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Abstract

The COVID-19 pandemic has taken a devastating toll around the world.
Since January 2020, the World Health Organization estimates 14.9 mil-
lion excess deaths have occurred globally. Despite this grim number quan-
tifying the deadly impact, the underlying factors contributing to COVID-
19 deaths at the population level remain unclear. Prior studies indicate
that demographic factors like proportion of population older than 65
and population health explain the cross-country difference in COVID-19
deaths. However, there has not been a holistic analysis including vari-
ables describing government policies and COVID-19 vaccination rate.
Furthermore, prior studies focus on COVID-19 death rather than excess
death to assess the impact of the pandemic. Through a robust statistical
modeling framework, we analyze 80 countries and show that actionable
public health efforts beyond just the factors intrinsic to each country
are necessary to explain the cross-country heterogeneity in excess death.
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1 Introduction

The World Health Organization (WHO) estimates that the COVID-19 pan-
demic has led to 14.9 million excess deaths worldwide in 2020 and 2021 [1].
Excess death is defined as the difference between actual reported death counts
and what was expected under “normal” conditions based on data from earlier
years [2]. Excess death has shown to be a more accurate measure assess-
ing the true impact and death toll of the COVID-19 pandemic [3–5]. For
instance, in the United States, a death is registered as death by COVID-19
only if the patient had a positive test result. However, early in the pandemic
when resources were scarce and hospitals were overwhelmed, it is likely that
COVID-19 tests were unavailable for these patients.

Although the world collectively experienced a massive number of these
excess deaths during the COVID-19 pandemic, the impact across different
countries varies widely. While some countries suffered around 450 excess deaths
per 100, 000 people, other countries saw nearly 0 excess deaths per 100, 000 [1].
What factors drive this change? Were certain countries simply better suited
to handle the pandemic due to robust healthcare infrastructure, a healthier
population, and a younger population? Or can these pre-existing traits not
explain such variations alone, implying that some COVID-19 related public
health efforts lessened the impact of the pandemic? In this paper, we split the
set of all covariates into two distinct subsets: “intrinsic” features that coun-
tries inherited before COVID-19 was declared a pandemic in March 2020, and
“actionable” features that can potentially be modified within the timeframe
of the pandemic. By explicitly investigating governmental policies and pub-
lic health efforts in conjunction with ingrained economic and health factors
through this lens, we can better understand and explain the drivers of excess
deaths and the large variations of fatalities between countries.

Much of the past work regarding COVID-19 death at the country-level
focuses on the impact of the pandemic on groups in different income lev-
els (such as [6], [7]). Another major area of study is the thorough analysis
of COVID-19 death drivers in specific, single countries (such as [8], [9]). In
regard to studying the variation in COVID-19 deaths across countries, arti-
cles like [10] reveal that being strict in regards to certain policies - such as
testing and contact tracing policies - are highly associated with countries that
initially mitigated the spread and effect of the disease. However, this study
and many others do not place a quantitative comparison among these factors,
and no statistical model is created to estimate these features’ impacts. Other
studies purely investigate intrinsic population risk factors. For example, the
findings from [11] state that Alzheimer’s disease and some lung-related illnesses
are associated with higher case mortality rates of COVID-19. The study per-
formed in [12] incorporates both population risk factors such as lung-related
illness prevalence and governmental policies like COVID-19 testing strategies.
However, these models predict case fatality rate (CFR) rather than excess
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deaths. Additionally, like many of the other aforementioned studies, the anal-
ysis was performed in 2020 or early 2021 making it impossible to estimate and
incorporate the effects of the COVID-19 vaccine.

In our paper, we incorporate and add to many of the characteristics of
the studies previously mentioned. Our primary contributions to the study of
COVID-19 death variations are as follows:

1. We build a gradient boosting model that allows for the quantification of
how much various factors drive excess death. Additionally, we use these
models to discuss which combinations of factors have especially deleterious
effects on low-GDP countries and relatively unhealthy countries.

2. We view the analysis through the lens of intrinsic features and actionable
features, and we specifically demonstrate the prediction power gained from
considering actionable public health efforts. We formalize this notion via a
bootstrapped hypothesis testing procedure. Also, we fit two models – one
with only intrinsic features and one including both intrinsic and actionable
features. We use these two models to construct confidence intervals regard-
ing the change in excess death estimates for specific countries after adding
actionable variables.

3. We make steps to ensure that our analysis is robust. For example, we use
excess death as our target variable which provides a more encompassing
view of the pandemic’s mortality burden on a given country. We also incor-
porate many countries in our study rather than focusing on a particular
country or region. Lastly, we incorporate newer, measurable effects such as
vaccination rate.

In summary, we uncover a number of important characteristics that are
predictive when estimating excess death across nations. Vaccination rate, obe-
sity percentage, and age distribution are three such features. Additionally,
intrinsic country characteristics alone cannot explain the large variation in
excess death we see across countries. Incorporating actionable features such
as vaccination rates and the trust citizens have in their national govern-
ment’s COVID-19 advice can significantly improve excess death predictions.
Across our modeling architecture, we see that relatively obese countries expe-
rience disproportionately higher excess death estimates when failing to obtain
a higher vaccination rate as compared to low-obese countries. Similarly, low-
GDP countries incur elevated excess death estimates when not trusting their
government’s COVID-19 advice compared to higher-GDP countries.

2 Detailed Results

In this section we report the insights from our statistical analyses. We demon-
strate that actionable factors — particularly COVID-19 vaccination rates and
trust in official COVID-19 advice from governmental entities — are important
in explaining the cross-country heterogeneity of excess death.
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2.1 Key Drivers of Excess Death

We show in section 4 that our final model successfully captures some of the
intrinsic structure and signal in the dataset. The two questions of interest
when dissecting how this model makes predictions are “which features do the
final model deem as useful?” and “how exactly do these useful features con-
tribute to the model?”. Feature importance methods implemented via the
scheme detailed in section 4.2.4 are one way to answer the first question.
Figure 1 reveals the six features with the highest relative importance in the
final model. Two of the six features are “actionable” features. While explored

Fig. 1 Six features in the final gradient boosting model with the highest relative feature
importance.

further in section 2.2, this suggests that the variation in excess death across
countries cannot fully be explained via intrinsic variables alone and that some
improvement in predictive performance is gained from these actionable vari-
ables. The percent of citizens with at least one dose of a COVID-19 vaccine in
the study’s time frame and whether citizens base their pandemic-related deci-
sions on advice from their government are factors that could be altered via
public health efforts.

How do these important features specifically contribute to the model?
Figure 2 depicts the partial dependency graphs for the six features with highest
relative importance in the gradient boosting model. We see that after account-
ing for the average effects of all other variables, the estimate of excess death
in the model decreases as certain variables increase. These variables include
the percent of citizens with at least one COVID-19 vaccine dose, the per-
cent of citizens basing their pandemic-related decisions on official advice from
their national government, the percent of citizens who have confidence in their
nation’s hospitals, and the GDP per capita. Conversely, the model’s estimate
of excess death increases as other features increase. These features include the
obesity percentage in the country and the percent of people aged 65 and over.
Additionally, we note that there appears to be certain thresholds or “tipping
points” in which the model’s estimates begin to widely change. About 60%
of citizens receiving at least one COVID-19 vaccine dose and 65% of citizens
basing pandemic-related behavior decisions on government’s official advice are
tipping points associated with lower excess death estimates. Through these



Excess death heterogeneity across countries during COVID-19 5

Fig. 2 Partial dependency graphs for the six features with the highest relative importance
in the final gradient boosting model. The y-axis represents the contribution to the estimation
process of excess death (ŷ) standardized via a cube-root transformation.

partial dependency plots, we can also look at countries that are similar in
numerous aspects yet exhibit a large difference between their excess death. For
example, we study the differences in excess death in Canada (54 excess deaths
per 100,000 people) and the United States (265 excess deaths per 100,000 peo-
ple). We see in Figure 3 some explanation as to why the boosting procedure
predicts lower excess death estimates for Canada.

After knowing which features are most important to the model and how
they contribute to the estimation process, the next question to investigate is
“how do variables in the model interact with one another?” Partial depen-
dency plots can provide some insights to this question. For our final gradient
boosting model, we see in Figure 4 an interaction between GDP per capita
and how much the citizens of a country trust and base pandemic-related deci-
sions on their government’s advice regarding COVID-19. Effectively, we see
that the “penalty” - or increase in excess death estimate - for not trusting gov-
ernmental COVID-19 advice is 43.7% greater for lower GDP countries than
higher GDP countries. This is according to this class of models that success-
fully captures some inherent structure in the dataset as seen in Table 1 and
Figure 9. To see this relationship, one can imagine slicing the figure along a
(log) GDP per capita of 10.5. Along this curvature, we note the increase in
partial dependence as we move from around 85% government trust to around
60%. We see a similar increase exist when slicing the figure at a (log) GDP per
capita of 7.5. If no interaction were present, these increases would be nearly
equivalent. However, we see the penalty for moving from 85% trust (or higher)
to 60% trust (or lower) is greater for countries with 3500 (USD) GDP per
capita or less compared to countries with 36000 (USD) per capita or greater.
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Fig. 3 Partial dependency plots for two actionable features. The vertical lines represent
the observed values for the United States in blue and Canada in red. The y-axis represents
contribution to the (cube-root) estimate of excess death.

Fig. 4 Partial dependency graph for GDP per capita and percent of citizens who base
pandemic-related behavior decisions on official advice from their national government.

This implies that following official, governmental advice regarding COVID-19
becomes particularly more imperative for low-GDP countries.
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Next, we can analyze and quantify the interaction between vaccination rate
and obesity percentage in the same way. Figure 5 depicts this relationship.
Following the same logic as the previous example, we see that countries in

Fig. 5 Partial dependency graph for percent of people with at least one dose of COVID-19
vaccine and and percent of citizens with BMI of at least 30.

roughly the highest obesity quartile experience about a 11.2% greater penalty
than countries in the lowest quartile when moving from “very vaccinated”
(about 72% vaccination rate or better, which is the top third) to “relatively
unvaccinated” (about 50% vaccination rate or worse, which is around the bot-
tom half in our study). Therefore, we see via this quantification how much
more imperative it becomes for more obese countries to distribute vaccines to
prevent excess deaths compared to less obese countries.

These partial dependency plots provide a view into the inner-workings of
our gradient boosting model. Not only do we see the degree to which cer-
tain actionable features decrease excess death estimates, but we also identified
particularly harmful combinations of actionable and intrinsic country charac-
teristics. This provides some insights as to which policies and metrics become
increasingly important for countries that meet certain criteria.

2.2 Increase in Predictive Performance from Actionable
Features

Since the final model suggests actionable features are important in predicting
country-level excess death, we attempt to formalize this importance via the
hypothesis test detailed in section 4. The results from the test indicate that
the increase in predictive performance from the set of actionable features is
statistically significant (p-value = 0.0001 and observed RMSE difference =
11.7 excess deaths per 100,000 people).
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As detailed in section 4, the gradient boosting model gives a statistically
significant decrease in RMSE when including actionable features. In other
words, the model successfully captures some signal with these features and
how they contribute to excess mortality. We also formalized this notion via
the aforementioned bootstrapped hypothesis test. A naturally arising question
is then “which specific countries see increases in excess death estimates after
adding actionable features”? To answer this question, we create a measure
called the “delta value”. This value measures the difference in predicted excess
mortality between the model with the actionable features and the model with-
out the actionable features, further described in 4. Through these delta values,
we can get a sense of which countries “underachieved” with their actionable
features during the pandemic. Here, we construct the confidence intervals based
on 100 bootstrap iterations. Figure 6 displays the effect of adding actionable
features in the model for the 51 countries in which the direction predicted
excess death improved. In other words, if ŶI < Y then ŶI < ŶIA. Or, if ŶI > Y
then ŶI > ŶIA, where Y is the observed excess death, ŶI is the predicted excess
death from intrinsic-only model, and ŶIA is the predicted excess death from
the full model including actionable features. We focus on the top two action-
able features identified in section 2.1. We see that countries to the right of the
vertical zero line - i.e. countries that have increased predicted excess death
after including actionable features - tend to have lower vaccination rates and
less trust in COVID-19 advice from governments. The opposite effect holds
for countries to the left of the vertical zero line. These countries had lower
predicted excess death after including the actionable features and had higher
vaccination rate and trust in COVID-19 advice from governments. This fur-
ther demonstrates the importance of considering the actionable features in
understanding the heterogeneity in excess death at the country level.

3 Discussion

In December 2019, the novel severe acute respiratory syndrome coronavirus
2 (SARS-Cov-2) led to the beginning of a devastating pandemic that has
disrupted the global economy and resulted in millions of deaths around the
world [13]. Beyond the direct death resulting from COVID-19 infections, the
pandemic has had a tremendous indirect impact due to overwhelmed health-
care systems and limited medical resources. Over two years have passed since
the beginning of the pandemic, yet we do not fully understand the effects
of public health mandates and policies on COVID-19 death and whether the
vast difference in death counts between countries are attributable to regional
intrinsic factors. In this study, we take a data-driven approach to understand
this problem by developing a statistical modeling framework to identify key
drivers of excess death and assess the effect of actionable factors like COVID-
19 vaccination and policies. We show that intrinsic factors like age distribution
and comorbidity risks that have been shown to be positively associated with
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Fig. 6 (A) We show the 95% bootstrap confidence intervals of the “delta value”, which
measures the difference in excess death prediction between the model fit on both intrinsic
and actionable features, and the model fit only on intrinsic features. (B) and (C) are density
plots of ”trust in COVID-19 advice form governments” and ”percent one dose vaccination
as of Nov. 1” respectively, colored by whether a country’s delta value lies to the left or to the
right of the vertical zero line. The dashed lines represent the median values. Countries with
delta to the left of the vertical zero line (i.e. countries with lower predicted excess death)
tend to have higher vaccination rate and trust in government COVID-19 advice.

COVID-19 mortality in prior studies are important in explaining the cross-
country variation in excess mortality. We also show in accordance with past
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literature that certain intrinsic trust metrics are important when estimating
excess mortality. Particularly, the trust the population has in its nation’s hos-
pitals — potentially signifying a robust system more capable of handling the
pandemic’s burden — is an important feature.

We further demonstrate the importance of actionable features including
COVID-19 vaccination rate, policies, and trust. In particular, proportion of
population with one COVID-19 vaccine dose and trust in COVID-19 advice
from governments emerge at the top of the list for factors contributing to
the predictive performance of our final model. Both of these variables show
negative association with excess death. In addition, we detail the particularly
deleterious effect that poor performance in these actionable variables can have
on certain groups of countries. For instance, we show that low GDP countries
experience a disproportionate contribution to estimated excess death if its cit-
izens also do not trust their government’s pandemic-related advice. Similarly,
we display that relatively obese countries experience a disproportionate contri-
bution to estimated excess death if the country is relatively unvaccinated, and
we quantify this effect. We also note that the two principle component features
signifying the swiftness in the government’s response to the pandemic and the
duration of such policy implementations did not appear near the top drivers
of excess death. One explanation for this relatively low feature importance
could be that there is a difference between policy implementation and policy
compliance. This is perhaps too why the amount to which citizens trust their
government’s pandemic-related advice appears as one of the most significant
variables in explaining excess death.

While our study aims to be holistic, a number of limitations are present.
For example, it is difficult to discern whether a government’s pandemic-related
policy implementations were reactive or proactive in terms of excess death
without including time in the analysis. Our future work for this study includes
a temporal analysis that enables for a quantification of how different policies
and intrinsic variables become significant or insignificant over time. One could
also focus on a specific region of the world, which would lead to more com-
plete data. Regardless, understanding the cross-country heterogeneity of excess
death is key to gaining a comprehensive understanding of the true impact of
the pandemic and can lead to actionable guidance for government and pub-
lic health institutions in preventing future deaths. This study helps elucidate
the factors contributing to excess mortality at the population level during
the COVID-19 pandemic and can help guide governments in improving their
response to pandemics in the future, ultimately saving human lives.

4 Methods

In this section, we give details of our overall modeling framework for our anal-
ysis and how we arrive at our “final model”. We build two models: one with
only intrinsic features and one with both intrinsic and actionable features. We
use and evaluate the predictions from these two models to assess the effects
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of actionable features such as vaccination rate and government policies during
the COVID-19 pandemic.

4.1 Data collection and feature descriptions

First, we note that the time frame of our analysis is January 1, 2020 to Novem-
ber 1, 2021. This period is chosen for a number of reasons, including that the
Omicron variant of the coronavirus SARS-CoV-2 was detected in early Novem-
ber 2021 [14], and different variants can contain varying patterns of spread and
mortality. Additionally, this time frame still allows for the analysis of COVID-
19 vaccination policies. For this study, we use the excess death estimates from
WHO as the dependent variable. We obtain 34 different initial covariates for
our analysis. Obesity percentage, age distribution, GDP per capita, popula-
tion density, and hospital beds per 1000 people are a few of the “intrinsic”
variables that were collected. Conversely, some of the collected features that
are seen as at least moderately controllable over the course of the pandemic
include number of days with comprehensive contact tracing, masking policies,
workplace closures, days with available public testing, and official vaccination
policies. The policy variables at the country-level were obtained from [15],
while the socio-demographic, health, and government-spending habit informa-
tion was obtained from World Bank Open Data. In addition to these data
sources, we also include thorough survey information regarding trust of var-
ious entities among citizens for each country. We include these trust metrics
since a number of studies report an association between trust and compliance
to policy measures. For example, the study in [16] reports greater compli-
ance for high-trust nations in the beginning of the pandemic, while [17] found
an association between interpersonal trust and physical distancing adherence.
Some of the trust metrics included in our analysis - such as overall confidence
in the country’s hospitals and trust in the national government - are classi-
fied as intrinsic variables. Others - such as the degree to which citizens trust
their government’s advice relating to COVID-19 measures - are classified as
actionable. The survey data was obtained from [18]. COVID-19 related ques-
tions were typically asked in 2020, while other information to gauge citizen
trust in various entities was obtained from 2018 survey data. For each survey,
each country typically has approximately 1000 respondents. See Appendix A
for the complete dataset description.

4.2 Final model construction for COVID-19 excess deaths

4.2.1 Pre-processing

First, we note that some countries in our dataset did not have every covariate
available. For countries that only have a few missing features, we impute these
missing values via nuclear norm regularization. This method iteratively finds
the soft-thresholded SVD and the algorithm in [19] is employed. After remov-
ing countries with many covariates missing and filtering for countries with over
5, 000, 000 people due to COVID-19 data quality concerns, we continue our
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analysis with 80 countries from around the world. Next, we note that inter-
pretations of feature importance can be obfuscated when multi-collinearity is
present, as it becomes challenging to rank variables in relative importance if a
collection of such variables have similar effects. To avoid obscuring such inter-
pretations and ensure drivers of excess death in the model can be reliably
interpreted, we perform Principal Component Analysis (PCA) on the set of
highly correlated features. The first principal component can be used in the
model as a single variable representing the set of features as a linear com-
bination. After creating various correlation plots, we decide to perform this
method for variables falling into two groups: i) how quickly the country’s gov-
ernment responded to COVID-19 and ii) how long the country’s government
held strict COVID-19 policies in place. An example of this dimension-reduction
method for our dataset can be found in Figure 7. Critically, we note in Figure

Fig. 7 Bi-plot for one example of PCA in the employed dataset. All variables relate to how
long the government’s COVID-19 policy was kept in place.

7 that interpretations after this method are still clear. Since each feature con-
tributes in the same direction along the first principal component, the newly
created feature can be interpreted as “a greater, positive magnitude indicates
a longer-lasting strictness in COVID-19 policy implementations”. We note too
that when applying PCA to the second group of features with high multi-
collinearity - i.e. features relating to how quickly the government responded
to the pandemic and put policies in place - all features also contribute in the
same direction. This leads to the interpretation “a greater, positive magni-
tude indicates the government was swift in implementing stricter COVID-19
policies”.
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4.2.2 Hyperparameter Tuning

After preprocessing the data, a number of models are employed using both the
intrinsic and actionable features in the dataset. Specifically, Least Absolute
Shrinkage and Selection Operator (LASSO) regression [20], Random Forest
regression [21], and Gradient Boosting regression [22] models are created and
analyzed. However, the limited sample size present in our dataset prevents
the typical training and testing data split. Therefore, in order to estimate test
accuracy for each model class and to pick hyperparameter combinations, we
construct a repeated cross-validation scheme.

We collect 100 different CV predictions for each observation to obtain a
more robust sense of predictions that could follow from slightly varying training
sets. Figure 8 depicts the flow of the CV scheme.

Fig. 8 Schematic of the employed cross-validation algorithm. 100 predictions per observa-
tion were made for each hyperparameter combination

4.2.3 Cross-Validation Results and Model Selection

Table 2 details the output from the 5-fold cross-validation scheme. We see

Gradient Boosting Random Forest LASSO

Best Hyperparameters

Number of Trees = 1600
Shrinkage = .007

Interaction Depth = 2
Min Obs per Node = 10

Variables Sampled
per Split = 3

λ = .01

CV RMSE for Best
Hyperparameter Combination

145.2 154.3 179.6

Table 1 Results of the repeated cross validation scheme for 3 model classes.
Hyperparameter grids had similar number of combinations and granularity level across
classes.
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that across the 100 repetitions, gradient boosting is the class of models that
result in the lowest cross-validation (CV) error. The CV root mean squared
error (RMSE) values in Table 1 involve all N ∗ 100 values (resulting from
100 repetitions of 5-fold cross validation). Figure 9 details the distributions
of the RMSE for each individual repetition of the repeated CV process. In

Fig. 9 Distribution of CV RMSE. Each boxplot consists of the 100 different, individual CV
RMSE values.

Figure 9 we see that the gradient boosting model class with the specified
hyperparameters consistently provides lower RMSE values for individual 5-
fold CV trials. Due to this overall performance and consistency demonstrated
through the repeated CV procedure, we choose to employ gradient boosting
with the tuned hyperparameters as the “final model”.

After seeing how the gradient boosting model class characterized by the
hyperparameter values specified in Table 1 leads to lower CV error, the next
step is to investigate how this type of model makes predictions. Therefore, we
train a “final model” using all of the available data to get a more holistic sense
of the model’s capturing of the inherent structure of the dataset. This ”final
model” leads to the insights discussed in section 2.

4.2.4 Feature Importance and Partial Dependencies

The parameters and estimation process of the final model detailed in section
4.2.3 are dissected in numerous ways. Namely, feature importance and partial
dependencies provide insights regarding the model. In our analysis, the impor-
tance of a feature is calculated via the increase in prediction error resulting
from randomly permuting the values of the feature. The algorithm is similar
to that in [21] but uses the entire dataset rather than out-of-bag observations
[23]. Next, to define partial dependency, consider a sub-vector of input vari-
ables of interest denoted XS , its complement with other inputs Xc, and an
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estimator f̂ . Partial dependency is defined as the marginal average [24]:

f̃s(Xs) = EXc
f̂(Xs,Xc) (1)

f̃s(Xs) ≈
1

N

N∑
i=1

f̂(Xs,Xc) (2)

This accounts for the effect of input variables Xs after accounting for the
average effects of the other variables Xc.

4.3 Bootstrap Hypothesis Testing

Fig. 10 Diagram of the intrinsic vs. actionable feature modeling framework. Red represents
the intrinsic features while blue represents the actionable features.

In order to evaluate the impact of the actionable features, we build two
models following the same hyperparameter tuning procedure. One model is
only fit on the set of intrinsic features while the other model is fit on the
set of both the intrinsic and actionable features as shown in Figure 10. This
dichotomy of models generates two sets of excess death predictions and RMSE.
However, supervised learning algorithms can improve their predictive perfor-
mance by increasing the number of features. In order to demonstrate that the
set of actionable features are improving the model performance beyond the
effect of simply adding more variables, we test the following hypothesis:

H0 : A ⊥ Y (3)

H1 : A ̸⊥ Y (4)
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where A is the set of actionable features and Y is the response variable, excess
death. To construct the null distribution, we perform the following bootstrap-
ping procedure. We first fit a gradient boosting model with just the intrinsic
features and compute the residuals. We bootstrap these residuals to generate
{r∗1 , r∗1 , · · · , r∗B}. We add these residuals to the predicted excess death from
the intrinsic-only model to get y∗ = ŷI + r∗. We fit another gradient boosting
model with both intrinsic and actionable features and the corrupted response
variable y∗ and generate the residuals {r′1, r′1, · · · , r′B}. Finally we compute the
difference of RMSE from the residuals r∗ and r′ as our test statistic.

We repeat this procedure for 1000 iterations to generate 1000 bootstrapped
RMSE differences. The p-value is given by,

card(Bootstrapped RMSE differences > Observed RMSE difference)

B
(5)

We attain a p-value of 0.0001 which suggests that the improvement in model
performance through the inclusion of actionable features is statistically signif-
icant. The null distribution and observed RMSE difference is shown in Figure
11.

Fig. 11 The gray histogram represents the null distribution constructed from 10,000 per-
muted RMSE differences and the red line represents the observed RMSE difference. This
procedure results in a p-value of 0.0001.
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4.4 Measuring the Effect of Actionable Features

The overall RMSE decrease after including the actionable features demon-
strates the importance of these variables. To assess the effect of adding
actionable features in the model for each country, we can measure how much
the prediction changes between the model including and the model excluding
the set of actionable features. Here, we compute the quantity for each country
i:

δ(i) = Ŷ
(i)
IA − Ŷ

(i)
I (6)

where ŶIA are the excess death predictions from the model trained with
both the intrinsic and actionable variables, and ŶI are the excess death
predictions from the model without the actionable variables.

We further construct 95% confidence intervals for delta estimates. We
estimate the variance of the deltas by bootstrapping - i.e. sampling with
replacement - the countries in the pre-processed data matrix and then com-
puting the difference of excess death predictions from the two models ŶI

and ŶIA. We repeat this procedure for B iterations, generating B deltas

δ(i) = {δ(i)1 , · · · , δ(i)B } for each country i. We compute the sample standard
deviation as:

ŝ(i) =

√∑B
b=1 (δ

(i)
b − δ̄(i))2

B − 1
(7)

Using this estimate, we construct the confidence intervals for each country i
as follows:

CIi = δ̄(i) ± z1−α
ŝ(i)√
B

(8)

In practice due to sampling with replacement, some of the bootstrapped
data matrix will have missing countries, so we bootstrap until each country
has at least B number of δ.

Supplementary information.
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Feature Name Description Intrinsic
or
Action-
able

Days Until All Vulnerable
Vacc Elig

Days until the official government pol-
icy is that vulnerable groups are eligible
for a COVID-19 vaccine

A

Percent One Dose As Of Nov
1

Percent of individuals who have
received at least one dose of a COVID-
19 vaccine

A

Days Until Masks Recom-
mended

Number of days until the government’s
official policy became that masks are
either recommended or required

A

Days Until Masks Required Number of days until the government’s
official policy became that masks are
required in public spaces

A

Total Days Masks Required
Public

Number of days in which the govern-
ment’s policy stated masks are required
in public spaces

A

Total Days Masks At Least
Recommended

Number of days in which the govern-
ment’s policy stated masks are either
recommended or required in public
spaces

A

Days Until Workplace Clo-
sures Except Key

Number of days until the government’s
official policy became that workplace
closures are required for all citizens
except for “key workers”

A

Total Days Workplace Clo-
sures Except Key

Number of days in which the govern-
ment’s policy stated workplace closures
are required for all citizens except for
“key workers”

A

Total Days Workplace Clo-
sures Recommended

Number of days in which the gov-
ernment’s policy stated workplace clo-
sures are either recommended for all,
required for some groups, or required
for all groups except for “key workers”

A

Total Days Stay At Home
Required Except Essentials

Number of days in which the gov-
ernment’s policy stated citizens are
required to not leave the house except
for exercise, grocery shopping, and
“essential” trips

A

Total Days Comprehensive
Contact Tracing

Number of days in which contact trac-
ing was performed for all cases

A
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Days Until Income Support Number of days until the government’s
official policy became that at least some
nonzero percentage of lost salary will
be recovered to individuals who lost
jobs or could not work

A

Total Days Income Support Number of days in which the govern-
ment’s policy was such that at least
some nonzero percentage of lost salary
will be recovered to individuals who
lost jobs or could not work

A

Total Freeze Some Financial
Obligations

Number of days in which the govern-
ment’s policy was that at least some
percentage of financial obligation (loan
payments, rent, utility bills, etc.) pay-
ments will be frozen

A

Days Until Freeze Some
Financial Obligations

Number of days until the government’s
official policy became that at least some
percentage of financial obligation (loan
payments, rent, utility bills, etc.) pay-
ments will be frozen

A

Days Until Testing Key
Groups

Number of days until the government’s
official policy became that any citizen
with symptoms or who met criteria
such as key worker, back from travel, in
hospital, contact with known case, etc.
are eligible to receive a test

A

Total Days Open Public Test-
ing

Number of days in which anyone (even
asymptomatic) could receive a “drive
through” test

A

Total Days Over 1 Test Per
Thousand

Number of days in which over 1 test per
thousand people was performed

A

Average Tests Per Thousand
Per Day

The daily number of tests performed on
average in the study’s timeframe

A

Urban Pop Percentage Percent of citizens living in cities I
Obese Adult Percentage Percentage of adults who have a BMI

≥ 30, standardized by age
I

Hospital Beds Per 1000 Number of hospital beds per 1000 peo-
ple

I

Nurses And Midwives Per
1000

Number of nurses (and midwives as the
definitions vary by country) per 1000
people

I

Percent Using Internet Percent of people who use the internet I
Population Total population of country I
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People Per Sq Km of Land People per square kilometer of land in
the country. Measures population den-
sity but excludes sq km of water

I

Adult Literacy Rate Percent of literate people (ages 15 and
above)

I

Percent Ppl Poor Air Quality Percent of people exposed to levels
of air pollution deemed hazardous by
WHO

I

GDP Per Capita GDP per capita (US $) I
Health Expenditure Per
Capita

Total health expenditure per person I

Percent Health Expenditure
Private

Percent of the total domestic health
expenditure performed by private enti-
ties

I

Age 65 Older Percent Percent of citizens aged 65 and older I
Ages 15 To 64 Percent Percent of citizens aged 15− 64 I
Ages 0 To 14 Percent Percent of citizens aged 0− 14 I

Table A1: List of features for the initial dataset prior to any pro-
cessing
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