrated in Figure 5. It can be

seen that the tR estimates approximately distribute in a range from 1.8 to 2.3

using the proposed model versus another range from 0.2 to 1.7 using the
traditional EpiEstim model for Bulgaria. Near the kink, the former framework
obtained a greater magnitude of estimation. These ranges are roughly (1.5, 2.1)
versus (0.9, 2.1) for Japan, (1.5, 2.8) versus (0.2,2.3) for Poland, and (1.3, 1.9)
versus (0.8, 1.5) for South Korea respectively. All countries attain similar
trending of discrepancy. Generally, when more contagious variants of virus
emerge and thus kink is present, the spread of the disease advances rapidly and

the estimate of tR is greater on average using the proposed framework versus

classic models. The detection could potentially resemble multiple influencing
drivers rather than a specific impacting factor.
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Figure 5. Violin plots corresponding to Figure 4. tR estimates obtained using a

sliding window of 3 days and a generation interval mean of 6 days and standard deviation
of 2 days. Abbreviations: EpiEstim, classic EpiEstim framework; EpiEstimLogquadratic,
Log-quadratic adjustment of EpiEstim framework.

Discussions

I conceived an updated basic framework for the systematic bias of 0R that

occurred in the early-variant transition stages of a shrinking epidemic
accompanied by emergent variants, where kink traits were observed, when
using traditional EpiEstim and log-linear methods accounting for
transmissibility, data distribution, reporting rates, sliding windows, and
generation intervals. I utilized the forward-imputation procedure to
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asymptotically project the outbreak one week ahead in association with a
log-quadratic model to improve the accuracy estimates of the 95% confidence
interval in four countries including Bulgaria, Japan, Poland, and South Korea
from June to August 2022. The proposed correction aims to account for
incorrect or missing reporting of infections applicable in settings where
substantial sub-clinical infections, vaccine ineffectiveness, vaccination
hesitancy, and unpreparedness of the population and healthcare system are
observed [21]. In practice, the adjustment is meaningful in that I shed light on
the necessity of updating countermeasures to infectious disease during its
early-mutation stages potentially accompanied by vibrant variants as a great
deal of asymptomatic or pre-symptomatic transmission advances and vaccines
are not effective [20-28]. The correction may also apply to diseases
characterized by abrupt alteration of the trajectory where more infectious
variants of virus show up. In this study, I demonstrated the applicability of the
revision to the classic EpiEstim and Log-linear method by curtailing the bias
on the estimation of basic and effective reproduction numbers [24-30]. The
update integrates the traits of EpiEstim and the log-linear frameworks,
applying to the kink at the early-variant phases of transition. In particular, the
bias observed in traditional package estimates is reduced and coverage is
improved by the correction model around the kink. The adjusted estimates of

0R outperformed the estimates obtained with EpiEstim and log-linear

methods in terms of estimate bias and produced improved coverage of 95%
confidence intervals. This is partially attributable to the adjustment of the
model closely complying with the principal traits of the real trajectory which is
used for the forward imputation of the subsequent infections. I found a
consistent upward trend of effective reproduction number close to the kink
corner when more infectious variants emerged and vaccines potentially were
not effective in four settings from June to August 2022.

Critically, the results are not sensitive to the choice of EpiEstim parameters,
such as the interval of generation and the interval of the sliding window
(Supplementary Figures S1–S9). This suggests that our adjustment has a much
smaller effect when taking into account the potential co-founders. To evaluate
the sensitivity of the estimates to the log-quadratic assumption, I test the
performance of the method using a variety level of parameters. The results of
this sensitivity analysis illustrated in the Supplementary Documentary indicate
that the corrected model performs well near the kink accompanied by
infectious variants of the pathogen.

The adjusted model reduced the bias estimates obtained with traditional
EpiEstim and log-linear methods. The overestimation of reproduction number

when 10 R using EpiEstim reinforced the other findings in [20,22-29].
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Additionally, I found that EpiEstim underestimated the reproduction number

when 10 R near the kink. This may partially be attributable to the reason

that the transmission at the kink corner is rapid and the generation time is
mostly shorter than usual.

Limitations

Currently, COVID-19 has not yet been globally eliminated and experienced
multiple waves of variants [31-39]. The proposed method partially
incorporated the uncertainty of imputed cases, the heterogeneity of
transmission dynamics, and the uncertainty of the growth rate estimates
through the channels of sliding windows, data distribution, generation
intervals, and reporting rates. The novel model also partially took into account
the impact of estimate bias in terms of underestimation and overestimation.
Estimation of the effective reproduction number can yield different outcomes
using diverse frameworks accounting for systematic over- or under-estimation
bias [40-43].

However, multiple limitations should be noted. First, I did not incorporate the
uncertainty of other observed and unobserved factors potentially driving the
kink transition such as changes in individual behaviors, contact patterns of the
population, prior records of infections, non-compulsory and compulsory
interventions, and their interactions [20, 25-33]. Studies found that
non-compulsory measures reduced population mobility using mobile-phone
data in Tokyo [8,34]. The survey conducted in Bulgaria implied that prior
records of infections could confer certain levels of immunity protection,
implicitly yielding an impact on the trajectory of later reinfection [35]. Second,
other exterior driving factors may be playing roles as well, such as policies,
environmental scenarios, urban space features, and potential interactions [36].
Third, I investigated the wrap-up effects resulting from the transition of
emerging variants, however, I did not differentiate the effect of one driving
factor from another. Neither did I differentiate the factor of variants from other
drivers, nor the magnitude of each [36,38-39]. To accurately identify the
stratified solution of the mathematical models for an outbreak incorporating
these factors, more detailed measures and observations of relative metrics are
needed (e.g., data on stratified distribution of urban space features including
diversity of infrastructure buildings, environment scenarios including humidity,
temperature, and other atmospheric conditions). The direct and accurate
measure of the impact of health policies sometimes could be challenging and
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they might need time to take effect [36-40]. As a potential alternative, changes
in population mobility, contact patterns, and other activities likely resulting
from policies are discussed [36-42]. These refined measures can be in
combination with graph analysis to capture the diversity in the urban space
and environmental scenarios [36-41].

Future work can contribute to uncovering the association between the
stratified uncertainty and the resulting parameter estimates as well as the
impact of other potential driving factors when more information unfolds [36].

Conclusions

The estimates using the proposed framework unveiled the consistent upward
trending of effective reproduction numbers when the epidemic was transiting
from convergence to divergence in four countries including Bulgaria, Japan,
Poland, and South Korea from June to August 2022. The outcome implies that
our log-quadratic and forward-imputation framework can yield improved
precision of 95% confidence interval coverage with constraint or incorrect
information and reduced the estimates of bias, which may prove meaningful in
emerging novel epidemics, in which no effective vaccines are readily available.
Although studies reported the estimates of virus variants, the non-linear
transformation of the model especially the kink traits was rarely investigated
[23,29-33], which impeded further analysis. The findings suggest that caution
needs to be exercised when transmission of disease starts to slow down as it
could be the starting point of other novel variants [30-33]. Hence, close
monitoring of social measures is essentially needed during the outbreak
[31,32].

I employed a log-quadratic trending model to infer incorrect or missing
information approximately one week ahead in connection with in-equilibrium
when considerable alteration of transmission occurs. The proposed framework
improved the accuracy of range estimates of reproduction numbers in
comparison with traditional statistical methods adjacent to the kink. Our
analysis suggested the necessity of updating models to reduce the initial bias in
reproduction number estimates during the occurrence of novel emerging
variants when the estimates of principal parameters are critical for the
calibration of public countermeasures at the turning corners [31-33,36].
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