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Abstract 

The application of B-cell epitope identification for the development of therapeutic antibodies 
is well established but consuming in terms of time and resources. For this reason, in the last 
few years, the immunoinformatic community has developed several computational predictive 
tools.  

While relatively successful, most of these tools only use a few properties of the candidate 
region to determine their likelihood of being a true B-cell epitope. However, this likelihood is 
influenced by a wide variety of protein features, including the presence of glycosylated 
residues in the neighbourhood of the candidate epitope, the subcellular location of the protein 
region or the three-dimensional information about their surface accessibility in the parental 
protein. 

In this study we created Brewpitopes, an integrative pipeline to curate computational 
predictions of B-cell epitopes by accounting for all the aforementioned features. To this end, 
we implemented a set of rational filters to mimic the conditions for the in vivo antibody 
recognition to enrich the B-cell epitope predictions in actionable candidates. To validate 
Brewpitopes, we analyzed the SARS-CoV-2 proteome. In the S protein, Brewpitopes enriched 
the initial predictions in 5-fold on epitopes with neutralizing potential (p-value < 2e-4). Other 
than S protein, 4 out of 16 proteins in the proteome contain curated B-cell epitopes and hence, 
have also potential interest for viral neutralization, since mutational escape mainly affects the 
S protein. Our results demonstrate that Brewpitopes is a powerful pipeline for the rapid 
prediction of refined B-cell epitopes during public health emergencies. 

 

Statement of significance  
We have created Brewpitopes, a new pipeline that integrates additional important features 
such as glycosylation or structural accessibility, to curate B-cell epitope more likely to be 
functional in vivo. We have also validated Brewpitopes against SARS-CoV-2 not only for S 
protein but also for the entire viral proteome demonstrating that is a rapid and reliable 
epitope predictive tool to be implemented in present or future public health emergencies. 
Brewpitopes has identified 7 SARS-CoV-2 epitopes in S and epitopes allocated in 4 other 
proteins. Overall, offering an accurate selection of epitopes that might be scaled up to the 
production of new antibodies. 
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Introduction 
 
Neutralizing antibodies play a major role in the adaptive immune response against 

pathogens1. Hence, the prediction of the protein regions these recognize is key to guide the 

understanding of their mechanism of action 1. These protein regions, termed B-cell epitopes, 

potentially spread through the entire proteome of the target organism. This wide distribution 

requires of high throughput techniques to unravel the full epitope landscape. In this context, 

the bioinformatic prediction of B-cell epitopes has stepped in as a necessary exploration prior 

to the experimental validation (Table 1). For instance, in the race against SARS-CoV-2 

pandemics, accurate bioinformatic B-cell epitope predictors significantly contributed to the 

success of COVID-19 preventive and therapeutic strategies 2 (Table 2). For this reason, many 

groups dedicated efforts to the identification of SARS-CoV-2 antibody binding regions using 

different bioinformatic approaches as a first step to later characterize neutralizing antibodies 

or to design immunogens for vaccines (Table 2) 2,3. 

 

B-cell epitope predictors recommended by the Immune Epitope Database (IEDB) 4 such as 

Bepipred 5, or Discotope 6 or others (Table 1) (7–13), are tools able to rapidly, in the minute-

scale, generate lists of continuous and discontinuous potential B-cell epitopes. However, even 

state-of-the-art B-cell epitope prediction tools often output lists of potential epitopes that are 

too large to validate experimentally14. Moreover, many of the predicted epitopes will not 

necessarily function in vivo 14. Hence, the development of new predictive tools that enable a 

refinement of the computational B-cell epitope predictions available is a priority. Such tools 

will enable a rapid and accurate reaction in front of emergency situations such as COVID-19 

pandemics or the appearance of new variants of concern that escape the immune response 

and derived immunotherapies 15,16. 

 

To this end, we have designed Brewpitopes, a new predictive pipeline that integrates 

additional important features of known epitopes, such as glycosylation or structural 

accessibility, to curate B-cell epitope predictions for neutralizing antibody recognition and 

enrich that final list of potential epitopes with those that are more likely to be functional in 

vivo. We also have validated our pipeline by predicting epitopes in antibody binding regions in 

the proteome of SARS-CoV-2, with a special focus on the S protein and its variants of concern. 
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Material and Methods 

All protein three-dimensional figures have been generated with PyMol 2.5 and Chimera X. All 

statistical analyses have been done using R statistical software (R version 3.6.3). All data 

and software can be obtained from public sources for academic use. 

Dataset curation 

The SARS-CoV-2 proteome in UniprotKB consists of 16 reviewed proteins 17. We used the 

corresponding FASTA sequences as starting data for linear epitope predictions. To perform 

structural epitope predictions, when available, we obtained the PDB structures from the 

Protein Data Bank database selecting the structures with the best resolution and more protein 

sequence coverage18. For those proteins with no available structure in PDB, we used 

Alphafold2.0 19 or Modeller 20 to model their 3D structure.  

Linear epitope predictions 

To predict linear epitopes on protein sequences we used ABCpred 21 and Bepipred 2.0 5. 

We used ABCpred 21, an artificial neural network trained on B-cell epitopes from the Bcipep 

database 22 to predict linear epitopes given a FASTA sequence. The identification threshold 

was set to 0.5 as indicated by default (accuracy 65.9% and all the window lengths were used 

for prediction (10-20mers).  Additionally, we kept the overlapping filter on. To further augment 

the specificity of the predictions, we increased the ABCpred score to 0.8.  

In addition, we used Bepipred 2.0 5, a random forest algorithm trained on epitopes annotated 

from antibody-antigen complexes, as a second source to predict linear epitopes. The epitope 

identification threshold was set to >= 0.55 leading to a specificity of 0.81 and a sensitivity of 

0.29(32). 

Structural epitope predictions 

We used PDBrenum 23 to map the PDB residue numbers to their original positions at the 

UniprotKB FASTA sequence. The reason behind this step was that factors such as the 

inclusion of mutations to stabilize the crystal may lead to discordances between the residue 

numbers in the PDB and FASTA sequence from the same protein.  

In order to model those SARS-CoV-2 proteins with missing structures in PDB, we used 

Alphafold 2.0 19. We then refined the models by restraining our analysis to those regions with 

a pDLLT threshold of 0.7 to only assess highly confident regions. The proteins that required 

Alphafold modelling were M, NS6, ORF9C, ORF3D, ORF3C, NS7B and ORF3B. 

To predict conformational or structural B-cell epitopes we used Discotope 2.0, a method 

based on surface accessibility and a novel epitope propensity score 6. The epitope 

identification threshold was set to -3.7, as specified by default, which determined a sensitivity 

of 0.47 and a specificity of 0.75. 
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Epitope extraction and integration 

Bepipred 2.0 5, ABCpred 21 and Discotope 2.0 6 predictions resulted in different tabular outputs. 

To extract and curate the predicted epitopes, we created a suite of computational tools in R 

statistical programming language and Python, available at 

https://github.com/rocfd/brewpitopes. 

Subcellular location predictions 

When publicly available, the protein topology information was retrieved from the subcellular 

location section in UniprotKB 17. For those proteins with unavailable topology, we predicted 

their extraviral regions using Constrained Consensus TOPology prediction(CCTOP) 24, a 

consensus method based on the integration of  HMMTOP 25, Membrain 26, Memsat-SVM 27, 

Octopus 28, Philius 29, Phobius 30, Pro & Prodiv 31, Scampi 32 and TMHMM 33. The .xml output 

of CCTOP was parsed using an in-house R script (xml_parser.R)  and then, the extracted 

topology served as reference to select epitopes located in extraviral regions using the script 

Epitopology.R.    

Glycosylation predictions 

To investigate in-silico which residues would be glycosylated, we used NetNGlyc 1.0 34 for N-

glycosylation and Net-O-Glyc 4.0 35 for O-glycosylations. NetNglyc uses an artificial neural 

network to examine the sequences of human proteins in the context of Asn-Xaa-Ser/Thr 

sequons. NetOglyc produces neural network predictions of mucin type GalNAc O-

glycosylation sites in mammalian proteins. We parsed the corresponding outputs using 

tailored R scripts and then, we extracted the glycosylated positions to filter out those epitopes 

containing glycosylated residues using Epiglycan.py.  

Accessibility predictions 

To predict the accessibility of epitopes within their parental protein structure we computed 

the relative solvent accessibility (RSA) values using ICM browser from Molsoft 36. We used an 

in-house IEC browser script (Compute_ASA.icm) to compute RSA and we considered buried 

those residues with RSA threshold less than 0.20. Then the ICM-browser output parsed to 

extract the buried positions, which then served as filter to discard epitopes containing 

inaccessible or buried residues using Episurf.py. 

Variants of concern (VOCs) analysis 

The mutations accumulated by the variants of concern Alpha, Beta, Delta, Gamma and 

Omicron in the S protein were obtained from CoVariants webpage 37, which is empowered by 

GISAID data 38. A fasta sequence embedding each variant’s mutations was generated using 

fasta_mutator.R.  

Data availability 

All the scripts that conform the Brewpitopes pipeline can be encountered at 
https://github.com/rocfd/brewpitopes with extensive documentation.  

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.518301doi: bioRxiv preprint 

https://github.com/rocfd/brewpitopes
https://github.com/rocfd/brewpitopes
https://github.com/rocfd/brewpitopes
https://doi.org/10.1101/2022.11.28.518301
http://creativecommons.org/licenses/by/4.0/


 6 

Results 

Brewpitopes, a pipeline to curate B-cell epitope predictions based on determinant features 
for in vivo antibody recognition  

While there are some tools available to predict the presence of B-cell epitopes in a protein 

sequence or structure, these tools are mainly based on machine learning methods trained 

with experimentally validated epitopes (Table 1). However, these methods sometimes do not 

account for other factors that might affect the antigenicity or the potential of a protein region 

to be recognized specifically by antibodies. 

Brewpitopes was designed as a streamlined pipeline that generates a consensus between 

linear and conformational epitope predictions and curates them following the in vivo antibody 

recognition constraints (Fig.1A, B, C). To this end, a suite of computational tools was created 

to integrate the output of different predictors of all the aforementioned features and create a 

filtered version of B-cell epitope regions (Fig. 2). 

Linear epitopes are continual stretches of residues located at the surface of proteins whereas 

conformational epitopes are discontinuous residues recognized due to their structural 

disposition. For both cases exist state-of-the-art predictors (Table 1). To start with, in 

Brewpitopes, we have predicted linear epitopes using Bepipred 2.0 5 and ABCpred21 and we 

have searched for conformational epitopes using Discotope 2.0 6. Once predicted, we have 

extracted the epitopes using tailored R scripts named Epixtractor and we then integrated the 

results using Epimerger.  

First, since neutralizing antibodies can only inspect the external surface of cells or viral 

particles, we propose that those epitopes predicted in intracellular and transmembrane 

regions of proteins cannot be targeted by these type of antibodies (Fig. 1A). Hence, the 

subcellular location of an epitope is a recognition constraint 39, which our pipeline uses to 

prioritize epitopes located on extracellular protein regions while discarding those located in 

intracellular and transmembrane regions. To predict the subcellular location of a protein 

region; we used protein topology information. For some proteins, the topology is already 

available at UniprotKB 17, however, for some others it is not. In such cases, the alternative is 

to predict the topology of the protein. When this occurred, we used CCTOP to predict their 

transmembrane, intracellular and extracellular regions 24. Once we had the extracellular 

regions, we labelled the epitopes using Epitopology. 

Next, glycans can cover B-cell epitopes, limiting their accessibility for antibody recognition 

(Fig. 1B) 40. For this reason, our pipeline uses in-silico tools to predict glycosylated sites and, 

discards all the epitopes overlapping glycosylated residues. Concretely, we have used 

NetNglyc1.0 34 and NetOglyc4.0 35, for the prediction of N-glycosylations and O-glycosylations 

respectively. These methods are based on artificial neural networks trained on glycosylation 

patterns by which they can predict glycosylation sites ab initio given a protein sequence. Once 

the glycosylated positions were retrieved, we used Epiglycan to label epitopes with one or 

more glycosylations as “Glycosylated” and those with no glycans as “Non-glycosylated”.  

The accessibility of the epitope within the protein structure is another antibody recognition 

constraint 41 (Fig 1C). Accordingly, our pipeline calculates the relative solvent accessibility 

(RSA) values for all the residues and filters out those epitopes containing buried amino acids. 

To compute the RSA values based on crystal structures we have used Molsoft 36 and the in-
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house script compute_asa.icm. Overall, we have determined the buried positions as those 

residues with RSA values lower than 0.20. Next, these positions served as reference to label 

epitopes containing at least one buried residue as “buried”, which therefore would not be 

accessible for antibody recognition. Conversely, epitopes with all the residues calculated as 

exposed were labelled as “accessible”. 

Finally, to conclude the Brewpitopes pipeline we used Epifilter to filter out those epitopes that 

were labelled as intracellular, glycosylated or buried. Additionally, a length filter was used to 

select epitopes longer than 5 amino acids, since shorter peptides were considered unspecific. 

Therefore, our final candidates were extracellular, non-glycosylated and accessible enhancing 

their capacity to be recognized by antibodies in vivo. In order to merge overlapping epitopes 

into epitope regions and to generate a consensus between B-cell epitope predictors, we 

designed Epiconsensus; a tool that not only merges overlapping epitopes but it also scores 

the resulting epitope regions with the following an ordering criteria between predictors: first, 

ordered by best Bepipred 2.0 score 5; second, ordered by best Discotope 2.0 score 6 and third, 

ordered by best ABCpred score 21. 

Bioinformatic validation of Brewpitopes in the proteome of SARS-CoV-2  

Brewpitopes can be implemented to any target protein or organism, but due to the pandemic 

context and the interest in B-cell epitopes and neutralizing antibodies against SARS-CoV-2, to 

validate the pipeline we analysed its proteome. Within SARS-CoV-2, we specially focused on 

the S protein due to its importance in vaccine design, therapeutic antibodies and immune 

evasion 42. Our results confirm the neutralizing potential of the S protein and also show how 

other proteins of SARS-CoV-2 contain other regions with potential epitopes for neutralizing 

antibodies. 

Focusing on the S protein, linear epitope predictions resulted in 213 epitopes and structural 

predictions in 6. Once integrated, 10 epitopes were discarded due to their intraviral location. 

Next, since it had been established that S protein is heavily glycosylated (15), 52 epitopes 

were filtered out due to the presence of glycans. Lastly, 143 epitopes were discarded because 

they contained at least one residue buried within the 3D structure of the S protein. As a result, 

14 epitopes derived from S were curated for optimized antibody recognition (Fig.3). Compared 

to the initial state-of-the-art epitope predictions, our results show that only a 5.5% of the 

predicted epitopes for the S protein will be enriched for antibody recognition in vivo due to the 

recognition constraints we have analysed with Brewpitopes (Fig.4). Furthermore, to generate 

a consensus between linear and conformational predictions from different tools, the 

overlapping epitopes were merged into epitope regions. In the case of the S protein, the 14 

candidates were merged into 7 epitope regions (Fig 3 & Table 4).  

As an external validation, the epitope regions identified in the S protein were cross-validated 

with the epitopes described at the IEDB database 43 (Table 4). Notably, the regions identified 

in our pipeline were all encountered among IEDB epitopes, which confirms the validity of our 

predictions. However, our epitope regions represented less than 1% of the epitopes for the S 

protein listed in the IEDB. Compared to the initial output from the computational tools, the 

final list of prioritized epitopes from our pipeline was enriched 5-fold in validated epitopes 

from IEDB (p < 2e-4). This confirms the power of Brewpitopes to refine B-cell epitope 

computational predictions to a reduced set of epitopes with greater probability for in vivo 

antibody recognition. 
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To extend our analysis to the rest of the SARS-CoV-2 proteins in search of other epitopes with 

antibody recognition potential, we used Brewpitopes to analyse full proteome of the virus. 

Overall, 4/15 of the remaining proteins contained candidate epitopes for neutralizing 

antibodies (R1AB, R1A, AP3A & ORF9C) (Table 3). The reason behind the remaining proteins 

(11/15) not containing epitopes on antibody recognition sites was mainly their major intraviral 

location (NS7A, NS7B, ORF3D, ORF3C, ORF9B, ORF3B, NS8, NS6, M, E & N) and the absence 

of epitopes in their extraviral regions. Within the proteins that contained candidate epitopes, 

R1AB and R1A stood out carrying 479 and 348 epitopes respectively. Such high numbers of 

epitopes can be mainly explained due to their long sequences, 7096 and 4405 amino acids 

respectively. Remarkably, R1A corresponds to the N-terminal region of R1AB so many of the 

predicted epitopes are shared. Furthermore, R1AB is a polyprotein cleaved int o 15 chains that 

here were analysed altogether using the Uniprot entry. Differently, ORF9C (4) and AP3A (2) 

presented a lower number of epitopes. In terms of epitope regions, R1AB counted with 62 

regions, R1A with 46, ORF9C with 2 and AP3A with 1. Altogether these results corroborate that 

four proteins other than S have at least one epitope region candidate for in vivo antibody 

recognition. 

Analysis of epitope conservation in the S protein of SARS-Cov-2’s Variants of Concern  

To study whether the mutations accumulated in the S protein of the variants of concern 

(Alpha, Beta, Delta, Gamma and Omicron) could lead to immune escape, we used the 

Brewpitopes pipeline to analyse the different variants. We generated tailored FASTA files for 

the mutations of each variant and we retrieved the structures from PDB when available. For 

the Omicron variant, we modelled its structure using Modeller 20. Once we had run 

Brewpitopes, we compared the final number of epitopes with neutralizing potential per each 

variant with the epitopes generated by our analysis of the Wuhan S protein, considered the 

wildtype. Concretely, we aimed at identifying epitope losses due to the presence of mutations, 

new glycosylations and newly buried positions. Additionally, we also looked for new epitopes 

generated by the unique mutations of each variant. To compare the epitope regions in the WT 

variant versus those of the variants of concern (VOCs), the length of these epitope regions 

was added and divided by the length of the S protein to obtain the epitope coverage (i.e., the 

fraction of the protein sequence that is covered by epitopes). These lead to an epitope 

coverage of 9.43% for the WT variant, a value that will be used as reference to assess the 

epitope conservation on the VOCs. 

To visualize the accumulation of mutations in the S protein in the VOCs, we calculated the 

intersections of shared mutations between variants (Table 5 and Fig.5). As it can be observed 

in the upset plot, Omicron variant accumulates the most mutations (37), of which 28 are 

exclusive for this variant. Gamma accumulates 8 unique mutations, Delta 7, Beta 6 and Alpha 

4. Also, the degree of shared mutations is low being Alpha and Omicron the variants that share 

more mutations, with 4. The other combinations only share a single mutation. Finally, the 

intersection of all variants only leads to a single common mutation. This high diversity in the 

mutations accumulated in S points towards separate evolution paths and can derive to 

variant-specific mechanisms of immune evasion and decreased antibody recognition. The 

fact that Omicron accumulates more than 3-times more mutations at S than the remaining 

VOCs indicates a greater potential for epitope disruption. 
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Comparatively, each VOCs accumulated specific mutations in the S protein (Table 5). These 

lead to a specific epitope landscape per variant (Tables 3 and 6) that differed to the observed 

in the Wuhan variable, considered the WT. Considering epitope regions, Alpha loses the ER7; 

Beta loses ER4 and ER7 but gains an epitope region at 828-845; Gamma loses ER2, ER3 and 

ER4; Delta loses ER3, ER4 and ER6 but gains ER1, ER5 and ER8 and Omicron loses partially 

ER2, ER3 and ER4 and entirely ER7 (Table 7).  

In terms of epitope coverage, the major loss occurs in Gamma (4%) and Omicron (2%) while 
Alpha and Beta lose less than 1.5%. Differently, Delta gains a 0.5% in epitope coverage in 
respect to the Wuhan due to large epitope gains (Table 4). The differences in epitope 
landscape in the VOCs can indicate partial losses in antibody recognition. However, using 
Brewpitopes, a core of epitope regions recognized across variants was encountered (Table 
7). 
 
 

Discussion 

In vivo antibody recognition is constrained by molecular features not often integrated 

altogether in state-of-the-art B-cell epitope predictors, including the extracellular location of 

the epitope, the absence of glycosylation coverage and the surface accessibility within the 

parental protein structure (Table 1). We have integrated them into Brewpitopes, a pipeline for 

the refinement of B-cell epitope predictions optimized for in vivo antibody recognition. The 

pipeline has been used to analyse the proteome of SARS-CoV-2 resulting in a refined set of 

epitopes with neutralizing potential located, not only on the S protein and its VOCs, but also in 

four additional proteins. As exemplified in the SARS-CoV-2 analysis, Brewpitopes is a ready-

to-use tool that will enhance the accuracy and throughput of B-cell epitope predictions for 

future public health emergencies such as new COVID-19 variants or other potential pathogenic 

threads. 

The B-cell epitope profiling in SARS-CoV-2 proteins has been a research-intensive topic since 

the start of the COVID-19 pandemic due to its implications for the development of vaccines 

and therapeutic antibodies (Table 2) 2,44–53. However, as shown in tables 1 and 2 none of the 

proposed strategies integrates the three aforementioned features altogether. In the same line, 

there is no available bioinformatics pipeline with a streamlined implementation of the 

biophysical constraints of the epitope recognition microenvironment as we have presented 

here with Brewpitopes. Furthermore, the available methods predict a single type of epitope, 

be it linear or conformational, whereas with Brewpitopes we propose an integration of both 

with our Epiconsensus tool. All these ponder Brewpitopes as a unique tool for the refinement 

of B-cell epitope predictions into epitopes with increased neutralizing potential. Overall, the 

epitope landscape of SARS-CoV-2 is being unravelled identifying the actionable epitope 

regions available for adequately adjusting the current and future preventive therapies. 

Regarding the filters implemented in Brewpitopes, it should be considered that they are based 

on predictions, such as CCTOP for the subcellular location of protein regions or Net-N-glyc 

and Net-O-glyc for glycosylations. This comes with the advantage of enabling ab initio 

predictions, which do not require new experimental validations that would significantly extend 

the validation period and at the same time rely on the precision of the individual methods. 

However, relying on predictions in some cases may lead to false positives. In the case of 

glycosylations, we only consider the predicted glycosylated position when glycans can be 
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large structures that could also affect the accessibility of neighbouring positions. Still which 

glycan occupies a position can not be predicted with in-silico methods based on the sequence 

and therefore this limits the estimation of which neighbouring residues could be affected. In 

terms of structural accessibility, we observed that some predicted epitopes had residues 

buried on their parental protein structure and hence, their accessibility would be difficult 39. 

Our filter discarded any epitope containing at least one buried residue. This appeared to be 

the most stringent filter since it downsized the number of epitopes from 137 to 14 in the case 

of S (Table 3). Still, unmodeled regions, not present in the crystal structure, were considered 

as exposed regions due to their high mobility. However, even though some of the epitopes 

discarded may still have antigenic activity, the resulting epitopes from Brewpitopes are 

expected to be more enriched immunogenically than the discarded ones. In terms of software 

flexibility, Brewpitopes has been built upon Discotope 2.0, and Bepipred 2.0, which during the 

pipeline development were considered state-of-the-art by the IEDB analysis resource tool43. 

However, Brewpitopes will be further developed to integrate more methods to keep up with 

the fast evolution pace of the field. Hence, maintaining state-of-the-art capacities. 

While Brewpitopes can be applied to any protein or organism, given the wealth of data and 

biomedical interest, we decided to focus our use case on the analysis of SARS-CoV-2. In our 

proteome-wide analysis of epitopes with neutralizing potential, we have specially focused on 

the S protein and its VOCs. This led to the discovery of 6 epitope regions that are conserved 

across variants, which could explain the conserved antibody recognition of vaccinated 

patients against new variants 54. In this line, the restrictive nature of Brewpitopes leads to a 

significant reduction on the S protein epitopes predicted, which is an added value in terms of 

their experimental validation. In addition, our findings highlight the importance of epitopes 

located in other SARS-CoV-2 less variable proteins (R1AB, R1A, AP3A and ORF9C) would 

overcome the limitations pondered by the variants of concern. Despite these proteins are not 

considered structural for the virus, they contain regions predicted as extracellular which could 

therefore lead to accessible epitope regions.  

The S protein is under very strong evolutionary pressure by the human immune system and 

hence, a selective advantage for those mutations that lead to decreased antibody recognition 

is expectable 55,56. For this reason, the study of the epitopes located in antibody binding 

regions and how mutations change these epitopes is a major public health interest. We 

compared the highly immunogenic epitopes predicted in the reference S protein versus those 

predicted on the variants Alpha, Beta, Delta, Gamma and Omicron (Table 8). Relevantly, we 

have observed how epitope coverage losses occur in the different variants as reported in 

Table 4: Gamma (4%), Omicron (2%), Beta and Alpha (1%). In contrast, Delta leads to an 

increased epitope coverage of 1% due to the presence of a long epitope region at 1136-1190. 

Overall, this analysis enabled the observation of a decreased epitope coverage in all the 

variants but Delta. These epitope losses indicate the variants are already evolving towards 

immune escape. 

However, there is also a high degree of epitope conservation observed across the variants. 

This indicates that a core epitope group is maintained, which has beneficial implications for 

the efficacy of vaccines towards the variants of concern. In contrast, previous studies showed 

a decrease of neutralization against the Omicron variant 57. In our analysis, Omicron loses a 

2% of epitope coverage which might partially explain the loss of neutralization, since our 

refinement is stringent. Discordances between previous studies 57 and our data might be 
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explained both for the high stringency of our filters and by the fact that both studies followed 

different approaches. As aforementioned, our method can discard few antigenic epitopes not 

necessarily representing a true neutralization loss in vaccinated patients. 

In summary, Brewpitopes is a B-cell epitope refining pipeline that can be implemented in any 

target protein or organism and integrates relevant features for the antibody recognition 

microenvironment such as glycosylation, subcellular location and surface accessibility. 

Furthermore, the implementation of Brewpitopes to the proteome of SARS-CoV-2 has 

identified epitopes that escape the mutations of the main variants of concern. 
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Figure 1A. Biophysical constraints for in vivo antibody recognition. A) Recognition of extraviral protein regions. Neutralizing antibodies can only 
inspect the external surface of viral particles. Hence, only epitopes located in extraviral regions will be recognizable by this type of antibodies. 
In Brewpitopes, we used protein topology information or predictions to assess the subcellular location of the analyzed protein regions. Once 
defined, we only selected those epitopes located on extracellular protein regions. Hence, epitopes located in transmembrane or intracellular 
protein regions were discarded. 
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Figure 1. Biophysical constraints for in vivo antibody recognition. B) Glycan coverage prevents in vivo antibody recognition of an epitope. 
Epitopes that contain glycosylated residues will be covered by the glycan and therefore shoud be discarded as candidates for antibody 
recognition. In Brewpitopes, to predict the glycosylation profiles of target proteins we used Net-N-glyc and Net-O-glyc to predict N- and O-
glycosylations respectively. Once predicted, we selected those epitopes that do not contain any glycosylated position.  
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Figure 1. Biophysical constraints for in vivo antibody recognition. C) Epitope accessibility within the parental protein 3D structure. Epitopes that 
contain buried residues will not be accessible for in vivo antibody recognition. Left; structure of the S protein highlighting a fully exposed 
epitope. Right; structure of the S protein displaying a buried epitope. In Brewpitopes, we calculated the residue solvent accessibility (RSA) using 
the Molsoft ICM Browser software. Once predicted, we selected those epitopes with all residues over a RSA value of 0.2. These were 
considered the accessible epitopes whereas epitopes with a single residue with a lower RSA value than 0.2 were considered buried and 
therefore were discarded. 
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Figure 2. Brewpitopes pipeline to refine B-cell epitope predictions into epitopes optimized for in vivo antibody recognition. Linear and structural 
epitope predictions were obtained using Bepipred 2.0, ABCpred and Discotope 2.0 respectivelly. Then the epitopes were extracted and 
integrated using Epixtractor and Epimerger. Followingly, the epitopes were refined using the biophysical constraints for in vivo antibody 
recogntition (described in Figure 1). The protein topology analysis was performed using CCTOP and the epitopes located in extratraviral 
regions were labeled using Epitopology. The glycosylation profile was predicted using Net-N-Glyc and Net-O-Glyc and the glycosylated epitopes 
were labeled using Epiglycan. The accessibility analysis was computed with Molsoft taking an RSA threshold of 0.2 for buried residues. 
Epitopes containing buried residues were labeled using Episurf. To filter the candidate epitopes according to the biophysical constraints 
(extraviral location, absence of glycosylation coverage and accessibility within the 3D protein structure) we used Epifilter. Finally, since many 
predicted epitopes were overlapping due to their prediction using different tools, they were converged into epitope regions using Epiconsensus.  
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Figure 3. Epitope refinement for the WT S protein using Brewpitopes. The X-axis represents the steps of the Brewpitopes pipeline and the Y-axis 
the number of epitopes selected by each filtering step of Brewpitopes (Fig.2). The length filter was used to select epitopes longer than r or 
more amino acids, since shorter peptides were considered inespecific. 
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Figure 4. Epitope location on the 3D structure of the S protein. Left) Front view of the S protein 3D structure. Right) Top view. All the epitopes 
were only labelled on the chain A of the S protein for visualization purposes (blue). The epitope regions 6 and 7 were not displayed because 
they escaped the limits of the PDB structure. Also, the great number of predictions by the software ABCpred precluded their 3D representation. 
In this figure, it can be observed how the region of initial predictions is refined into smaller regions represented by the curated epitopes. 
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Figure 5. Mutations accumulated in the protein S of the Variants of Concern Alpha, Beta, Delta, Gamma and Omicron. The upset plot represents 
the unique mutations accumulated in each VOC and the mutations shared by two or more variants. The total mutations per each variant are 
displayed in the lower barplot. The accumulation of mutations in the S protein can be linked to a greater potential of immune escape due to the 
protential disruption of epitopes by the mutations. The variant Omicron stands out with the 3 times more mutations than the other variants and 
has the greatest potential for immune escape.  
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Figure 6. Epitope refinement for the S protein of the Omicron variant using Brewpitopes.. The X-axis represents the steps of the Brewpitopes 
pipeline and the Y-axis the number of epitopes selected by each filtering step of Brewpitopes (Fig.2). The length filter was used to select 
epitopes longer than r or more amino acids, since shorter peptides were considered inespecific.The epitpoe yield obtained with the Omicron 
variant can be compared to the WT’s yield in Figure 3. 
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Table 1. Comparison of the state-of-the-art B-cell epitope predictors. Here, we have classified the state-of-the-art B-cell epitope predictions 
according to the features included such as subcellular location, glycosylation, or surface accessibility. Additionally, we also noted the dataset 
they are trained on. 
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Table 2. Comparison of the B-cell epitope studies of SARS-CoV-2. Here, we have collected the different B-cell epitope prediction approaches 
that have studies the proteome of SARS-CoV-2. The different publications were classified according to the features included such as 
subcellular location, glycosylation, or surface accessibility. Additionally, we also noted the B-cell epitope predictors and the techniques they 
implemented. 
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Table 3. Epitope refinement for the SARS-CoV-2 proteome using Brewpitopes. Predicted epitopes correspond to the number of epitopes 
obtained using linear and structural predictions. Curated epitopes refers to the refined epitopes obtained using Brewpitopes. Epitope 
refinement is the percentage of curated epitopes over predicted epitopes. The epitope regions are the result of converging overlapping 
epitopes using Epiconsensus. 
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Table 4. Epitope crossvalidation with the IEDB database. The enrichment of the epitope regions identified by Brewpitopes were compared 
versus the total epitopes validated in the IEDB database for the S protein of SARS-CoV-2. This lead to a Fisher’s exact test p-value <= 0.002065 
and a five-fold enrichment in the odds ratio. 
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Table 5. Mutations of the VOCs in the S protein.  
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Table 6. Results of the epitope refinement of Brewpitopes on the protein S of the Variants of Concern Alpha, Beta, Delta, Gamma and Omicron. 
Predicted epitopes correspond to the number of epitopes obtained using linear and structural predictions. Curated epitopes refers to the 
refined epitopes obtained using Brewpitopes. The epitope regions are the result of converging overlapping epitopes. Epitope refinement is the 
percentage of curated epitopes over predicted epitopes. Epitope conservation refers to the percentage of epitopes refined in the variant that 
are also indentified in the WT S protein. Epitope region conservation refers to the percentage of epitope regions shared between the variant and 
the WT S protein. 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.518301doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.518301
http://creativecommons.org/licenses/by/4.0/


 32 

 

 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.518301doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.518301
http://creativecommons.org/licenses/by/4.0/


 33 

 

 
 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.518301doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.518301
http://creativecommons.org/licenses/by/4.0/


 34 

 
 
Table 7. Epitope regions identified in the WT S protein using Brewpitopes compared to the epitope regions of the Variants of Concern. 
Mutations, Glycosylation and Buried refer to the residues that are causing the disappearance of epitope regions in the Variants of Concern. 
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Table 8. Epitope coverage of the WT S protein versus the Variants of Concern. The epitope coverage is the percentage of the total protein 
sequence (the S protein) that is covered by epitope regions. It estimates the antigenicity potential of a protein. The loss of epitope coverage in 
the variants of concern is a proxy to estimate their immune escape potential due to the loss of in vivo antibody recogntition sites. 
 

  

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.28.518301doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.518301
http://creativecommons.org/licenses/by/4.0/


 36 

 
 
Supplementary Table 1. Glycosylation predictions Vs MS-validated glycosylation sites. Predictions were performed using Net-N-Glyc for N-
glycosylations and Net-O-glyc for O-glycosylations. 
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