A gene network implicated in the joint-muscle pain, brain fog, chronic fatigue, and bowel irregularity of Ehlers-Danlos and "long" COVID19 syndromes.

Short title: A gene network implicated in Ehlers-Danlos and "long" COVID19 syndromes.

Golder N. Wilson¹

¹Department of Pediatrics, Texas Tech University Health Sciences Center, Lubbock, and KinderGenome Genetics Private Practice, Dallas

Corresponding author: Golder Wilson, 5347 W Mockingbird Dallas TX USA 75209 golder.wilson@ttuhsc.edu or golderwilson@gmail.com cell 1-214-226-9869

1 Abstract

2 **Objectives**

- 3 Characterization of tissue laxity <u>and</u> dysautonomia symptoms in Ehlers-Danlos syndrome (EDS)
- 4 uncovered similarities with those of post-infectious SARS-CoV-2 or long COVID19, prompting detailed
- 5 comparison of their findings and influencing genes.

6 Methods

- 7 Holistic assessment of 1261 EDS outpatients for 120 history-physical findings populated a deidentified
- 8 database that includes 568 patients with 317 variant genes obtained by commercial NextGen sequencing.
- 9 Findings were compared to 15 of long COVID19 compiled in an extensive review, genes to 104
- 10 associated with COVID19 severity in multiple molecular studies.

11 **Results**

- 12 Fifteen symptoms common to Ehlers-Danlos versus long COVID19 ranged from brain fog (27-80 versus
- 13 30-70%), chronic fatigue (38-91; 30-60%), dyspnea (32-52; 29-52%) to irritable bowel (67-89; 14-
- 14 78%), muscle weakness (22-49; 15-25%), and arthritis (32-94; 15-27%). Genes relevant to EDS
- 15 included 6 identical to those influencing COVID19 severity (F2, LIFR, NLRP3, STAT1, T1CAM1,
- 16 TNFRSF13B) and 18 similar including POLG-POLD4, SLC6A2-SLC6A20, and NFKB1-NFKB2. Both
- 17 gene sets had broad genomic distribution, many mitochondrial genes influencing EDS and many
- 18 involved with immunity-inflammation modifying COVID19 severity. Recurring DNA variants in EDS
- 19 that merit evaluation in COVID19 resistance include those impacting connective tissue elements--51 in
- 20 COL5 (joint), 29 in COL1/2/9/11 (bone), 13 in COL3 (vessel), and 18 in FBN1 (vessel-heart)--or neural
- function--93 in mitochondrial DNA, 28 in COL6/12, 16 in SCN9A/10A/11A, 14 in POLG, and 11 in
- 22 genes associated with porphyria.

23 Conclusions

- 24 Holistic ascertainment of finding pattern and exome variation in EDS defined tissue laxity,
- 25 neuromuscular, and autonomic correlations that transcend single abnormalities or types. Implied
- 26 networks of nuclear and mitochondrial genes are linked to findings like brain fog, fatigue, and frailty in
- 27 EDS, their similarity to long COVID19 supporting shared therapies for disorders affecting a minimum
- 28 0.1% of the global population.
- 29

1 Introduction

2 Study of the human being, limited by causal foibles of chance and necessity, can nevertheless take 3 advantage of a large organism privileged by centuries of detailed observation. Human systems biology 4 can begin with the Review of Systems required for medical evaluation, a holistic approach nicely 5 complemented by NextGen detailing of genome sequence change [1-3]. While the contingencies of 6 disease pattern will never match the controlled insights from experimental study, holistic documentation 7 of symptoms and their translation into pathogenetic mechanisms can focus molecular investigation. 8 Such is the case when the full panoply of tissue laxity [4-8], autonomic [9-11], and neuromuscular [12-9 13] findings are ascertained in connective tissue dysplasias [8], appreciation of Ehlers-Danlos syndrome 10 (EDS) linking its genetic variation to central articulo-autonomic dysplasia mechanisms [11] instead of 11 peripheral phenotypes [4-8].

12

Although initial analyses of connective tissue disorders focused on tethering proteins like collagens [1-7], its necessary role in protist to metazoan transitions [14] requires that connecting tissue be medium [15-21] and message [12, 22-28]. The result in complex organisms that combine internal homeostasis with external movement is a diversity of constraining and connecting structures [skin, joint, skeleton— 15-21] permeated by wired [nerve 12-13, 22-25], moving [muscle 26-28] and circulating [heart-vessel 7] parts. All of these tissues including many blood components have a common developmental origin [mesoderm, mesenchyme--29] that reflects an evolutionary drive for cell connection.

20

21 The inevitable consequence of this integrated anatomy is a reciprocal relationship between the systems that constrain/contain body or blood [20,21] and the nervous system that coordinates their functions 22 23 [22,23]. Disposition to tissue laxity will not only cause wear-and-tear osteoarthritis and skeletal bends from gravity [deformations like scoliosis, 4-8] but also will provoke adrenergic response to restore 24 25 cerebral circulation deprived by vessel distensibility and lower body blood pooling [9-12]. Repeated 26 adrenergic stimulation, evident even in those with minimal or benign joint hypermobility [9], produces 27 the brain fog, stress response, and chronic fatigue of postural orthostatic tachycardia syndrome [30-32], 28 the reactive allergic [32-33], immune [23,34], and inflammatory [35] symptoms of mast cell activation 29 [32-33], and, through cholinergic suppression, the irregularity, reflux, and swallowing difficulties of 30 irritable bowel syndrome [36].

31

1 These aspects of dysautonomia are receiving renewed emphasis after being recognized in patients 2 recovering from SARS-CoV-2 [37-43], an RNA beta-coronavirus producing a respiratory disease 3 syndrome called coronavirus disease 2019 or COVID19 [44-46]. The virus has caused over 650 million 4 infections and 6.6 million deaths worldwide since its emergence from China in late 2019 [45], 6.2% of 5 infections associated with autonomic and respiratory symptoms that persist for weeks or months after 6 the initial illness has improved [43]. These post-infectious symptoms have become known as a post-7 acute COVID19 sequelae (PACS) or long COVID19 syndrome that can occur after a 1 to 2-week course 8 of mild, severe, or asymptomatic disease [37,38]. The frequency and timing of long COVID19 9 symptoms, like those of EDS, are highly variable as shown by the 59 of 303 studies qualifying for 10 review by Deer et al. [37].

11

12 Individual variability and heritability of certain self-reported COVID19 symptoms [47] coupled with 13 descriptions of X-linked COVID19 susceptibility [48] prompted studies to define genes modulating 14 COVID19 susceptibility [48-50]. Recently reviewed [50] are top-down approaches analyzing interactive 15 gene modules [51] or molecular pathways [52-54] altered by COVID 19 infection and bottom-up studies 16 focusing on individual genes using whole genome association, DNA sequencing, and CRISPR ablation 17 analyses. Overlap of symptoms between EDS [9-11], acute [55-59], and post-acute COVID19 [37-43] 18 suggested that their contributing genes might be similar, prompting analysis that could foster application 19 of proven therapies [6-11] to a novel and globally escalating disorder.

Methods 20

Patients 21

22 Patients were evaluated in a private medical genetics practice after whole exome sequencing became economically feasible via preliminary ascertainment of insurance coverage by the GeneDx[©] Company. 23 24 EDS and developmental disability patients were seen from July of 2011 to August of 2017, those with 25 EDS being the sole practice focus from the latter date through October of 2020. Clinical evaluations and 26 DNA testing of EDS patients were performed as described preliminarily [2,11]; the 1656 diagnosed with 27 EDS expanded to 1899, the 710 with systematic evaluations for the 120 findings in Supporting 28 Information S1 Table to 1261, the 727 with DNA testing to 967 (article Table 1). The most recent 243 29 EDS patients, including 153 with DNA testing and 90 (59%) with positive results, were evaluated by 30 telemedicine/online interaction after the private office closed in July 2018. Patients with obvious

diagnoses of Marfan, Loeys-Dietz, or skeletal dysplasias were excluded. Patients with developmental
 disability and/or autism had different evaluations in the private office as previously described [2]. Part time appointment at Texas Tech University Health Sciences Centers included separate genetics clinic

4 and laboratory administrative work at that Center while coordinating the Dallas private practice.

5 **DNA testing**

6 Patients and/or families were given forms to consent for medical genetic evaluation/treatment and 7 anonymous sharing of DNA results from whole exome sequencing (WES) during patient intake, 8 counseled regarding ambiguous, incomplete, or incidental/secondary findings [60] and consented to 9 send their insurance information to the GeneDx[©] Company for estimates of out-of-pocket costs. 10 GeneDx genetic counselors obtained out-of-pocket cost estimates for testing, completed requisitions 11 with generic consents for de-identified data and secondary finding sharing, and coordinated cheek swab 12 sampling of patient and parents when available. Results using standard methods for whole exome 13 sequencing [61,62] with independent [63] or conjoint [64] microarray analysis were obtained by fax 14 and/or internet portal. Results were provided with counsel by the author at follow-up clinic visits.

15 Patient and DNA databases

16 The 1979 EDS and 725 developmental disability patients having outpatient evaluations were entered 17 into a password-protected MS Excel[©] GW patient database as approved by the North Texas IRB 18 (centered at Medical City Hospital, Dallas) in 2014 (exempt protocol number 2014-054). Data on 305 19 EDS patients seen before 2014 were entered after approval, 68 entered as dictated by protocol guidelines 20 after its closure on 19-12-2018 when the author closed the Medical City office). The 1261 EDS patients 21 with systematic evaluations were transferred to a more comprehensive EDS database with history-22 physical findings, specification of those related, sex, age range (2.5 years under age 10, 10 years for 23 those over age 10.1 years), type of visit (online or clinic), referral (self, specialist, or primary physician), 24 and DNA results. The specific DNA variants found in 568 EDS patients with positive testing results 25 were extracted and listed in S3 Table of Supplementary Information, the rest of the information 26 available (with indication of positive/negative but not specific DNA results) as an EDS1261GW1-23 27 database by request to the author (golder.wilson@ttuhsc.edu). Those interested in further research can 28 match clinical and DNA findings through concordant patient numbers in S3 Table and the requested 29 database, accessing EDS patients who are often anxious to participate in validating research. DNA

variants in 82 patients with developmental disability were separately extracted from the larger database
and listed in S4 Table to allow comparison with the DNA variation in EDS patients.

3

Genes modifying COVID19 infection were taken from articles obtained by PubMed searches using
those terms conducted through December 2022. Genes and article references were entered into the
parallel Excel database as listed in the S5 Table of Supporting information, their previously associated
diseases taken from OMIM as described next.

8 Classification of gene products, impacts on tissue elements/processes

9 The Online Mendelian Inheritance in Man (OMIM) at www.omim.org, accessed from June 2021 to 10 January 2023, provides reference (M) numbers for genes variant in EDS or developmental disability 11 patients and for those related to COVID19 severity (respective S2 and S4-S5 Tables of the Supporting 12 Information). Diseases associated with each gene are also referenced by (M) numbers, condensed lists of 13 symptoms provided for the EDS- [S2 Table] and COVID19-related [S5 Table] but not for the disability-14 related diseases because the latter are less-relevant conditions with developmental-intellectual disability 15 and/or autistic behaviors.

16

Each gene product is classified by function (e. g., enzyme, receptor, membrane channel as shown in the legend to Fig. 3) based on its description in the OMIM entry. Classification of genes by impact on tissue element or process per the Fig. 2 and 4, S2 Table legends relies on symptoms of their associated diseases in S2 and S4 Tables, assignments more arbitrary since many associated diseases affect multiple systems and many genes are associated with more than one disease (M+ symbol in S2 and S4-S5 Tables).

22 Statistics

Clinical findings were tallied from the EDS1261GW1-23 database, gene and DNA variants from the data in S2-S5 Tables. Tallies used the search, find, and sort functions of Excel, statistical calculations of averages and standard deviations performed using its standard formulae. Significant differences at the p <0.05 level were determined using online resources [65] that compared means by two-tailed t and proportions by N-1 chi-squared tests.

- 28 **Results**
- 29 EDS patients and clinical findings

1 Clinical and molecular analyses of the 1899 patients diagnosed with EDS over a 10-year period from 2 2011 to 2020 are summarized in Table 1 as expanded from a preliminary report [11]. Initial referrals 3 were prompted by complaints of joint pain in 50% and findings of autonomic imbalance in 42%, the 4 remainder by neuromuscular or skeletal complaints with less than 1% referred because of the 5 traditionally emphasized joint hypermobility and skin changes [4-6]—see the Supporting Information Appendix and S1 Table for details on the presenting complaints and patient findings. Thus the 6 7 conjunction of joint-skeletal and autonomic symptoms emphasized in this article was not an artifact of 8 referral, patients with either complaint having substantial findings of each. 9

As author interest and the focus of a private setting attracted more EDS referrals, under-appreciated symptoms like brain fog, chronic fatigue, or bowel irregularity [9-11] were recognized and incorporated into a systematic assessment for 80 history and 40 physical findings that included 36 consensus criteria for EDS [66]. Emphasis on overall EDS finding pattern and its relation to underlying tissue laxityautonomic mechanisms guides the unique approach to DNA variant interpretation in this and a

15 preliminary article [2].

Patients group	All EDS	Female	Male	F>10.5y	F<10.5y	DNA all	DNA+	DNA-	No EDS
Total number (No.) T	1899	1553	346	1446	107	967	573	394	80
No. systematic eval (%T)	1261 (66)	1064 (69)	197 (57)	1020 (71)	44 (41)	854 (88)	568 (99)	286 (73)	64 (80)
No. routine eval (%T)	638 (34)	489 (31)	149(43)	426 (29)	63 (59)	113 (12)	5 (1.0)	108 (27)	16 (20)
Age of eval (years X±SD)	29±14	30±13	21±13 ^a	31±13	6.2±2.8 ^b	29±14	29±14	30±13	16±9.1°
Age severe (years X±SD)	17±9.2	17±9.0	14±9.9ª	18±8.8	4.8±2.3 ^b	17±9.7	16±9.7	17±9.6	14±7.6°
Average Hx of 80 (X±SD)	34±10	36±9.8	26±8.0ª	37±9.4	22±9.4 ^b	35±9.9	35±9.9	35±10	7.2±1.3°
Average PE of 40 (X±SD)	18±4.7	19±4.5	17±4.8ª	19±4.5	16±3.1 ^b	19±4.8	18±4.7	19±4.8	7.6±1.3°

16 Table 1. Ehlers-Danlos syndrome patients and their DNA testing

17 Average numbers of Hx (history) or physical (PE) findings for the 1261 EDS patients meeting criteria [66] and

18 having systematic eval (evaluation) for S1 Table findings were significantly higher (p <0.05) than those for ^aEDS

19 males; ^bEDS females under age 10.5 years, and ^cNo EDS patients; DNA all, patients with DNA testing, DNA+,

20 those with a variant reported; X±SD, mean plus standard deviation.

21 Findings in S1 Table, appreciated in the first 638 patients who met EDS criteria [66], are grouped in 12

history and 7 physical categories. This allows comparison of total numbers of findings, numbers in a

23 category, or individual finding percentages among EDS groups. Despite large standard deviations, the

 34 ± 10 of 80 and 18 ± 4.7 of 40 average findings of 1261 patients diagnosed with EDS (first column,

Table 1) were significantly higher than those of 64 who were not (No EDS--7.2 \pm 1.3 of 80, 7.6 \pm 1.3 of

40, last column). The latter group is an imperfect control since their average age (18 ±13 years) and
percentage of females having systematic evaluations (52%) were lower (data not shown) than those
diagnosed with EDS. See the Appendix discussion to appreciate that 200 (16%) of the 1261 EDS

4 patients were related, 11 (18%) of the 62 not meeting EDS criteria having relatives who did.

5

6 Greater female severity is shown by higher numbers of history $(36 \pm 9.8 \text{ versus } 26 \pm 8.0)$ and physical 7 findings $(19 \pm 4.5 \text{ versus } 17 \pm 4.8)$ in 1064 females versus 197 males in Table 1, columns 2-3. The 85% 8 preponderance of females likely reflects intrinsic flexibility (Beighton scores averaging 6.9 maneuvers 9 of 9 versus 5.6 for men, S1 Table) and not selective referral as discussed in the Appendix. Although 10 males with their earlier and more strenuous sports participation tend to present for evaluation at younger 11 ages (21 versus 30 years for females in Table 1), their greater muscle development and lesser flexibility 12 underly their lesser frequencies of most findings (tall stature and pectus among the 15 exceptions in S1 13 Table).

14

15 Moving beyond the joint hypermobility and skin elasticity emphasized by dermatologists Ehlers and 16 Danlos [11] are S1 Table assessments of neuromuscular symptoms like migraines or poor balance that 17 affect a respective 60% or 61% of EDS females, 96% of all patients having at least one of 12 18 neuromuscular findings by history. Equally frequent are the brain fog (83%) or chronic fatigue (87%) of 19 postural orthostatic tachycardia syndrome (POTS) in EDS females, the bowel irregularity (82%) or 20 bloating-reflux (79%) of irritable bowel syndrome (IBS), and the rashes (42%) or asthma-dyspnea 21 (49%) of mast cell activation syndrome (MACS) in S1 Table. All but 3 of the 1261 patients had 1 of 22 these dysautonomia findings and the average among females and males of all ages was 12 of the 20 23 findings.

24

The neuromuscular and dysautonomia findings are inextricably linked to those of joint-skin-vessel laxity as shown in the Appendix, 483 females over 10.5 years who presented with joint pain having similar numbers of joint 5.8 to 5.1 of 10, skin (2.5 each of 10), or dysautonomia findings (12.2 to 13.1 of 20) as the 358 who presented with postural orthostatic tachycardia syndrome (POTS). Underappreciation of these neuromuscular and autonomic problems and their exclusion from consensus findings [66] is a major reason for the diagnostic delays for males (7 years, 21-14) and females (13 years, 30-17) in Table 1, columns 2-3 rows 4-5); their recognition is also crucial for timely diagnosis of younger patients who

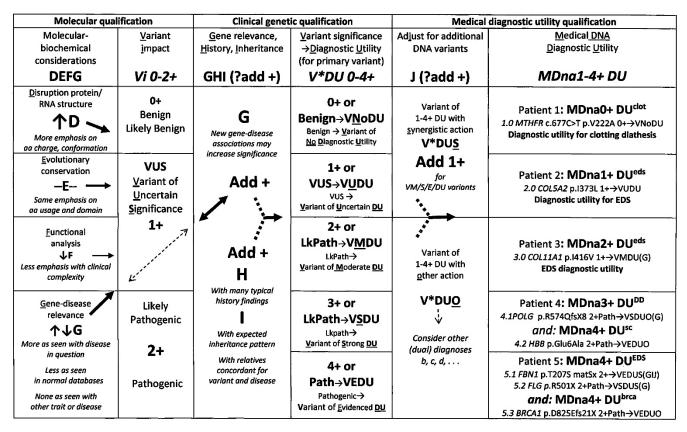
have yet to develop wear-and-tear joint injuries: Note the fewer history-physical findings in females
 under age 10.5 years than those of older females (Table 1 columns 4-5, rows 6-7), the reason why only
 the latter were used for later comparison of EDS patients with different gene changes.

4

5 Hypermobility measured by Beighton score [67] plus skin elasticity [68] are external indicators of EDSdysautonomia pathogenesis, the lesser fleshy constraint of more distensible vessels decreasing blood 6 7 return to the brain with adrenergic reaction. More joint motion leads to wear-and-tear injuries (sprains--8 56% of women, ligament tears-36%, fractures--49%, stretch marks--59%, scars-43% and skeletal 9 bends [69] or deformities (scoliosis—25% or flat feet—46%) necessarily joined by consequences of flexible tissue in other organs (see S1 Table for finding frequencies). Flexible glia, dura and vertebrae 10 11 allow descent of the lower brain to produce Chiari deformation in 14% of women [70] plus back pain 12 from spinal disc herniation or degeneration in 42% [13].

13

14 Equally flexible pelvic ligaments (exaggerated in women for parturition) lead to pelvic congestion [71-15 73] and urogenital problems (menorrhagia—67%, endometriosis—33%) that when counted give women 16 an average 1.5-point excess in total history scores (S2 Table). Inflicting circulatory imbalance is the increased distensibility of vessels that leads to lower body blood pooling (57% of EDS women have foot 17 18 discoloration upon standing), the reactive adrenergic stimulation producing stress-related psychiatric 19 symptoms [74] that combine with those from pain [75-76] and inflammation [77-78]. Some of these 20 changes including rare joint contractures [79] were undoubtedly related to aging as 74 EDS females and 21 6 males were over 50 years old.


22

23 Comprehensive assessment of dysautonomia findings in EDS [9-10, 30-33] is crucial for diagnosis and 24 for correlating its cardiovascular, immune, and inflammatory changes with the gene changes in S2 and S3 Tables. Holistic ascertainment renders EDS types as subtle variations on a theme or spectrum, 25 26 Appendix discussion indicating that 332 (26%) of 1261 EDS patients met criteria for classical [M130000--6, 66] and 892 (71%) for hypermobile [M130020--4, 66] EDS based on the S1 Table 27 28 findings. Besides their similar average numbers of total history-physical findings (37-18 for classical, 29 34-19 for hypermobile EDS patients), all other category numbers or finding proportions were similar 30 except for the presence of unusual scars in 86-92% of classical patients on history-physical versus in 25-31 21% of hypermobile patients (see Appendix). No EDS patients were encountered with facial changes,

bowel/ vessel ruptures, and lethal pregnancy complications of vascular EDS [7] or Marfan syndrome
 [80], patients with the distinctive habitus, aortic dilation, and eye findings of the latter syndrome
 excluded from this study.

4

Perhaps casting doubt on the Fig. 1 qualification of DNA results as relevant to EDS findings are the 5 6 similar numbers of history-physical findings (35-18) among EDS patients having DNA variants (DNA+ 7 in Table 1) as those without (DNA-, 35-19). The most likely explanation for this is incomplete discovery 8 of EDS-contributing genes, prior exome studies finding 9 variant genes in 177 patients [1], 4 in 59 9 patients [3] and even the present 330 variant genes in 568 patients (317 relevant to EDS) not including 10 mutations outside of exons or exon-intron borders. Support for EDS-DNA correlation by the Fig 1 11 protocol will follow its discussion and include differences from disability patient results (S4 Table) and 12 the recurring gene variants of S2, S3 Tables.

13 Fig 1. Clinical protocol for DNA variant qualification

14 Clinical DNA variant (column 4) and 1-4+ medical diagnostic utilities (last column) are added to consensus

15 qualifications (column 2) as discussed in the text, DNA/protein change and gene abbreviations except for *MTHFR*

16 (methylene tetrahydrofolate reductase) and *HBB* (beta-globin) are explained in S2, S3 Tables.

1 A novel clinical protocol for DNA variant qualification

2 The novel qualification protocol in Fig 1 was developed to add biochemical and clinical considerations

3 to qualification of the average 12,000 DNA sequence changes found in the typical exome [81].

4 Sophisticated analysis by pioneering laboratories [61-62] developed filters for those DNA variations

5 likely to correlate with patient findings yet crossing thresholds from individual characteristics to the

6 finding patterns of diseases like EDS has proved challenging.

7 The stepwise protocol in Fig 1, modified from prior publications [2, 82], begins with consensus

8 qualifications [83-84] of pathogenic, likely pathogenic, or variants of uncertain significance based on

9 conformational grading of product disruption [D-85], evolutionary conservation of the altered gene

10 region [E-86], functional *in silico* analysis [F-87] and the dynamic G that increases or decreases as a

11 DNA variant is detected in similarly affected [88-89] or normal individuals [89-91].

12

13 Clinical steps are added (columns 3-5 of Fig 1) to consider abundant disease-related symptoms (H),

14 inheritance (I) from relatives with these symptoms and whether the additional (adjunct-J) variants act by

15 synergistic (S) or other (O) mechanisms based on prior disease associations [92, see S2 and S5 Tables].

16 Each DNA variant is assigned evidenced (VEDU), strong (VSDU), moderate (VMDU) to uncertain

17 (VUDU) or no (VNoDU) diagnostic utility (column 4, Fig 1, each patient DNA result of one or more

18 variants assigned 1-4+ MDna medical diagnostic utility (last column).

19

20 The additional clinical correlation emphasizes the entire profile of disease (i. e., all skin-skeletal,

21 neuromuscular, and dysautonomia findings of an EDS patient) rather than a single one like

22 kyphoscoliosis [93], an approach essential for relating syndromic pattern to mechanism. Thus

23 mitochondrial DNA polymerase gamma (POLG) variants [27] would be related to the developmental

disability of patient 4 (Fig 1, last column) based on that disease association (M302700+) but to

25 dysautonomia symptoms of the 17 EDS patients in S2 Table based on the encephalopathic-

26 gastrointestinal dysmotility symptoms of its other associated disease (M613662+).

27 Changing "molecular" diagnosis [92] to diagnostic utility, minimizing use of "uncertain significance,"

and adding qualifiers with connotations like VUDU, VnoDU, V*DUO (dual) in Fig. 1 could lessen

29 physician skepticism [94] and make clear that the most established molecular change may not match

30 clinical symptoms as shown by sickle cell anemia [95]—see the Appendix for additional discussion of

1 the example patients in Fig. 1 and the Discussion for further comments on the relation of DNA variation

2 (as relevant to EDS) to clinical expression (as EDS types or other connective tissue dysplasias).

3 Different implications of DNA variants in EDS and disability patients

4 Support for clinical-DNA correlation in EDS patients will now be provided by comparing their DNA

5 results with those of developmental disability (DD) patients in Fig 2 (see S4 Table for all 167 DNA

6 variants in the 82 disability patients, 13 of them copy number variants). The 967 EDS patients with

- 7 DNA testing shown in Table 1 are further broken down into 906 having whole exome sequencing and
- 8 61 having gene panel or allele testing in Table 2, commercial laboratories reporting potentially
- 9 significant DNA variants in 568 patients, 32 of them from allele-panel testing. All but 6 results are from
- 10 the GeneDx[©] Company as indicated in the S3 list of DNA variants in EDS patients.

Patient groups	EDS All	EDS Females	EDS Males	Not EDS	DD
Patients diagnosed with EDS or developmental disability DD = P	1899	1553	346	80	735
Patients havingsystematic evaluations (% of P)	1261(66)	1064(69)	197(57)*	64(80)	
DNA testing ((% of P)	967(51) ^a	816(53)	151(44)*	23(29)*b	461(63) ^c
WES testing (% of P)	906(48)	777(50)	129(38)*	14(18)*	112(15)*
a potentially significant DNA variant (% of those having WES)	536(59)	459(59)	77(60)	0*	76(68)*
a potentially significant variant by WES, panel, or allele testing = V	568 ^d	480	88	4	82 ^e
at least one LkPath/Path DNA variant for EDS or DD by lab (% of V)	20(3.5)	16(3.3)	4(4.5)	0	<u>48(59</u>)
at least one LkPath/Path DNA variant for other diagnosis by lab (% of V)	181(32)	154(32)	27(31)	0	12(15)
variant(s) with 4+ diagnostic utility for EDS <u>or DD</u> by author (% of V)	414(73)	358(74)	58(66)	0	<u>53(65</u>)
variant(s) with 3+ diagnostic utility for EDS <u>or DD</u> by author (% of V)	122(22)	93(19)	27(31)	3(75)	<u>27(33)</u>
variant(s) with 2+ diagnostic utility for EDS <u>or DD</u> by author (% of V)	29(5.1)	26(5.4)	3(3.4)	1(25)	<u>2(2.4)</u>
a primary mitochondrial DNA variant (% of V)	93(16)	79(16)	14(16)	0	4(4.8)*

11 Table 1. DNA testing results in patients with EDS and developmental disability

¹² ^aGene panels were performed on 31 EDS patients (18 with variants, all systematically evaluated), allele testing on

13 30 EDS relatives (19 with variants, 14 systematically evaluated); ^b9 had allele testing, 4 with potentially

14 significant variants but not meeting EDS criteria; ¢459 had microarray analysis, 102 (22%) having copy number

15 variants including 11 of the 76 with positive WES, 6 of the 82 had positive panel testing (S5 Table); ^d2 patients

16 had incidental variants [60]; eAll 82 patient results were qualified with *diagnostic utility for DD (developmental*

17 *disability*) since that was the indication for testing;*significantly different (p <0.05) from EDS (see Methods);

18 LkPath, likely pathogenic; Path, pathogenic; WES, whole exome sequencing.

19 The Fig 1 protocol qualified the variants or variant combinations in all but 2 EDS patients with

20 incidental findings as having utility for that diagnosis (column 1 of Table 2, one of the latter (patient 567

1 in Table S3) possibly relevant with 15q13 microdeletion that encompassed the CHRNA (M100690) 2 cholinergic receptor gene (M100690). Relating results to tissue laxity-dysautonomia mechanisms 3 qualified 414 or 73% of patients as having results of 4+ medical diagnostic utility and 122 or 22% as 4 having 3+medical diagnostic utility for EDS (Table 2, column 1). Only 20 (3.5%) of patient results were 5 accorded likely or full pathogenesis for EDS-like disorders in commercial laboratory reports, 181 (32%) judged pathogenic for other diseases and 367 (568 minus 201 or 65%) given unhelpful qualifications as 6 7 variants of uncertain significance. See the discussion of Fig 1 example Patient 5 in the Appendix for the 8 difference in approach to qualification of the 28 primary and 12 additional profilaggrin (FLG-9 M135940+) gene variants in S2 Table), commercially reported as pathogenic for scaly skin (M146700) 10 but here viewed as contributing to skin laxity and adrenergic-inflammatory excess [8, 19, 25-34]. 11

12 Quite different were the diagnostic implications of DNA results in 82 patients with developmental 13 disability, all of them related to the latter indication for testing and some to specific disability syndromes 14 [S5 Table]. It must be noted that 49% of disability patients were female (not shown) compared to the 15 85% of EDS patients in Tables 1-2 and that whole exome sequencing was usually performed in 16 disability patients after microarray analysis was normal [63]. Of the 459 having microarray analysis, 102 (22%) had potentially significant copy number variants including 11 of the 76 with positive whole 17 18 exome sequencing (last column, Table 2). In contrast, only 9 EDS patients had copy number variants 19 found by simultaneous testing [64] with 3 judged relevant to EDS (Table S3).

20

21 The 330 genes variant in EDS patients and their prior disease associations are listed in S2 Table, M 22 numbers from www.omim.org provided as references. The 10 genes with 13 DNA variants not 23 considered relevant to EDS are at the bottom along with 3 genes and 5 variants considered incidental or 24 secondary findings [60]. The 917 DNA variants in 568 EDS patients are listed in S3 Table by patient 25 numbers, single and therefore primary variants having .0 after the patient number, multiple variants 26 followed by .1 for the one judged primary and 0.2, 0.3, etc. for additional variants (modeled by the 27 example variants of Fig 1, last column). When two or more variants occur in the same gene, they are 28 given separate numbers and labelled as homozygous (18 variants, 9 patients), trans (47 variants, 23 29 patients), cis (23 variants, 12 patients), ?cis-trans (10 patients) or cis + trans (patient 231 with 3 variants) 30 in column D of S3 Table. Of the 911 DNA sequence variants cited in commercial reports, 561 (62%)

were listed in ClinVar and 71 of 158 mitochondrial DNA variants (45%) were listed in MitoMap (see
 legend to S3 Table).

3

Patients are numbered from low to high according to how much their altered genes are thought to
contribute to EDS, those with variants in well-recognized genes like collagen type V [6] having low
numbers and those given novel relevance by this study (e. g., collagen type VI [19] or mitochondrial
ATP synthase [24] variants) having higher numbers. The disability variant list in S4 Table is similarly
numbered and qualified but ordered by date of entry since all were relevant to developmentalintellectual disability.

10

11 There were 20 genes (with 24 variants in 21 disability patients) that were also variant in EDS patients 12 (blue colors in S3 and S4 Tables). Nuclear genes include ATP7A, DUOX2, FLNA, POLG, and TG, 13 mitochondrial ones MT-CO2, MT-TK, and MT-ND5, their different mutations feasibly contributing to cognitive disability on the one hand or to the autonomic and neurologic issues of EDS on the other. Also 14 15 in both patient groups were the profilaggrin gene (FLG, M135940) variants discussed above, present in 16 2 (2.4%) of the 82 disability and 35 (6.2%) of the 568 EDS patients (S2 and S4 Tables). Only in the latter group was their prevalence more than the 2.2% in normal individuals [90, 91], supporting their 17 18 autonomic-inflammatory action in some EDS patients. Additional variants in the connective-tissue 19 related COL11A, PLOD1, and FBN2 genes in disability patients may augment the hypermobility often 20 related to low muscle tone as reported in a child with Down syndrome [96].

21

Also supporting clinical correlation are the DNA variant distributions shown in the upper rows of Table 3, 221 or 39% of EDS patients having 327 additional variants and 43 or 52% of disability patients having 72 of them. The latter total does not count the 12 chromosome or copy number variants that may contribute to patient disabilities, the 17q21.31 microdeletion in patient 33 of S5 Table likely contributing more than its companion *G3BP1* (M608431) gene sequence alteration to disability yet rated primary to aid EDS-disability variant comparisons.

28

29 The importance of additional variants that are often ignored in published work is shown by the 96% in

30 EDS and 44% in disability patients that are qualified with moderate to evidenced synergistic

31 contribution (V-E/S/M-DUS in Fig. 1, columns 3 and 6 of Table 3). Note that 28 or 39% of the 72

- 1 additional variants in disability patients were associated with other diseases (column 6, Table 3)
- 2 compared to the 13 or 2.0% of 911 in EDS patients listed at the bottom of S2 Table that are not included
- 3 in the Table 3 totals. The latter list may expand when large variant databases become available although
- 4 the 143 genes represented by multiple variants will likely achieve evidenced diagnostic utility for EDS.

Categories of DNA variants	EDS All	EDS Primary	EDS <u>Additional</u>	DD All	DD Primary	DD <u>Additional</u>
Total DNA variants T	893ª	566ª	<u>327ª</u>	154 ^b	82 ^b	<u>72^b</u>
VEDU or <u>VEDUS</u> (%T)	384(44)*	359(63)	<u>29(8.9)</u>	61(35)*	53(60)	<u>3-8(11)°</u>
VSDU or <u>VSDUS (</u> %T)	321(36)*	170(30)	<u>151(46)</u>	69(60)*	27(38)	<u>32-42(58)</u>
VMDU or <u>VMDUS</u> (%T)	169(19)*	35(6.2)	<u>134(41)</u>	24(4.7)*	2(2.4)	<u>9-22(30)</u>
VUDU or <u>VUDUS (</u> %T)	15(1.7)	2(0.35)	<u>13(4.0)</u>	0	0	<u>0</u>
Nuclear variants N(%T)	735(82)*	473(84)*	<u>262(80)</u>	144(93)*	78(95)*	<u>66(88)</u>
maternal origin (%N)	245(33)*	163(35)*	<u>82(31)</u>	30(21)*	13(17)*	<u>17(26)</u>
paternal origin (%N)	193(26)	122(26)	<u>71(27)*</u>	42(29)	16(21)	<u>26(39)*</u>
De novo (%N)	31(4.2)*	18(3.8)*	<u>13(5.0)*</u>	48(33)*	35(45)*	<u>13(20)*</u>
Unknown ^d (%N)	266(36)*	170(36)*	<u>96(37)*</u>	24(17)*	14(18)*	<u>10(15)*</u>
Mitochondrial variants M(%T)	158(18)*	93(16)*	<u>65(20)</u>	10(6.5)*	4(4.8)*	6 <u>(12)</u>
maternal origin (%M)	102(65)	58(62)	<u>44(68)</u>	6(60)	2(50)	4 <u>(67)</u>
paternal origin (%M)	0	0	<u>0</u>	0	0	<u>0</u>
De novo (%M)	4(2.5)	4(4.3)	<u>0</u>	0	0	<u>0</u>
Undetermined ^c (%M)	52(33)	31(33)*	<u>21(32)</u>	4(40)	2(50)*	<u>2(33)</u>

5 Table 3. Qualification and parental origin of DNA variants found in EDS or disability patients 6 ^a566 patients had EDS-relevant primary DNA variants including 345 (61%) with one and 221 (39%) with 7 one primary and 327 additional variants, 221 (68%) of those having one additional, 77 (24%) two, 22 (6.7%) 8 three, 6 (1.8%) four, and 1 (0.31%) five. b82 had primary DNA sequence variants, 39 (48%) with one and 43 9 (52%) with one primary and 72 additional variants, 43 (60%) of those having one additional, 20 (28%) two, 8 10 (11%) three, and 1 (1.4%) four; ^cunknown--no parental samples, undetermined--inability to distinguish de 11 *novo* or maternal origin; ^dpercentages in these rows refer to proportions of all DNA variants;* significant (p 12 < 0.05) difference between EDS and developmental disability (DD) patients (see Methods).

13

14 The lower rows of Table 3 show dramatic differences in origin of variants in EDS versus disability

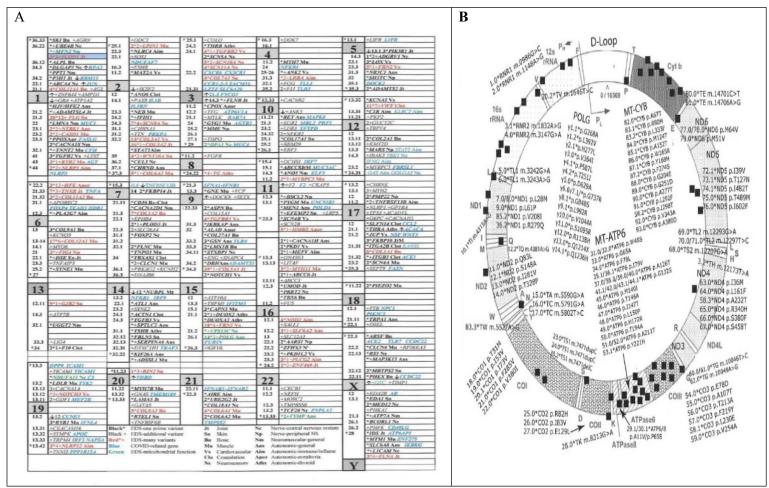
15 patients, primary nuclear variants having maternal origin in a statistically significant 35% versus 17%

- 16 while *de novo* variants have the reverse difference of 3.8 versus 45% that is also significant (see
- 17 Methods). Mitochondrial variants are much more prevalent in EDS patients (bottom of Table 2,
- 18 reiterated in Table 3, mapped in Fig. 2B), surprising in view of their associations with severe disability
- 19 diseases such as Leigh syndrome (M256000). The 93 primary and 65 additional mitochondrial DNA

1 variants in EDS, like others associated with neurologic disorders, emphasize the importance of muscle in 2 protecting joints and constraining tissue-vessels to promote blood return to the upper body and brain.

An EDS gene network 3

4 The 65 genes with 4 or more variants in EDS patients have a broad distribution in the nuclear genome 5 (Fig 2A—bold*, red print), matched by 30 genes in the mitochondrial genome (Fig 2B) where the 6 DNA/protein changes are specified. With less certain relevance but equally wide distribution are the 252 7 genes with fewer than 4 variants (bold*, black print in Fig 2A), 110 of them with no primary and only 8 additional variants (italic+, black print in Fig 2A, filled black squares in Fig 2B).


9

10 Genes are classified by their impact on tissue elements (e.g., joint. Jt) or processes (e.g., Ans, general 11 autonomic regulation) according to their previous associations with disease as shown in the lower box of 12 Fig 2A and the legend of S2 Table; these classifications are listed beside the genes with primary variants 13 in Fig 2A. Variants in nuclear genes that encode products routed to the mitochondrion are in green print 14 in Fig 2A and listed for the mitochondrial gamma polymerase (POLG) gene in Fig 2B, its role in 15 mitochondrial depletion with the associated neuromuscular (M607459+) and dysautonomia (M612662+) 16 conditions discussed above important for understanding how mitochondrial dysfunction might contribute to EDS.

17

18

19 Another classification in S2 Table important for later EDS-COVID19 comparisons pertains to the nature 20 of the RNA or protein product encoded by the gene, terms like Ez for enzyme, Mc for membrane channel, or Tf for transcription factor explained in that Table legend. The transcription factor group 21 22 includes 26 or 8.2% of the 317 genes relevant to EDS (S2 Table) and suggests that many EDS-relevant 23 mutations in regulatory regions outside of exon or exon-intron borders remain to be discovered. The 24 diverse element-process impacts and products of EDS genes are paralleled by their diffuse genomic 25 locations, clustering evident only for COL5A2/COL3 at 2q32.2, SCN5/10/11A at 3p24.1, COL6A1/A2 at 26 21q22.3, and *SCN2B/4B* at 11q23.3.

1 Fig 2. Mapping of nuclear and mitochondrial genes associated with EDS and COVID19 severity.

- 2 A. Nuclear genes from S2 Table are shown with numbers of primary variants in bold followed by *, of
- 3 additional variants in italics followed by +, recurring variants in red, genes encoding products
- 4 transported to mitochondria in green, genes related to COVID19 severity in blue (S5 Table); gene
- 5 abbreviations, exact loci in S2 and S5 Tables, chromosome sizes modified for display by factors $\approx x1/2$
- 6 for numbers 4-5-9, x1/4 for 8, x2/3 for 10; x1.1 for 14-21-X; x1.3 for 22, x1.7 for 20; x2 for 16-17-19
- 7 [63]; B, Primary DNA variants are described by DNA (m.) or protein (p.) position, additional ones by
- 8 --see variant details in S2 Table for Fig 2A, S3 Table adds 473 to variant numbers in Fig. 2B, patient
- 9 473 being number 1 above; map from MITOMAP [89].
- 10

11 Similar clinical profiles in EDS patients with different gene changes

12 EDS patients with multiple variants in the same gene are shown in Fig. 3, extracted from the larger list

13 in Table S2 that provides complete gene names, M number references, and associated diseases. Key

- 1 groups in the upper rows include 51 patients with primary collagen type V variants, 35 in the COL5A1
- 2 gene, 32 in female patients over 10.5 years with sufficient EDS-dysautonomia findings for comparison
- 3 (see Table 1). Because of their long and accepted association with EDS and their numbers, patients with
- 4 *COL5A1* gene variants were chosen as a reference for the other patient groups, few significant
- 5 differences (squares, circles) noted in categories ranging from total history to total dysautonomia
- 6 findings in Fig 3.

Genes (Pts with variant-Female pts >10.5 years with variant)	Patients	ÇPrimVa	r ÇAd Var	ÇPrimVar	Age	History	PE	Beighton	JtSkSk	SkinHP	NmHP	DysA
Tissue laxity with tissue element impacted	←	No.	\rightarrow	No. F>10.5y	X years	X findings	\rightarrow	X points	X findings	\rightarrow	\rightarrow	\rightarrow
COL1 A1 (8-5)/A2 (7-3) Bone Bn	15	15	0	8	36	36	17	6.4	10.0	4.5	5.8	11
COL9 A1 (3-3)/A3 (5-5) Bn	8	8	0	8	33	40	20	6.6	9.9	6.8	6.9	14
COL5A1 Jt	35	34	1	32	33	35	17	6.1	8.8	5.5	5.3	12
COL5 A2 Joint Jt	16	16	0	12	34	37	19	6.5	8.5	5.9	5.8	13
COL7 A1 (4-4)/COL17 A1 (1-1) Skin Sn	5	5	0	5	37	39	20	7.8	11.0	5.4	6.5	13
COL3 A1 Vessel Vs	13	13	0	12	37	43	21	6.8	11.0	6.4	7.1	14
FBN1 Vs	21	18	3	13	32	42	21	7.4	8.3	6.2	6.2	15
TGF B2 (3-2)/B3 (1-1)/BR1 (4-4)BR2 (5-4) Vs	13	12	1	11	34	34	18	6.3	8.3	5.5	5.8	12
<u>VWF</u> Clot	15	10	5	7	37	38	23	7.1	9.6	7.3	6.1	14
				Mean SD	14	7.4	4.7	1.7	2.5	2.1	2.1	2.4
Neuromuscular with tissue element impacted												
COL6A1 (4-2)A2 (2-2)A3 (6-5) Muscle Mu	12	11	1	9	34	37	19	7.3	8.4	5.9	4.9	13
COL12A1 Muscle Mu	23	17	6	13	33	32	19	6.5	8.2	5.6	5.3	10
MT-ND 1 (8-3)/ND2 (5-4)/ND4 (7-4)/ND5 (8-5)/ND6 (3-3)	31	20	8	19	30	35	20	7.0	8.5	6.1	5.8	11
<u>MT-CO</u> 1(7-3)/CO2(4-3)/CO3(13-6)	24	14	10	12	28	35	16	7.2	8.0	4.1	5.4	12
MT-CYB Neuromuscular Nm	20	12	8	9	31	37	18	6.8	8.9	6.6	5.8	13
MT-rRNA 1/2 (12-3)/MT-tRNA-T A/C/E/G/L2/S1/S2 (31-12) Nm	43	22	21	15	32	38	19	6.8	8.9	6.5	5.8	14
AARS1 (3-2) + 6 genes Peripheral nerve (Charcot-Marie-Tooth) Np	22	13	9	10	37	36	22	6.7	10	6.2	7.0	13
SCN9A Neurosensory Ns	7	7	4	7	33	41	16	6.0	10	5.4	6.6	15
				Mean SD	12	9	4.5	1.7	2.8	2.2	1.9	3.0
Autonomic with process impacted												
HFE (9-0)/HMBS (6-5)/ALAD - CPOX - PPOX (3-3) Apor	18	10	8	8	33	33	20	6.6	7.1	5.8	5.9	12
<u>MT-ATP6</u> Autonomic general Ans	32	23	9	17	29	35	18	6.6	9.1	5.1	4.9	12
POLG Ans	17	15	2	14	41	41	20	7.6	9.2	6.7	7.2	14
FLG Autonomic-inflammation/immune Aim	35	28	7	23	28	40	20	7.3	9.0	5.9	5.9	14
				Mean SD	10	8.2	3.9	1.7	2.5	2.2	2.2	2.7

7

Fig 3. Similar EDS-dysautonomia finding numbers in patients with recurring gene variants. Gene
abbreviations and patient numbers are from S2 Table, the first four columns showing all patients with variants,
then with primary variants (PrimVar), with only additional variants (AdVar), and female patients over age 10.5
years with variants—only the latter qualify for finding comparison; finding categories from S1 Table include
mean age (years), history (of 80), physical (of 40), Beighton (of 9), joint-skeletal by history-by physical (JtSkSk
of 21), skin (of 11), neuromuscular by history-physical (NmHP of 16), and dysautonomia (DysA of 20) ■O,
significant difference p<0.05, see Methods; C, with; X, mean; SD, standard deviation.

15

While collagen type V gene variants were previously associated with classical EDS [6] and collagen
type III variants (13 primary, 12 qualifying for comparison) with vascular EDS [7], these patients had
very similar numbers of tissue laxity, neuromuscular, or dysautonomia findings (colored columns of Fig.
3). The same goes for patients with collagen type I variants, usually associated with osteogenesis
imperfecta but recently with an EDS phenotype [98]. Similarity of clinical profiles extends to patients

- 21 with variants in the fibrillin-1 (*FBN1*--13 qualifying patients) and transforming growth factor/receptor
- 22 genes (TGFB/TGFBR –11 qualifying patients) that were previously associated with the connective tissue

dysplasias Marfan (M154700) or Loeys-Dietz (M609192+) syndromes. The latter patients' compatibility
with EDS is reaffirmed by the exclusion of patients with the obvious clinical diagnoses of Marfan or
Loeys-Dietz syndromes from this study (see Methods). Patients with *COL3* and *FBN1* gene changes,
reflecting association of other mutations in these genes with severe disease, did have significantly higher
numbers of findings in the total history-physical and certain other categories depicted in Fig. 3.

7 One can further relate the collagen type I, III, and V genes to impact on particular tissue elements via 8 their associated diseases and tissue distribution, I with major relation to bone [99], III to vessel and other 9 hollow organs [7,100], and V to joints [97] as indicated in the lower box of Fig. 2A and the legend to S2 Table. Similar relations of collagens VII [101] and XVII genes to skin (5 patients qualifying for 10 11 comparison), collagen IX genes to bone (8 patients), and the von Willebrand factor gene [17, 20] to 12 vessel lining/clotting (7 patients) complete the tissue laxity groups in the upper rows of Fig 3. Note that 13 other tissue laxity groups have similar numbers of tissue laxity, neuromuscular, and dysautonomia 14 findings as the patients with COL5A1 gene changes although the COL7/17 patients have a significantly 15 higher average Beighton score and *VWF* patients significantly more physical findings.

16

17 The congruence of finding profiles continues with the middle and lower patient groups of Fig 3, COL6 18 (9 qualifying) or COL12 patients (13) with genes impacting muscle, the several groups with 19 mitochondrial gene variants (19, 12, 9, and 15 patients), and the sodium channel SCN9A patients (7 20 qualifying) having few significant differences. A different way of grouping patients is exemplified by 21 those with variants in genes like AARS1 that have been associated with forms of Charcot-Marie-Tooth 22 disease and therefore impact peripheral nerves (Np). These 22 patients with variants in 17 genes (Table 23 S2), 13 with primary variants and 10 qualifying for comparison, are the only group with genes of 24 neuromuscular impact that have significantly more neuromuscular findings in Fig 3.

25

The lower rows of Fig 3 also group genes by impact on disease process, the 8 qualifying patients with porphyria-associated genes like *HMBS*, the 17 with mitochondrial *ATP6* gene variants, the 14 and 23 patients with variants in the previously discussed *POLG* [27] and *FLG* [102] genes again having similar finding profiles. However, the latter two groups with exaggerated dysautonomia and inflammatory impact--judged from their associated sensory-bowel immotility (M613662+) and atopic predisposition (M605803)--had significant differences in 4-5 categories.

1

2 Not shown are considerable data comparing frequencies of individual findings, a few trends emerging

3 like more tall stature/angular build in patients with the Marfan-related *FBN1* gene variants. This

4 additional data also finds few significant differences among finding proportions in gene groups,

supporting network action in normality and disease but needing more DNA findings for firmconclusions.

7

8 Novel and interesting genes showing variation in EDS patients

9 Continuing the theme of genes being part of a network contributing to general EDS-dysautonomia
10 findings are the many genes of interest in Table 4, categorized by impact on tissue element or process as
11 described in the lower box of Fig 2A. Key points illustrated by these genes are presented here; more
12 details and many other EDS-related genes in each category are discussed in the Appendix.

13 Genes associated with connective tissue dysplasias (Jt):

- Among tissue dysplasia or joint-impacting genes (Jt) are heterozygous *ABCC6* variants in Table 4,
 qualified as relevant to EDS despite their prior association with autosomal recessive
 pseudoxanthoma elasticum [103]. Many heterozygous variants are qualified as contributing to EDS
 in the way that several haplo-deficient enzymes in biochemical pathways can produce metabolic
 disease through synergistic heterozygosity [104]. Other heterozygous variants associated with
 recessive EDS types include those in genes *ADAMTS2*, *FKBP14*, *PLOD*, and *TNXB* of Table 4, all
 occurring in patients with typical EDS-dysautonomia profiles.
- Variants in filamin A (*FLNA*) at Xq28 associated with periventricular heterotopia [105] or in
 FLNB at 3p14.3 and *FLNC* gene at 7q32.1 associated with different diseases (Table 4) indicate
 how homologous genes affecting connective tissue could acquire new components and diffuse into
 different genomic regions. Mutations in homologous rather than divergent domains of these genes
 could produce similar EDS rather than divergent phenotypes.
- The 26 genes encoding transcription factors like *ZNF469* suggest that whole genome sequencing
 will find many additional variants in extra-genic regulatory regions, explaining why 41% of EDS
 patients had no significant variants identified by whole exome sequencing (Table 2).

29

Gene	El-P	PV	AdV	Associated diseases and selected findings (EDS-related are underlined and italicized)
Tissue dysplas	ia	1	1	
ABCC6	Jt	3	0	Pseudoxanthoma elasticum, form fruste M177850+ AD-brain hemorrhage, vascular calcification, atherosclerosis
ADAMTS2 ^a	Jt	2	0	"EDS dermatospraxis type" M225410+ AR-short stature, skin elasticity, myopia, hypodontia, pneumothorax
FKBP14	Jt	2	0	"EDS kyphoscoliotic type-2" M614557 AR—blue sclera, skin elasticity, scoliosis, fractures, myopathy, bladder diverticula, hernias
PLOD1 ^b	Jt	5	1	"EDS kyphoscoliotic type-1" M225400 AR- Marfanoid habitus, myopia, retinal detachment, scoliosis, weakness
TNXB	Jt	7	3	"EDS classic-like-1" M606408+ AR-joint pain, soft-lax skin, MVP, aortic valve anomaly, bladder issues, weakness
FLNA ^b	Jt	3	4	Periventricular nodular heterotopia 1 M300049+ XLD <i>aortic dilation, respiratory difficulties</i> , clotting disorder, <i>bowel dysmotility</i>
FLNB	Jt	1	1	Larsen syndrome M150250+ AD-short stature, joint dislocations, scoliosis, congenital hip dislocation, hearing loss
FLNC	Vs	2	0	Cardiomyopathy, hypertrophic-26 M617047+ AD <u>MVP</u> , arrhythmia; Myopathy distal 4 M614065 AD-weakness
ZNF469	Jt	2	2	Brittle cornea syndrome-1 M229200 ARcorneal ruptures, Marfanoid habitus, blue sclerae, unusual scars, lax skin
F10	Clot	2	1	Factor X deficiency M227600 AR-nose and gum bleeding, easy bruising, hemarthroses, menorrhagia
KCNA5	Vs	1	0	Familial atrial fibrillation-7 M612240 AD—arrhythmia, atrial fibrillation, palpitations, fatigue, exercise intolerance
LOX	Vs	3	0	Aortic aneurysm, familial thoracic-10 M617168 AD-skin striae, tall, pectus, hernia, dural ectasia, MVP
Developmenta	l		1	
SKI	Vs	1	0	Shprintzen-Goldberg syndrome M182212 AD—lax skin, MVP, aortic dilation, asthma, bowel dysmotility, Chiari, II
LIFR ^d	Bn	0	1	Stuve-Wiedemann/Schwartz-Jampel type 2 syndrome M601559+ ARfeeding, lucent skin, scoliosis, dysautonomia
NOTCH1 ^c	Vs	2	0	Adams-Oliver syndrome-5 AD M616028-brain anomalies, blood clots, bicuspid, stenotic aortic valve
MYBPC3 ^c	Mu	3	5	Cardiomyopathy, dilated M615396+ AD-cardiomyopathy, arrhythmia-ventricular flutter
Neuromusculo	ır			
MED12	Nc	2	0	Lujan-Fryns syndrome M309520 XLR-tall, high palate, angular, septal defects, aortic aneurysm, pectus, ID-autisi
ATP7A ^b	Nm	1	1	Occipital horn syndrome M304150+ XLR-exostoses, elastic skin, pectus, carotid tortuousity, bladder diverticula, I
LMNA	Nm	1	0	CMT type 2B1 M605588+ AR-CMT symptoms, kyphoscoliosis; Pprogeria M176670 ADlucent skin, aging, etc.
$MT-CO2^{b}$	Nm	3	1	In patients (M516040) with hypotonia, ataxia/poor balance, optic atrophy, cardiomyopathy, fatigue, muscle weakness
CLCN1 ^c	Mu	1	2	Myotonia congenita, dominant M160800+ AD-muscle stiffness, muscle aches, eyelid/tongue myotonia
LPINI	Mu	2	2	Myoglobinuria, acute recurrent M268200 AR-weakness, muscle aches, rhabdomyolysis, stress/fever-induced
CACNA1H	Ans	2	1	Hyperaldosteronism, familial, type IV M617027+ AD-hypertension, muscle weakness, epilepsy susceptibility
TMPRSS6ac	Ans	0	1	Iron-refractory iron deficiency anemia M206200 AR bowel issues with iron malabsorption, iron deficiency anemia
Dysautonomia	-inflam	matior	1	
RYR2	Mu	3	1	Ventricular tachycardia, adrenergic polymorphic-1 M604772+ AD— <u>arrhythmia</u> exercise/ <u>stress</u> -induced; <u>syncope</u>
SCN11A	Ns	4	0	Hereditary sensory-autonomic neuropathy VII M615548+ AD-bowel dysmotility, reactive skin, weakness, fracture,
HFE	Apor	3	13	Porphyria susceptibility M176100/176200+ ADbowel dysmotility, neuropathy; Hemochromatosis M235200 AR.
NTRK1	Ans	2	2	Hereditary sensory-autonomic neuropathy V M608654 AR-fevers, fractures, scoliosis, dislocations, dysautonomia
SLC6A2 ^a	Ans	3	1	Orthostatic intolerance M604715high norepinephrinedizziness, syncope, tachycardia, fatigue, brain fog, anxiety
NLRP12	Aim	4	3	Familial cold autoinflammatory syndrome 2 M611762 AD-arthritis, headaches, muscle aches, IBS, hives, fevers
NOD2	Aim	4	0	Blau syndrome M186580+ ADuveitis, glaucoma, cataracts, arthritis, rashes, scars contractures, IBD, fevers
	EDS-r	elate	d gene	es of interest

Table 4. EDS-related genes of interest

2 Genes asimilar or didentical to those influencing COVID19 severity (S5 Table); balso found in disability patients (S4

3 Table); cassociated disorders not having 3 or more findings of EDS; gene names and additional list of associated disease

4 symptoms in S2 Table; symbols for tissue elements or processes impacted in Fig. 2a box; AD, AR-autosomal dominant,

5 recessive; CMT, Charcot-Marie-Tooth; IBS/IBD, irritable/inflammatory bowel disease; ID, intellectual disability; MVP,

6 mitral valve prolapse; XL, X-linked.

1 Genes associated with cardiovascular (Vs) and clotting (Clot) functions

- Variants in the *VWF* gene [17,20 Table 3] and that in the *GP1BA* gene also associated with a form
 of von Willebrand disease (M177820+) show the importance of blood vessel connective tissue for
 platelet adhesion and clotting. Other EDS-related genes associated with cardiovascular elements
 include those associated with bleeding (*ABCC6* and *F10* genes in Table 4), vessel dilation (*FLNA*, *LOX*, *SKI*, *MED12*, *ATP7A*) arrhythmias (*FLNC*, *KCNA5*, *RYR2*) and cardiomyopathy (*FLNC*, *MT*-
- 7 *CO2, MYBPC3, NOTCH1)* in Table 4, the latter genes given the VsCM designation in S2 Table.
- Heart-related genes affecting development include *SKI*, *NOTCH1*, and *LMNA* in Table 4, the latter
 associated with multiple diseases including Hutchison-Gilford progeria with rapid aging

10 (M176670). The *TGFB* and *TGFBR* genes of Fig. 3 have been associated with heart defects as well

- 11 as immunity [34, 106] and wound healing [107] that can be deficient in EDS. Genes contributing to
- 12 congenital malformations show the need for experienced clinical qualification of their DNA
- variants since EDS findings like deformations, dilations, or slippages are almost always acquired
 rather than congenital.
- EDS-associated genes in Table 4 that influence heart-related lipid metabolism include LPIN1
- (Table 4) and COL3 [Fig 3, 16] involved in adipogenesis and muscle disease. Others like *LDLR* (M606945) influencing cholesterol transport are discussed in the Appendix, their associations with
 muscle perhaps explaining those side effects of statin medications [108].

19 EDS-contributing genes associated with neuromuscular disorders

- Genes altering brain function (Nc) include *FLNA*, *MED12*, and *ATP7A* [109] in Table 4, respectively
 associated with the mentioned periventricular heterotopia, Lujan-Fryns, or occipital horn syndromes
 that have many symptoms of connective tissue dysplasia. A theme worth exploring is action of these
 genes on the glial connective tissue surrounding CNS neurons as by the transforming growth factor beta related genes of Fig 3 [34].
- The need to correlate gene changes with articulo-autonomic dysplasia mechanisms is again shown
 by the fact that periventricular heterotopia and occipital horn syndrome were once considered types
 of EDS [105, 109]. In turn and as emphasized before, ascertainment of finding patterns rather than of
 single abnormalities like brain heterotopia is essential for recognizing underlying pathogenic
 mechanisms.
- At the same time, the difficulty of classifying genes by impact on one tissue element or process as
 attempted in S2 Table and Fig. 4 below is illustrated by the lamin AC gene in Table 4. It is

- 1 associated with 10 diseases including those causing heart-brain-genital anomalies (M610140,
- M212112), cardiomyopathy (M115200), the Hutchison-Gilford progeria syndrome with rapid aging
 (M176670), and a form of Charcot-Marie-Tooth disease (M605588).
- Grouping of genes by impact on peripheral nerve (Np) does seem appropriate since the consistent
 phenotype of Charcot-Marie-Tooth disease with its classic steppage and foot-drop gait is associated
 with 7 genes and their 22 variants including *LMNA* and *AARS1* in Fig. 3.
- Impacting neuromuscular function (Nm) are mineral transporters of sodium (*SCN9A*, others
- 8 impacting neurosensory (Ns) functions in Fig. 3) and of calcium, potassium, or copper (CACNA1H,
- 9 *KCNA5, ATP7A* of Table 4), the latter previously associated with Menkes (M309400) or Wilson
- 10 (M277900) diseases [109]. Copper is also important for *LOX* lysyl hydroxylase and the *MT-CO2*
- 11 component of complex IV [110] in Table 4. Fibulin-4 is required for activation of LOX in the mouse
- 12 [111], relating two fibulin-like genes (*EFEMP2*, *FBLN5* in S2 Table) to lax skin diseases (M614437,
- 13 M614434) with elastin fiber deficiency. Fibulin 5 is also associated with a form of Charcot-Marie-
- Tooth disease (M619764), these genes linking collagen cross-linking, heart [112], oncologic [113],
 and neurologic diseases [114] to cupric influence on connective tissue.
- Iron seems involved with EDS via the *TMPRSS6* gene variants associated with iron malabsorption,
 the *HFE* gene variants [115] conferring porphyria susceptibility, and the *NUBPL* gene variant
 associated with complex I deficiency (M618242) in Tables 4 and S2. The chloride channel *CLCN1* and the *SLC26A4* gene that transports chlorine and iodine are related to EDS, the latter associated
 with thyroid dysfunction (M274600) as are 7 other genes in S2 Table. Hypothyroidism is a cause of
 intellectual disability while hyperthyroidism is associated with autonomic symptoms [tachycardia,
 bowel irregularity, fatigue, 116-117], both thyroid conditions occurring with COVID19 infection
- 23 [59]. Although only 5 patients with thyroid-related genes (Athy) qualified for finding comparison
- 24 (females above 10.5 years) and were not included in Fig. 3, these patients had typical EDS-
- 25 dysautonomia profiles
- Unexpected in EDS patients were the 158 mitochondrial DNA variants mapped in Fig. 2B and listed
 in Tables S2, 3 and 4. Those genes variant in EDS include all but 7 of the 37 in mitochondrial DNA,
 including components of four respiratory chain complexes (I/*MT-ND* genes, III/*MT-CYB* gene,
- 29 IV/*MT-CO* genes, V/*MT-ATP* genes), the two ribosomal RNAs, and 16 transfer RNAs in Fig. 2B.
- 30 The diversity of these mitochondrial genes suggests contribution to EDS by depletion of
- 31 mitochondrial numbers and energy production, a depletion that would most effect active tissues like

brain, nerve, heart, and muscle. Mitochondria also have roles in aging [118] and inflammation, the
 latter emphasized recently in COVID19 sepsis [119] and possibly impacting the mast-cell activation
 of EDS patients {32, 33].

Having impact on muscle (Mu) are the many *COL6/12* gene variations in Table 3, two-copy
recessive-acting mutations first related to Ullrich muscular dystrophy (M616470), single copy
dominant-acting mutations to Bethlem myopathy (616471) and then to EDS [120]. Many genes like
the *CLCN1* and *LPIN* genes of Table 4 and 18 others like the myosin heavy chain *MYH2/7/7B/11*genes with variants in 10 EDS patients in Table 2 were previously associated with muscular
dystrophies or myopathies.

- Another 68 genes in S2 Table including the *PLOD1*, *TNXB*, and *FLNC* genes in Table 4 are not
 classified as having primary impact on muscle yet have prominent symptoms of muscle weakness.
 The many nuclear and mitochondrial gene changes impacting muscle suggest that appropriate
- exercise will benefit EDS patients in the same way that it lessens similar symptoms in the old [121].
- 14

15 EDS-contributing genes associated with dysautonomia and other processes

16 Correlating with the many dysautonomia symptoms of Table S1 are 30 genes in Table S2 with 17 general impact on the autonomic nervous system (Ans) including several like POLG [27], MT-ATP6 [24] in Fig 3 and NTRK1, SLC6A2 in Table 4. Neurosensory impact was exemplified by 7 18 19 sodium channel genes with 24 DNA variants in EDS patients (SCN9A in Fig 3, SCN11A in Table 4, 20 SCN5A-10A in Table S2), their actions evidenced histologically by small fiber neuropathy on skin 21 biopsy [12]. Many associated diseases combine the two processes as hereditary sensory and 22 autonomic neuropathies including those associated with the NTRK1, SCN9A, SCN11A (M615548), 23 and SPTLC2 (M613640) genes in Table 4.

Five genes in 18 EDS patients are associated with porphyrias (Apor) and their many autonomic
 symptoms like the ones encoding the mentioned HFE iron regulator [115] that is variant in 9
 patients or the HMBS porphobilinogen deaminase (Fig 3, Table 4) that is a key step in the
 porphyrin synthesis pathway. The 22 DNA variants in these two genes mandate evaluation of tissue
 laxity symptoms in porphyria diseases that are noted for abdominal pain crises, bowel dysmotility,
 tachycardia, neuropathies and, in some cases, skin changes (M618892); they also suggest attention
 to porphyrin metabolism in some patients with connective tissue dysplasias.

Primary variants in genes like *SLC6A2* (Table 4) that encode the noradrenaline transporter support
 the idea that autonomic imbalance can increase tissue laxity [2, 11] through influence on its
 permeating small fiber neurons [14]. Other links between connective tissue and adrenal/muscle
 function include variants in the *COLQ* gene [22] that encodes a collagen anchor for a cholinergic
 receptor and the *SERPINA6* gene, its associated cortisol-binding globulin deficiency (M61148)
 emphasizing that altered cortisol levels can contribute to the fatigue, muscle weakness, and hypo- or
 hypertension of EDS (S1 Table, column H).

- Calcium channel genes in addition to those mentioned above and in the Appendix are *RYR1* and
 RYR2 (Table 4) that encode products involved in muscle contraction [122]. They additionally
 increase sensitivity to adrenaline to cause arrhythmias with cardiomyopathy (M604772), conditions
 that likely relate to the hypotension and tachycardia in EDS patients.
- 12 Serving as a transition to genes associated with long COVID19 are the 28 genes involved in the 13 immunity and inflammatory functions that are impacted by autonomic imbalance (Aim). These 14 include the NLRP1/2/12 genes associated with autoinflammatory diseases (M617388, etc.) that 15 involve arthritis, thyroiditis, skin inflammation, sweating changes, and elevated inflammatory markers. These diseases and those caused by the NOD1/2 [35] genes in Tables 4 and S2 have 16 17 overlap with EDS findings like the 14% of females with autoimmune markers (S1 Table) and the 18 chronic variable immune deficiency that is occasionally diagnosed in EDS and may affect 19 COVID19 vaccine response [58]. Included in this group is the *C1R* gene encoding a complement 20 component (S2 Table) that has been associated with an inflammatory (periodontitis) type of EDS 21 [M130080, 123]. Here patient 441 of S3 Table with the C1R gene variant had the same EDS-22 dysautonomia profile as the other patients in Fig 3. 23 Genes contributing to EDS thus include many related to immunity and inflammation, from those
- mentioned above to collagen type I that contains an immunoglobulin receptor binding sequence
 [15] to transformation growth factor genes [34, 107] and even the mitochondrial genes of Fig. 2B
 that have roles in immune cells [124, 125]. These genes contributing to EDS will now be compared
 to those influencing COVID19 severity (Table S5).

1

2 Genes conferring susceptibility to severe COVID19 infection

3 An obvious difference between the genes contributing to EDS and those influencing severity of 4 COVID19 infection [48-53] is the latter's modulation of viral infectivity in addition to host responses. 5 SARS-CoV-2 infection depends first on the binding of its spike (S) glycoprotein to the angiotensin-6 converting enzyme 2 receptor (ACE 2, M300335), then on cell entry of the glycoprotein complex by 7 clathrin-mediated endocytosis and cleavage by proteases [44]. The favored route is through nasal 8 epithelial cells with cleavage by transmembrane serine protease 2 (TMPRSS2, M602060) or by 9 lysosomal cathepsin L in other cells. When variations in host genes were associated with severity of the 10 viruses' associated COVID19 disease, it was not surprising that ACE2 and TMPRSS2 were implicated in 11 several studies [126, see S5 Table and the more technical references pertinent to COVID19-relevant 12 genes beneath it].

13

14 While the ACE2 and TMPRSS2 genes are clearly related to viral processes, many other genes in S5 15 Table are more difficult to classify, highlighted by their presence in pathways activated during response 16 to infection or by their having selective variation in conjunction with certain symptoms or outcomes [127]. Symptoms of acute infection include fever, cough, fatigue, hoarse voice, loss of appetite, and 17 18 delirium in over 50% of patients, diarrhea, chest pain/shortness of breath, abdominal pain, and anosmia 19 in under 10% [44]. Outcomes varied from asymptomatic illness to the progressive respiratory failure, 20 renal injury, coagulation changes, and eventual multiorgan dysfunction in 15%, many of the latter older, 21 male, and compromised by obesity, hypertension, diabetes, or heart disease [45].

22

Since several of the post-acute or long COVID19 symptoms discussed below are prolonged versions of the above, and since their timing and severity meriting "long-haul" diagnosis remain ill-defined, it is not clear which virus-host activities are impacted by many of the genes in S5 Table. Nevertheless, the 104 COVID19-related genes were mapped and classified by element-process or type of encoded product as done for the 317 contributing to EDS in S2 Table, their genomic distribution shown in Fig 2A (blue print), their classification, gene, and symptom comparisons shown later in Figs 4 and 5.

29 Comparing COVID19/EDS gene type and distribution

1 The first thing to note is that the COVID19-relevant genes in Fig 2A are as dispersed as those of EDS 2 except for a CCR1/5-CXCR6 cluster at 3p22.2. These are chemokine receptors that mediate activation of 3 macrophages in response to infection, their associated susceptibilities to human immunodeficiency, 4 hepatitis and West Nile viruses suggesting they impact virus-related aspects of the immune-5 inflammatory response (Aim-V or blue print in column H of S5 Table). 6 Genes more related to cellular autonomic-immune response (Aim) include IFNAR1/2 or STAT2 from 7 above that regulate interferon action and *TNFRSF13B1* that participates in T-cell signaling, all three 8 genes associated with immunodeficiencies in S5 Table. Other genes intimately related to viral response 9 include the ICAM1 and IFITM3 genes encoding cell adhesion molecules involved in immunity, the 10 interferon alpha-1 IFNA1 gene associated with Epstein-Barr virus susceptibility, and the IRF9 binding 11 component of the interferon-induced transcription factor complex that includes the STAT2 gene from 12 above (S5 Table). Many of these gene products like cell adhesion molecules would be targets for 13 vaccines like the SARS-CoV-2 spike protein [58]. 14

Many genes involved in COVID19 susceptibility have a similar breadth of associated diseases as those contributing to EDS, 13 having impact on embryonic development (-Dev in column F, S5 Table). These include the *LIFR* gene altered in both conditions (Fig 5) that is associated with multiple anomalies in Stuve-Wiedemann syndrome (M601559) and the *WNT3* gene associated with limb agenesis (M273395).

19

20 At least 26 of the COVID19 gene associations have symptoms of connective tissue dysplasia (red print 21 in S5 Table column H) including particularly the *NLRP3* gene altered in both conditions (Fig 5) that is 22 associated with joint pain, muscle aches, and symptoms of mast cell activation (M191900); note also the 23 ATP6V1A gene that is associated with a lax skin disease (M617403) with tall stature, aortic dilation, and 24 joint contractures. Another 7 associations in S5 Table involve molecular similarities with EDS-relevant 25 disorders (red print underlined), the FURIN (M136950) and TEAD3 (M603170) genes impacting 26 transforming growth factor-beta pathways (as do the *FBN1* and *TGFB/R* genes altered in EDS patients), 27 the DPP7 (M610537) and DPP9 (M608258) peptidases that cleave proline residues abundant in 28 collagens [128], the DDR1 receptor (M600408) that binds fibrillar collagens [15], the lung surfactant 29 protein SFTPD (M178635) that has collagen-like glycine-hydroxyproline-hydroxylysine residues, and 30 the NDUFAF79 gene (M615898) involved in assembly of mitochondrial complex I--recall Fig 3 31 showing 31 EDS patients with MT-ND component gene alterations.

1

2	Especially of interest based on the renal complications of COVID19 are 8 genes associated with renal
3	disease (purple print in S5 Table), 4 of them impacting vessels that include ACE1, AGT, AGTR1 related
4	to angiotensinogen-angiotensin I/II conversions and the SARS-CoV-2 nasal epithelial receptor gene
5	ACE2 that is homologous to ACE1. The latter product is a metalloproteinase that is also expressed in the
6	vascular endothelium of heart and kidney; it has not yet been associated with a hereditary disease despite
7	its location on the X chromosome. The ADAMTS13 gene similar to ADAMTS2 in Fig 5 is associated
8	with a clotting diathesis and renal disease (M274150) that could relate to thrombotic complications of
9	COVID19 [53]—see below. Three genes in EDS patients affect the kidney (S2 Table), the sodium-
10	chloride co-transporter SLC12A3 associated with Gitelman syndrome M263800, uromodulin UMOD
11	associated with renal tubular disease M263800, and PKD1 associated with polycystic kidney disease
12	M173100 (classified as having vascular impact like the COVID19-associated genes above).
13	
14	Ten genes are associated with neurologic disorders (green print in S5 Table), including the IRF3 gene
15	associated with an encephalopathy (M616532) conferring headaches and brain fog and the RAB7A gene
16	with a form of Charcot-Marie-Tooth disease (M600882) that is familiar from EDS discussion. The
17	apolipoprotein E protein is associated with Alzheimer (M104310+) and heart disease (M617347) and the
18	NPC1 cholesterol trafficking regulator that allows lysosomal accumulation in Niemann-Pick disease
19	(M257250). These have similar actions to the LPIN1 (M605518) and LDR (M606945) genes variant in
20	EDS patients (S2 Table).
21	
22	The X chromosome androgen receptor AR that like many EDS-contributing genes impacts muscle

(M313200+), joins *ACE2*, *TLR7* and 6 other X chromosome genes as potential factors in male
susceptibility to COVID19. The latter contrasts with the 85% female preponderance in EDS (Table 1)
although sex ratios in long COVID19 may be more equal (see below).

26

Fig 4A indicates that 21 of the genes influencing COVID19 infection are judged more related to viral
entry/proliferation (virulence) and 83 more related to host responses that could mimic mechanisms of
EDS-dysautonomia. Even with this exclusion, Fig 4A shows that genes related to immune-inflammatory

- 30 processes (Aim) by their prior disease associations comprise 26 of 83 or 31% of those influencing
- 31 COVID19 in S4 Table versus 8.8% of the 317 contributing to EDS in S2 Table. Proportions of genes

- 1 impacting other elements or processes in Fig 4A are similar for cardiovascular (42 or 13% versus 10 or
- 2 13%), neural (101 or 32% versus 26 or 31%), clotting (4.1 versus 4.8%), and skin (3.5 versus 4.8%).
- 3 They differ significantly (red or green circles) in categories of other autonomic (14 versus 2.4%) or
- 4 muscle (11 versus 3.2%) and substantially for bone (22 versus 1,2%), joints (6.3 versus 2.4%) and renal
- 5 (0.95 versus 4.8%).
- 6

	EDS	COVID19	EDS	COVID19
A Genes classified by impact on process-connective tissue element	No. (%)	No.(%)	%	%
Neural (Nc, Nm, Np, Ns)	101 (32)	26 (31)	32	31
Cardiovascular (Vs)	42 (13)	10 (12)	13	12
Other autonomic (Ans, Athy, Apor)	43 (14)	2 (2.4)	14	2.4
Muscle (Mu)	34 (11)	3 (3.6)	11	3.6
Immune-inflammatory (Aim-not viral related)	28 (8.8)	26 (31)	8.8	31
Bone (Bn)	22 (6.9)	1 (1.2)	6.9	1.2
Joints (Jt)	20 (6.3)	2 (2.4)	6.3	2.4
Clotting issues (Clot)	13 (4.1)	4 (4.8)	4.1	4.8
Skin (Sn)	11 (3.5)	4 (4.8)	3.5	4.8
Renal (GU)	3 (0.95)	4 (4.8)	0.95	4.8
Immune-inflammatory (Aim-viral related)	0	21 (20)	0	20
B Genes classified by product type	No. (%)	No.(%)	%	%
Enzyme (Ez)	90 (28)	20(24)	28	24
Structural molecule (St)	78 (25)	6(7.2)	25	7.2
Signal molecule (Si)	39 (12)	29(35)	12	35
Membrane channel (Mc)	35 (11)	3(3.6)	11	3.6
Receptor (Rc)	29 (9.1)	10(12)	9.1	12
Transcription factor (Tf)	26 (8.2)	10(12)	8.2	12
Adhesive protein (Ad)	20 (6.3)	5(6.0)	6.3	6

7

8 Fig. 4 Genes relevant to EDS or COVID19 infection by tissue element or product type.

9 A, connective tissue element/process relations (box, Fig 2A bottom) are from associated diseases (S2, S5 Tables);

10 COVID19 percentages are those of 83 genes after 21 impacting viral-related processes were subtracted; **B**, gene

11 product functions are explained in the legend to S2 Table, COVID19 percentages are of all 104 genes listed in S4

12 Table (the *PNPLA3* gene associated with gastrointestinal disease is not listed); significantly (p < 0.05) lower O or

- 13 higher O proportions (see Methods).
- 14

15 Gene product types may reflect the importance of structural proteins in EDS and immune signaling after

16 COVID19 infection, 76 or 25% of EDS-relevant genes being structural (St) versus 6 or 7.2% for

17 COVID-relevant, 39 or 12% of the former having signal (Si) functions versus 20 or 35% of the latter in

1 Fig 4B. Other product proportions are similar, including the 3 (11%) of 82 COVID19-related genes and

2 40 (13%) of 317 EDS-related genes with mitochondrial connections: *STAT2* (elongated mitochondria in

3 muscle), *TLR3* (mitochondrial antiviral pathway), and *NDUFAF7* (assembly of mitochondrial complex

4 I) are related to COVID19 infection (S5 Table) and similar to EDS-relevant genes (Fig 5).

5

6 Comparing individual symptoms and genes relevant to COVID19

7 with those of EDS

8 As stated in the Introduction, a pattern of persisting symptoms dominated by fatigue, brain fog,

9 breathing problems, and joint-muscle pain became apparent in patients recovering from SARS-CoV-2

10 [37-42]. This finding constellation became known as post-acute COVID19 sequalae (PACS) or long

11 COVID19, a recent report estimating that 6.2% of people had one of three symptom clusters (persistent

12 fatigue with bodily pain or mood swings, cognitive problems, ongoing respiratory problems) after

- 13 COVID19 infection [43].
- 14

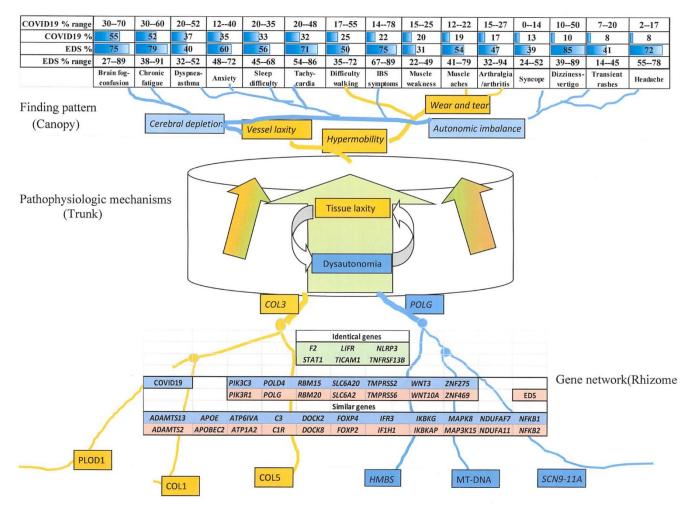
The variable periods, vacillating intensity, and subjective nature of long COVID19 symptoms have been difficult to characterize, but a unifying theme is autonomic dysfunction as demonstrated by measures of orthostatic intolerance and postural orthostatic tachycardia syndrome [38-42]. The systematic review of Deer et al. from 2021 [37] adopted standard phenotypic descriptions for symptoms [129] and included 59 articles among 303 that looked at clinical manifestations 3 weeks or more after initial symptoms of COVID19 infection (outpatients) or hospital discharge (inpatients).

21

As with the EDS patients described here, the 81 cohorts reviewed [37] were heterogenous with mixes of post-infectious timing, outpatient-hospital-intensive care, physical examination-self report, sex, and age

24 (overall male to female ratio of 1.2 to 1 estimated from their data). Also similar were variable

25 frequencies of laboratory-pathology findings--some suggestive of long-term organ damage after


26 COVID19--and the inevitable ambiguity of symptom descriptions [fatigue-how chronic, steatosis or

27 fatty liver?—37]. Although standard nomenclature for symptoms [129] is an asset, it does not group

28 symptoms by clinical mechanism.

29 Comparison of EDS and long COVID19 symptoms

Symptoms common to EDS and long COVID are shown at the top of Fig 5 using the analogy to
Tolkien's Ents: A tissue laxity-dysautonomia entome is imagined with a converging network of
contributing genes at the bottom (roots) and a diverging network of symptoms at the top (branching
canopy), the two connected through major pathophysiologic mechanisms like articulo-autonomic
dysplasia (flowing channels of phloem or sap in the trunk). Peripheral genes with less impact on the
central mechanism will have less disruptive variations in affected patients while those like *COL3A1*(M120180) will act as nodes in these gene networks and cause more numerous and severe symptoms.

8

Fig. 5. Genes and symptoms related to EDS and COVID19

Genes related to EDS (Table S2) and COVID19 infection (Table S5) are envisioned as overlapping parts of a network (rhizome below) connected through pathogenic mechanisms (trunk sap, phloem) to common symptoms of EDS (Table S1) and long COVID19 (canopy above). EDS symptom ranges are for females over age 10.5 years from the EDS1261database, long COVID percentages and ranges taken from Fig. 2 of Deer et al.[37].

The large percentage ranges for symptoms in both patient groups reflects the heterogeneity of patient ascertainment (clinic, online, retrospective in EDS, different hospitalized-outpatient cohorts, postinfection times for COVID19), and the subjective nature of reported findings. All symptoms, ordered by percentage in COVID19 patients, are more frequent in EDS although ranges are a bit more compatible. Symptoms of autonomic imbalance (brain fog, chronic fatigue, asthma-dyspnea, sleep difficulties, and tachycardia) are common in both EDS and long COVID19 (Fig 5), compatible with a prior hypothesis [42]. Asthma is a consequence of mast-cell activation [32-33], the other four of postural orthostatic

- 8 tachycardia syndrome [30-31, 39].
- 9
- 10 Less common in long COVID19 than EDS are IBS symptoms and those orthostatic hypotension like
- 11 syncope and dizziness. Neurologic symptoms like difficulty walking-poor balance, muscle weakness,
- 12 myalgia, and frequent headaches occur in both as does joint pain that is common in EDS, post-
- 13 infectious, or autoimmune illnesses (Fig 5). Occurring occasionally but not chronic in EDS are the
- 14 cough (16%), chest pain (14%), congestion (10%), sore throat (4%), and low-grade fever (4%) reported
- 15 by Deer et al. [37], symptoms possibly related to persisting viral infection.

16 Similar genes relevant to EDS and COVID19 severity

17 Genes highlighted by variance or expression in both disorders include the F2 prothrombin gene

- 18 (M176930) related to bleeding disorders and the metalloproteases *ADAMTS2* (M6045539) and
- 19 ADAMTS13 (M604134), the latter gene product interacting with the von Willebrand factor that had 18
- 20 coding variants in EDS (Table S2). Ratios of the ADAMTS13 and VWF proteins are related to
- 21 thrombosis and COVID19 mortality [52-53], recalling the 13 genes and 34 variants in EDS patients that
- 22 impact clotting functions (S2 Table, the 15 patients with *VWF* gene variants in Fig 3).
- 23

24 The shared *LIFR* leukemia inhibitory factor receptor (M151443) with immunoglobulin/cytokine

25 domains and the NLRP3 (M606416) pyrin-like genes could be involved in the inflammatory response to

- 26 COVID19 as well as the enhanced inflammation from adrenergic stimulation in EDS and other
- conditions [10-11, 23, 77]. Similar dualities for the STAT1 (M600555), TNFRSF13B (M6049097), and
- 28 TICAM1 (M607601) genes may apply since the first two are associated with immunodeficiency
- 29 disorders and the last confers susceptibility to encephalopathy from herpes virus infection (S5 Table).
- 30

- 1 Among the 18 similar genes are complement components C3 (M120700) and C1R (613785) that with
- 2 the NFKB1 (M164011)-NFKB2 (M164012), IFR3 (M603734)-IF1H1 (M606951) genes (Fig 5) and
- 3 others could also mediate inflammatory and autoimmune symptoms. The POLG (M174763) and
- 4 *NDUFA11* (M612638) genes variant in EDS are most easily related to neurologic and autonomic
- 5 symptoms, the similar *POLD4* (M611525) gene definitely (S5 Table) and the *NDUFAF7* (M615898)
- 6 likely having neurologic impact [50]. The *PIK3C3* (M602609) gene similarity to *PIK3R1* (M171833)
- 7 that is associated tissue laxity is an example of 28 COVID19-related genes having molecular or
- 8 symptom similarities to connective tissue dysplasias (red print in S5 Table).
- 9

10 **Discussion**

11 This clinical genetic study of EDS relates its quantified finding pattern to underlying articulo-autonomic

- 12 dysplasia mechanisms and the multiple gene variants found by NextGen DNA sequencing. Major results
- 13 are the connected tissue laxity-neural symptoms of EDS, their relation to disparate nuclear and
- 14 mitochondrial genes, and the similarities of these relationships to those of acute or long COVID19. The
- 15 study illustrates the potential strengths and limitations of genomic analysis as summarized below.

16 Clinical-DNA correlation in EDS

This uniquely large study of 1899 EDS patients, 1261 by systematic evaluation, is still limited by heterogenous settings (outpatient versus online in Table 1) and subjective symptoms (S1 Table) that set the stage for standardized prospective studies [130, 131]. Strengths include the holistic ascertainment of syndrome pattern, patients referred by self, general, or subspecialty physician having as many neuromuscular (98%) and dysautonomia (96%) findings as those traditionally emphasized in the joints (99%) or skin (93%, S1 Table).

23

The large standard deviations for numbers of symptoms in various history and physical categories (Table 1) compromise group comparisons but indicate significant differences between women, men, those under 10.5 years, and those not meeting EDS criteria [66]. Exclusion of integral neuromuscular findings likely accounts for the 7 to 13-year diagnostic delays of EDS patients, their frequent dismissal by physicians leading to exceptional gratitude for diagnosis. Dysautonomia findings like brain fog (64-83%), chronic fatigue (64-87%), or bowel irregularity (75-82%) are as common as hypermobility (60% > Beighton 7) in EDS patients (S1 Table) and must be part of their medical evaluations or future studies.

2 Complete ascertainment of patient findings and their relation to pathogenetic mechanisms is necessary 3 for understanding genetic influence on diseases like EDS as shown by the molecular and medical 4 protocol of Fig 1. This clinical qualification of DNA variants, added to consensus qualifications [83-84, 92] is intended to overcome medical distrust of genomic results [94] by 1) minimizing use of the 5 unhelpful variant of uncertain significance qualification, 2) adding connotations for less helpful variants 6 7 (VUDU, VnoDU) or those suggestive of dual diagnoses (V*DUO), and 3) emphasizing that DNA 8 changes may support but never make a "molecular" diagnosis [92] without experienced clinical 9 correlation.

10

DNA variants become candidates for disease correlation in the way their genes used to become candidates for products or loci before genomics. Correlation with pathogenic mechanism is emphasized more than functional analysis, the former difficult to model *in vitro*, the latter reserved for research that will ultimately "elect" or reject candidate gene relevance to a particular disease. Even patients with homozygous mutations associated with sickle cell anemia may have minimal symptoms of that disease [95], their contribution to diagnosis needing additional clinical judgment.

17

18 Underlying articulo-autonomic dysplasia mechanisms related 317 variant genes to EDS (S2 Table, Fig. 19 2), additional studies needed to validate contribution of 175 genes with single variants in that Table. The 20 26 EDS-related genes encoding transcription factors in Fig 4 predict discovery of additional regulatory 21 region variants, an explanation for the 41% EDS patients not having variants found by whole exome 22 sequencing. Although shared genes and different sex ratios compromise the comparison, relevance to 23 tissue laxity-dysautonomia symptoms of 893 relevant DNA variants found in 568 EDS patients is 24 supported by their differences from 154 DNA sequence variants found in 82 disability patients (Tables 25 2-3, S2-S4).

26

Recurring variants in Fig. 3, S2 and S3 Tables also support EDS association, from the 15, 13, and 51
patients with variants in the *COL1*, *3*, and *5* genes previously associated with EDS [5, 7, 98] to patients
with newly associated variants in the *COL7-17/FLG* (40-skin/inflammation), *SCN5/9/10/11*A (24nerve), *MT-trRNA-CO-ND-CYB/COL6-12* (153-muscle), *COL9* (8-bone), *VWF/FBN1/TGFB* (49 clot-

vessel), and *MT-ATP6/POLG*/porphyria (67-autonomic) genes that suggest action through a tissue
 element/process network.

- 3
- 4 Another advantage of this pattern-mechanism approach is its unifying qualification of previous (*FLNA*,
- 5 *ATP7A*) or current (*ADAMTS2*, *FKBP14*, *PLOD1*, *TNXB*) type-associated variants with more common
- 6 and congruent EDS profiles. Participation in a tissue laxity-dysautonomia gene network is also attributed
- 7 to the ABCC6, COL1, COL3, FBN1, and TGFB genes usually associated with pseudoxanthoma
- 8 elasticum [103], osteogenesis imperfecta [98-99], vascular EDS [7, 100], Marfan [80], and Loeys-Dietz
- 9 [107] syndromes by their variants in S2 and S3 Tables. Network action implies impact of heterozygous
- 10 variants, even those previously associated with recessive disease [104]. as supported by the similar
- 11 finding profiles of Fig. 3 that need larger patient numbers for significance.

12 Distribution and nature of EDS and COVID19-related genes

- 13 The genes associated with EDS (317) or COVID19 severity (104) are distributed on all chromosomes
- 14 (excepting Y and 8, 13, 16, 20 for COVID19) with clusters at 2q32.2 (*COL5A2/COL3*), 3p24.1
- 15 (*SCN5/10/11A*), 11q23.3 (*SCN2/4B*), and 21q22.3 (*COL6A1/A2*) for EDS and at 3p22.2 (*CCR1/5-*
- 16 CXCR6) for COVID19 (Fig 2A). Genes impacting mitochondrial function include 30 of 37 in
- 17 mitochondrial DNA (Fig 2B), 10 EDS-related (NDUFA-11/S3, OPA1, TYMP, etc. green print), and 3
- 18 COVID19-related (STAT2, TLR3, NDUFAF7) in nuclear DNA Fig 2A. The encoding of products with
- 19 structural (SURF1, MT-trRNA), respiratory enzyme component (MT-ND/CO), adhesive (NUBPL), or
- 20 DNA polymerase (POLG) functions by these genes suggests influence on EDS by depletion of
- 21 mitochondrial number and/or energy coupling. Mitochondrial roles in aging [118] and immunity-
- 22 inflammation [119, 124-125] may explain influence on COVID19 infection.
- 23
- 24 Diversity of function (S2, S5 Tables, Fig 4) and location (Fig 2A) of genes influencing EDS or
- 25 COVID19 is consistent with their participation in networks regulating connective tissue integrity and its
- 26 reciprocal autonomic regulation. Both functions would be impacted by gene variation in EDS while
- 27 autonomic imbalance with its immune and inflammatory dysregulation would be more impacted in
- 28 COVID19. A primordial regulatory-structural operon might be imagined for initial metazoan transitions
- 29 [14], duplication and realignment of protein domains shown by the binding of acetylcholinesterase to
- 30 collagen by COLQ protein [22], the interspersion of VWF motifs in COL3 [17] and COL7 [20] proteins,
- 31 the service of abundant collagen type I as anchor for immune molecules [15] and core for other types

1 during fibril formation [97]. This modular pleiotropy is supported by the 184 (62%) of 298 associated

- 3
- 4 Attribution of variant genes in EDS to tissue element or process (Fig 4A) fostered comparison to the 104
- 5 relevant to COVID19 severity (S5 Table), 18 genes similar and 6 identical between the two groups (Fig
- 6 5). These include variant genes with parallel impacts or functions like *ADAMTS2/F2/PIK3R1*
- 7 influencing EDS and ADAMTS13/F2/PIK3C3 influencing COVID19 that impact clotting-tissue laxity,
- 8 *LIFR/NLRP3/STAT1/T1CAM1/TNFRSF13B* (both) plus *C1R/IF1H1/NFKB2* (EDS) and
- 9 C3/IFR3/NFKB1 (COVID19) that impact immunity-inflammation, SLC6A2 (EDS) and SLC6A20
- 10 (COVID19) that have transport functions, and POLG/FOXP2/RBM20/WNT10A/ZNF469 (EDS) and
- 11 POLD4/FOXP4/RBM15/WNT3/ZNF275 (COVID19) that have DNA polymerase/regulatory functions
- 12 (Fig. 5, S2 and S5 Tables). The occurrence of small fiber neuropathy [12, 56] and thyroid dysfunction

13 [S1 Table, 116-117] in EDS (Table S1) and COVID19 [59] along with the many shared joint-muscle

and dysautonomia symptoms in Fig 5 support the operation of overlapping gene networks in thesedisorders.

16 Connected findings and genes as "entomes"

17 These networks may be analogized to Tolkien's Ents, their genes as rhizomes, clinical mechanisms as 18 trunks, medical problems as the diverging branches of the entome (Fig 5). Clinical findings caused by 19 these overlapping gene networks will have the opposite branching, widely shared traits like whole body 20 pain, muscle weakness, and adrenaline surges (stems) being more frequent in EDS or long COVID 19 21 than their component symptoms of arthralgia, myalgia, headaches, poor balance, or chronic fatigue 22 (leaves, upper part of Fig 5).

23

Entomes differ from gene modules or molecular pathways by connecting genes to sign and symptom patterns. Genes converge to and symptoms diverge from central pathogenic mechanisms, key genes and common symptoms being nodes of their respective networks (lower part of Fig 5). The idea of entome connects these mirroring networks of genes and symptoms through pathogenetic mechanism, their divergent clinical findings like the distributed flood debris that can be related to normal structures only by knowledge of floodwater force and direction.

30

² disorders with at least 3 tissue dysplasia symptoms in S2 Table (orange shading).

1 Analogies to Ent motion involve centuries of gene (rhizome) evolution at one extreme and the daily

- 2 changes in physiology (trunk-phloem) and symptoms (canopy) at the other. Networks affecting
- 3 connective tissue likely arose in early metazoan/metameric evolution [14] and were tailored to produce
- 4 the later upright posture, joint mobility-dexterity, and forward-facing binocular vision of primates [132,
- 5 133]. Necessary balance between the tissue-orthostatic stability enabling forward visual accommodation
- 6 and the flexibility needed for ambulation and limb reach/grasp is shown by the articulo-autonomic
- 7 dysplasia symptoms of S1 Table.

8 Implications for future research

9 Expanded studies of EDS and long COVID19 symptoms and outcomes—Systematic

10 ascertainment of patient findings via the findings of S1 Table included few laboratory and no medical 11 measures like the results of echocardiography-vascular screening [7], tilt-table [30, 31], nerve 12 conduction [13], intestinal motility [36], or imaging for Chiari [134], median arcuate ligament [135], or 13 nutcracker changes [136] that lead to immediate therapies. Evaluation protocols adding the latter results 14 could improve symptom descriptions [129] and outcome measures [130] for EDS and long COVID19 as 15 done for COVID19 infection in patients with rheumatic diseases [131]. Better documentation of severe 16 complications like aneurysms or cardiomyopathy that were incidentally mentioned in 23 or 2 of 1261 17 EDS patients (S2 Table or data not shown) would better discriminate the patients with COL3 mutations in Fig 3 from those with the vascular type [7, 100]. When these more complete protocols were used for 18 19 patients with EDS and COVID19 infection, their objective clinical profiles could be compared to those 20 of other infectious conditions like multisystem inflammatory syndrome in children [137] and Kawasaki 21 disease [138]. COVID19 hospitalization and mortality were not increased in patients with fibromyalgia 22 [55], but this symptomatic and heterogenous diagnosis ignores many findings of EDS-dysautonomia and 23 has limited association with biomarkers [139].

Expanded and enhanced DNA databases--This large patient collection barely sketches the genomics of EDS and shows the massive numbers of appropriately qualified DNA testing results that will be needed to provide understanding, diagnosis, and informed management of multifactorial disease. The need for clinical correlation of DNA variants is underlined by several genetic properties reviewed in this study. Not only are different connective tissue dysplasia phenotypes produced by different types or locations of mutations in the same gene [24-27, 35, 98, 103, 105, 108-111, 115, 123], but many component-fabricated genes like collagens [17,20] will have shared domains that could be mutated to

give similar phenotypes. These may also result from mutations in different collagen genes since several types of collagens participate in fibril assembly [18, 19, 97]. These considerations make one gene-one type/disease matches [6-7] unlikely and molecular diagnoses without clinical correlation [92] untenable for EDS and most likely for any genetically influenced disease. Collaborative interpretations of variant diagnostic utility- disease relevance by molecular geneticists *and* appropriate physician subspecialists per the Fig 1 protocol are required if DNA testing is to become a prime contributor to precision medicine.

8 Explore mitochondrial and neuromuscular function in EDS and COVID19--The 135

9 EDS-related genes impacting neuromuscular elements, the 71 associated with autonomic imbalance, and 10 the 40 influencing mitochondrial function (Fig 4, S2 Table) emphasize decreased muscle constraint of 11 connective tissue and its vasculature as a key cause of joint-skeletal and dysautonomia symptoms. Many 12 genes like FLNC in Table 4 are associated with cardiomyopathy and muscle weakness, reflecting 13 overlap of proteins in cardiac, skeletal, and probably intestinal smooth muscle (possibly contributing to 14 the 92% of EDs patients with bowel dysmotility in S1 Table). Further study of musculoskeletal and 15 mitochondrial dysfunction [140-141] in EDS and acute/long COVID19 could justify trials of promising 16 dietary [31], physical therapy [18, 142] and exercise [75, 121, 143] protocols in both disorders. 17 Important objectives regarding long COVID19 are to associate symptom frequencies and outcome 18 measures with defined post-infection time periods, then determine whether the genes influencing 19 COVID19 infectious (S5 Table) also influence the duration and disability of its post-infectious phases. Future therapies for EDS, COVID19, and the related symptoms of aging--Given the 20 21 similarity of many EDS symptoms like skin laxity or poor balance to those in the old [11] and the elder 22 vulnerability to COVID19 [44, 54], will the 108 genes that impact connective tissue elements in Fig. 4 23 (EDS), the 28 associated with connective tissue dysfunction in S4 Table (COVID19), and the implications of mitochondrial dysfunction [118]in both disorders indicate kindred mechanisms in aging? 24 25 If so, then unified therapy approaches could be applied to the flexible [4], frail [54, 121], or infected [39] 26 that could, as basic science distills cause from the present correlations, involve autologous transplants 27 with variant-edited [144] mesenchymal stem cells [29, 145].

28

References

1	1.	Weerakkody RA, Vandrovcova J, Kanonidou C, Mueller M, Gampawar P, Ibrahim Y, et al.
2		Targeted next-generation sequencing makes new molecular diagnoses and expands genotype-
3		phenotype relationship in Ehlers-Danlos syndrome. Genet Med. 2016; 18:1119-1127. doi:
4		10.1038/gim.2016.14.
5	2.	Wilson GN. Genomic Analysis of 727 Patients with Ehlers-Danlos Syndrome I: Clinical
6		Perspective Relates 23 Genes to a Maternally Influenced Arthritis-Adrenaline Disorder. J Biosci
7		Med 2019; 7:181-204. doi: 10.4236/jbm.2019.712015
8	3.	Junkiert-Czarnecka A, Pilarska-Deltow M, Bąk A, Heise M, Latos-Bieleńska A, Zaremba J, et al.
9		Next-generation sequencing of connective tissue genes in patients with classical Ehlers-Danlos
10		syndrome. Curr Issues Mol Biol. 2022; 44:1472-1478. doi: 10.3390/cimb44040099.
11	4.	Tinkle BT, Levy, HP. Symptomatic joint hypermobility: The hypermobile type of Ehlers-Danlos
12		syndrome and the hypermobility spectrum disorders. Med Clin North Am. 2019; 103:1021-1033.
13		doi: 10.1016/j.mcna.2019.08.002.
14	5.	Malfait F, Francomano C, Byers P, Belmont J, Berglund B, Black J, et al. The 2017 international
15		classification of the Ehlers-Danlos Syndromes. Am J Med Genet C Semin Med Genet. 2017;
16		175:8-26. doi: 10.1002/ajmg.c.31552.
17	6.	Bowen JM, Sobey GJ, Burrows NP, Colombi M, Lavallee ME, Malfait F, et al. Ehlers-Danlos
18		syndrome, classical type. Am J Med Genet C Semin Med Genet. 2017; 175:27-39. doi:
19		10.1002/ajmg.c.31548.
20	7.	Byers PH, Belmont J, Black J, De Backer J, Frank M, Jeunemaitre X, et al. Diagnosis, natural
21		history, and management in vascular Ehlers-Danlos syndrome. Am J Med Genet C Semin Med
22		Genet. 2017; 175:40-47. doi: 10.1002/ajmg.c.31553.
23	8.	McKusick VA. Heritable disorders of connective tissue. I. The clinical behavior of hereditary
24		syndromes. J Chronic Dis. 1955; 2:491-499. doi: 10.1016/0021-9681(55)90148-x.
25	9.	Gazit Y, Nahir AM, Grahame R, Jacob, G. Dysautonomia in the joint hypermobility syndrome.
26		Am J Med. 2003; 115:33-40. doi: 10.1016/s0002-9343(03)00235-3.
27	10.	De Wandele I, Rombaut L, Leybaert L, Van de Borne P, De Backer T, Malfait F, et al.
28		Dysautonomia and its underlying mechanisms in the hypermobility type of Ehlers-Danlos
29		syndrome. Semin Arthritis Rheum. 2014; 44:93-100. doi: 10.1016/j.semarthrit.2013.12.006.

1	11. Wilson GN. Clinical analysis supports articulo-autonomic dysplasia as a unifying pathogenic
2	mechanism in Ehlers-Danlos Syndrome and related conditions. J Biosci Med 2019;149-168
3	doi: 10.4236/jbm.2019.76010
4	12. Cazzato D, Castori M, Lombardi R, Caravello F, Bella ED, Petrucci A, Small fiber neuropathy is a
5	common feature of Ehlers-Danlos syndromes. Neurology. 2016; 87:155-159. doi:
6	10.1212/WNL.0000000002847.
7	13. Henderson FC Sr, Austin C, Benzel E, Bolognese P, Ellenbogen R, Francomano CA, et al.
8	Neurological and spinal manifestations of the Ehlers-Danlos syndromes. Am J Med Genet C
9	Semin Med Genet. 2017; 175:195-211. doi: 10.1002/ajmg.c.31549.
10	14. Sebé-Pedrós A, Degnan BM, Ruiz-Trillo I. The origin of Metazoa: a unicellular perspective. Nat
11	Rev Genet. 2017: 18:498-512. doi: 10.1038/nrg.2017.21.
12	15. Zhu J, Madhurapantula RS, Kalyanasundaram A, Sabharwal T, Antipova O, Bishnoi SW, et al.
13	Ultrastructural location and interactions of the immunoglobulin receptor binding sequence within
14	fibrillar type I collagen. Int J Mol Sci. 2020; 21:4166. doi: 10.3390/ijms21114166.
15	16. Al Hasan M, Martin PE, Shu X, Patterson S, Bartholomew C. Type III collagen is required for
16	adipogenesis and actin stress fibre formation in 3T3-L1 preadipocytes. Biomolecules. 2021;
17	11:156. doi: 10.3390/biom11020156.
18	17. Lisman T, Raynal N, Groeneveld D, Maddox B, Peachey AR, Huizinga EG, et al. A single high-
19	affinity binding site for von Willebrand factor in collagen III, identified using synthetic triple-
20	helical peptides. Blood. 2006;108:3753-3756. doi: 10.1182/blood-2006-03-011965.
21	18. Collins M, Posthumus M. Type V collagen genotype and exercise-related phenotype relationships:
22	a novel hypothesis. Exerc Sport Sci Rev. 2011; 39(4):191-198. doi:
23	10.1097/JES.0b013e318224e853.
24	19. Lamandé SR, Bateman JF. Collagen VI disorders: Insights on form and function in the
25	extracellular matrix and beyond. Matrix Biol. 2018; 71-72:348-367. doi:
26	10.1016/j.matbio.2017.12.008.
27	20. Wegener H, Leineweber S, Seeger K. The vWFA2 domain of type VII collagen is responsible for
28	collagen binding. Biochem Biophys Res Commun. 2013; 430:449-453. doi:
29	10.1016/j.bbrc.2012.11.119.

1	21. Chiquet M, Birk DE, Bönnemann CG, Koch M. Collagen XII: Protecting bone and muscle
2	integrity by organizing collagen fibrils. Int J Biochem Cell Biol. 2014; 53:51-54. doi:
3	10.1016/j.biocel.2014.04.020.
4	22. Karmouch J, Dobbertin A, Sigoillot S, Legay C. Developmental consequences of the ColQ/MuSK
5	interactions. Chem Biol Interact. 2013;203:287-91. doi: 10.1016/j.cbi.2012.10.006.
6	23. Lorton D, Bellinger DL. Molecular mechanisms underlying β -adrenergic receptor-mediated
7	crosstalk between sympathetic neurons and immune cells. Int J Mol Sci. 2015; 16:5635-65. doi:
8	10.3390/ijms16035635
9	24. Stendel C, Neuhofer C, Floride E, Yuqing S, Ganetzky RD, Park J, et al. ATP6 Study Group.
10	Delineating MT-ATP6-associated disease: From isolated neuropathy to early onset
11	neurodegeneration. Neurol Genet. 2020; 6:e393. doi: 10.1212/NXG.000000000000393.
12	25. Huang W, Liu M, Yan SF, Yan N. Structure-based assessment of disease-related mutations in
13	human voltage-gated sodium channels. Protein Cell. 2017; 8:401-438. doi: 10.1007/s13238-017-
14	0372-z.
15	26. Wilson GN, Tonk, VS. Mitochondrial dysfunction contributes to Ehlers-Danlos syndromeA
16	patient presentation. J Biol Lab Sci. 11:190-202 (2020). doi: 10.5296/JBLS.V11I2.17756.
17	27. Gaudó P, Emperador S, Garrido-Pérez N, Ruiz-Pesini E, Yubero D, García-Cazorla A, et al.
18	Infectious stress triggers a POLG-related mitochondrial disease. Neurogenetics. 2020; 21:19-27.
19	doi: 10.1007/s10048-019-00593-2.
20	28. Schiavon CR, Shadel GS, Manor U. Impaired mitochondrial mobility in Charcot-Marie-Tooth
21	disease. Front Cell Dev Biol. 2021; 9:624823. doi: 10.3389/fcell.2021.624823.
22	29. Ogawa M, Larue AC, Watson PM, Watson DK. Hematopoietic stem cell origin of mesenchymal
23	cells: opportunity for novel therapeutic approaches. Int J Hematol. 2010; 91:353-359. doi:
24	10.1007/s12185-010-0554-4
25	30. Vernino S, Bourne KM, Stiles LE, Grubb BP, Fedorowski A, Stewart JM, et al. Postural
26	orthostatic tachycardia syndrome (POTS): State of the science and clinical care from a 2019
27	National Institutes of Health Expert Consensus Meeting - Part 1. Auton Neurosci. 2021;
28	235:102828. doi: 10.1016/j.autneu.2021.102828.
29	31. Benarroch EE. Postural tachycardia syndrome: a heterogeneous and multifactorial disorder. Mayo
30	Clin Proc. 2012; 87:1214-1225. doi: 10.1016/j.mayocp.2012.08.013.

1	32. Wang E, Ganti T, Vaou E, Hohler A. The relationship between mast cell activation syndrome,
2	postural tachycardia syndrome, and Ehlers-Danlos syndrome. Allergy Asthma Proc. 2021; 42:243-
3	246. doi: 10.2500/aap.2021.42.210022.
4	33. Monaco, A., Choi, D., Uzun, S., Maitland, A. & Riley, B. Association of mast-cell-related
5	conditions with hypermobile syndromes: a review of the literature. Immunol Res 70:419-431
6	(2022).
7	34. Zhang SZ, Wang QQ, Yang QQ, Gu HY, Yin YQ, Li YD, et al. NG2 glia regulate brain innate
8	immunity via TGF-β2/TGFBR2 axis. BMC Med. 2019; 17:204. doi: 10.1186/s12916-019-1439-x.
9	35. Platnich JM, Muruve DA. NOD-like receptors and inflammasomes: A review of their canonical
10	and non-canonical signaling pathways. Arch Biochem Biophys. 2019; 670:4-14. doi:
11	10.1016/j.abb.2019.02.008.
12	36. Thwaites PA, Gibson PR, Burgell RE. Hypermobile Ehlers-Danlos syndrome and disorders of the
13	gastrointestinal tract: What the gastroenterologist needs to know. J Gastroenterol Hepatol. 2022;
14	37:1693-1709. doi: 10.1111/jgh.15927.
15	37. Deer RR, Rock MA, Vasilevsky N, Carmody L, Rando H, Anzalone AJ, et al. Characterizing long
16	COVID: Deep phenotype of a complex condition. EBioMedicine. 2021; 74:103722. doi:
17	10.1016/j.ebiom.2021.103722.
18	38. Dani M, Dirksen A, Taraborrelli P, Torocastro M, Panagopoulos D, Sutton R et al. Autonomic
19	dysfunction in 'long COVID': rationale, physiology and management strategies. Clin Med (Lond).
20	2021; 21:e63-e67. doi: 10.7861/clinmed.2020-0896.
21	39. Raj SR, Arnold AC, Barboi A, Claydon VE, Limberg JK, Lucci VM, et al. Long-COVID postural
22	tachycardia syndrome: an American Autonomic Society statement. Clin Auton Res. 2021; 31:365-
23	368. doi: 10.1007/s10286-021-00798-2.
24	40. Ceban F, Ling S, Lui LMW, Lee Y, Gill H, Teopiz KM, et al. Fatigue and cognitive impairment in
25	Post-COVID-19 Syndrome: A systematic review and meta-analysis. Brain Behav Immun. 2022;
26	101:93-135. doi: 10.1016/j.bbi.2021.12.020.
27	41. Dotan A, David P, Arnheim D, Shoenfeld Y. The autonomic aspects of the post-COVID19
28	syndrome. Autoimmun Rev. 2022; 21:103071. doi: 10.1016/j.autrev.2022.103071.
29	42. Batiha GE, Al-Kuraishy HM, Al-Gareeb AI, Welson NN. Pathophysiology of Post-COVID
30	syndromes: a new perspective. Virol J. 2022; 19:158. doi: 10.1186/s12985-022-01891-2.

1 43. Global Burden of Disease Long COVID Collaborators; Wulf Hanson S, Abbafati C, Aerts JG, Al-2 Aly Z, Ashbaugh C, Ballouz T, et al. Estimated global proportions of individuals with persistent 3 fatigue, cognitive, and respiratory symptom clusters following symptomatic COVID-19 in 2020 4 and 2021. JAMA. 2022; 328:1604-1615. doi: 10.1001/jama.2022.18931 5 44. Guo G, Ye L, Pan K, Chen Y, Xing D, Yan K, et al. New insights of emerging SARS-CoV-2: 6 Epidemiology, etiology, clinical features, clinical treatment, and prevention. Front Cell Dev Biol. 7 2020; 8:410. doi: 10.3389/fcell.2020.00410. 8 45. World Health Organization, https://covid19.who.int, accessed January 2023. 9 46. Cabrera Martimbianco AL, Pacheco RL, Bagattini ÂM, Riera R. Frequency, signs and symptoms, 10 and criteria adopted for long COVID-19: A systematic review. Int J Clin Pract. 2021 11 Oct;75(10):e14357. doi: 10.1111/ijcp.14357. 12 47. Williams FMK, Freidin MB, Mangino M, Couvreur S, Visconti A, Bowyer RCE, et al. Self-13 reported symptoms of COVID-19, including symptoms most predictive of SARS-CoV-2 infection, are heritable. Twin Res Hum Genet. 2020; 23:316-321. doi: 10.1017/thg.2020.85. 14 15 48. Asano T, Boisson B, Onodi F, Matuozzo D, Moncada-Velez M, Maglorius Renkilaraj MRL, et al. 16 X-linked recessive TLR7 deficiency in $\sim 1\%$ of men under 60 years old with life-threatening 17 COVID-19. Sci Immunol. 2021; 6:eabl4348. doi: 10.1126/sciimmunol.abl4348. 18 49. Ishaq U, Malik A, Malik J, Mehmood A, Qureshi A, Laigue T, et al. Association of ABO blood 19 group with COVID-19 severity, acute phase reactants and mortality. PLoS One. 2021; 20 16:e0261432. doi: 10.1371/journal.pone.0261432. 21 50. Dieter C, Brondani LA, Leitão CB, Gerchman F, Lemos NE, Crispim D. Genetic polymorphisms 22 associated with susceptibility to COVID-19 disease and severity: A systematic review and meta-23 analysis. PLoS One. 20226;17:e0270627. doi: 10.1371/journal.pone.0270627. 24 51. Sharma P, Pandey AK, Bhattacharyya DK. Determining crucial genes associated with COVID-19 25 based on COPD Findings. Comput Biol Med. 2021; 128:104126. doi: 26 10.1016/j.compbiomed.2020.104126. 27 52. Philippe A, Gendron N, Bory O, Beauvais A, Mirault T, Planguette B, et al. Von Willebrand factor 28 collagen-binding capacity predicts in-hospital mortality in COVID-19 patients: insight from 29 VWF/ADAMTS13 ratio imbalance. Angiogenesis. 2021; 24:407-411. doi: 10.1007/s10456-021-30 09789-3.

1	53. Favaloro EJ, Henry BM, Lippi G. Increased VWF and decreased ADAMTS-13 in COVID-19:	
2	Creating a milieu for (micro)thrombosis. Semin Thromb Hemost. 2021; 47:400-418. doi:	
3	10.1055/s-0041-1727282.	
4	54. Lynch SM, Guo G, Gibson DS, Bjourson AJ, Rai TS. Role of senescence and aging in SARS-	
5	CoV-2 infection and COVID-19 disease. Cells. 2021; 30; 10:3367. doi: 10.3390/cells10123367.	
6	55. Amital M, Ben-Shabat N, Amital H, Buskila D, Cohen AD, Amital D. COVID-19 associated	
7	hospitalization in 571 patients with fibromyalgia—A population-based study. PLoS One.	
8	2021;16:e0261772. doi.org/10.1371/journal.pone.0261772	
9	56. Barros A, Queiruga-Piñeiro J, Lozano-Sanroma J, Alcalde I, Gallar J, Fernández-Vega Cueto L,	et
10	al. Small fiber neuropathy in the cornea of Covid-19 patients associated with the generation of	
11	ocular surface disease Ocul Surf. 2022; 23:40-48. doi: 10.1016/j.jtos.2021.10.010.	
12	57. McFarland AJ, Yousuf MS, Shiers S, Price TJ. Neurobiology of SARS-CoV-2 interactions with	
13	the peripheral nervous system: implications for COVID-19 and pain. Pain Rep. 2021; 6:e885. do	oi:
14	10.1097/PR9.00000000000885.	
15	58. Díaz-Alberola I, Espuch-Oliver A, García-Aznar JM, Ganoza-Gallardo C, Aguilera-Franco M,	
16	Sampedro A, et al. Common variable immunodeficiency associated with a de novo IKZF1 varian	nt
17	and a low humoral immune response to the SARS-CoV-2 vaccine. J Clin Med. 2022; 11:2303. d	oi:
18	10.3390/jcm11092303.	
19	59. Tutal E, Ozaras R, Leblebicioglu H. Systematic review of COVID-19 and autoimmune thyroidit	is.
20	Travel Med Infect Dis. 2022; 47:102314. doi: 10.1016/j.tmaid.2022.102314.	
21	60. Green RC, Berg JS, Grody WW, Kalia SS, Korf BR, Martin CL, et al. American College of	
22	Medical Genetics and Genomics. ACMG recommendations for reporting of incidental findings i	n
23	clinical exome and genome sequencing. Genet Med. 2013; 15:565-574. doi: 10.1038/gim.2013.7	13.
24	61. Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ, Nickerson DA, et al. Exome	
25	sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet. 2011; 12:745-55. do	i:
26	10.1038/nrg3031.	
27	62. Yang Y, Muzny DM, Reid JG, Bainbridge MN, Willis A, Ward PA, et al. Clinical whole-exome	;
28	sequencing for the diagnosis of mendelian disorders. N Engl J Med. 2013; 369:1502-11. doi:	
29	10.1056/NEJMoa1306555.	
30	63. Microarray analysis performed by a variety of commercial laboratories for patients with	
31	developmental disability and autism, including the author-associated laboratory at Texas Tech	

- 1 University that used standard methods and interpretation as outlined in: Wyandt HE, Wilson GN,
- 2 Tonk, VS. Chromosome Structure and Variation: Heteromorphism, Polymorphism, and
- 3 Pathogenesis. New York: Springer Nature 2017: Chapters 9-10.
- 64. Retterer K, Scuffins J, Schmidt D, Lewis R, Pineda-Alvarez D, Stafford A, et al. Assessing copy
 number from exome sequencing and exome array CGH based on CNV spectrum in a large clinical
- 6 cohort. Genet Med. 2015;17:623-629. doi: 10.1038/gim.2014.160.
- 7 65. MedCalc Software Ltd. https://www.medcalc.org/calc accessed January 2023.
- 8 66. Ehlers-Danlos Society. Criteria for EDS types https://www.ehlers-danlos.com/2017-eds9 international-classification/ (2017), accessed January 2023.

67. Beighton maneuvers illustrated at https://www.ehlers-danlos.com/assessing-joint-hypermobility/
by the Ehlers-Danlos Society, accessed January 2023.

- 68. Celli M, Iacovino C, Febbo A, Lotti LV, Miraglia E, Celli L, et al. Ultrastructure study of skin
 fibroblasts in patients with Ehlers-Danlos Syndrome (EDS): preliminary results. Clin Ter
 171:e431-e436 (2020).
- 69. Yonko EA, LoTurco HM, Carter EM, Raggio CL. Orthopedic considerations and surgical
 outcomes in Ehlers-Danlos syndromes. Am J Med Genet C Semin Med Genet 2021; 187:458-465.

70. Labuda R, Nwotchouang BST, Ibrahimy A, Allen PA, Oshinski JN, Klinge P, et al. A new
hypothesis for the pathophysiology of symptomatic adult Chiari malformation Type I. Med
Hypotheses 2022; 158:110740.

71. Bałabuszek, K., Toborek, M. & Pietura, R. Comprehensive overview of the venous disorder
 known as pelvic congestion syndrome. Ann Med 2022; 54:22-36 doi:

2210.1080/07853890.2021.2014556.

- 72. Gilliam, E., Hoffman, J. D. & Yeh, G. Urogenital and pelvic complications in the Ehlers-Danlos
 syndromes and associated hypermobility spectrum disorders: A scoping review. Clin Genet 2020;
 97:168-178. doi: 10.1111/cge.13624.
- 73. Hugon-Rodin J, Lebègue G, Becourt S, Hamonet C, Gompel A. Gynecologic symptoms and the
 influence on reproductive life in 386 women with hypermobility type ehlers-danlos syndrome: a
 cohort study. Orphanet J Rare Dis. 2016; 11:124. doi: 10.1186/s13023-016-0511-2.
- 74. Sinibaldi, L, Ursini, G. & Castori, M. Psychopathological manifestations of joint hypermobility
 and joint hypermobility syndrome/ Ehlers-Danlos syndrome, hypermobility type: The link between

- connective tissue and psychological distress revised. Am J Med Genet C Semin Med Genet 2015;
 169C:97-106 doi: 10.1002/ajmg.c.31430.
- 75. Castori M, Morlino S, Celletti C, Ghibellini G, Bruschini M, Grammatico P, et al. Re-writing the
 natural history of pain and related symptoms in the joint hypermobility syndrome/Ehlers-Danlos
 syndrome, hypermobility type. Am J Med Genet A. 2013; 161A:2989-3004. doi:
- 6 10.1002/ajmg.a.36315.
- 7 76. Topham L, Gregoire S, Kang H, Salmon-Divon M, Lax E, Millecamps M, et al. . The transition
 8 from acute to chronic pain: dynamic epigenetic reprogramming of the mouse prefrontal cortex up
 9 to 1 year after nerve injury. Pain. 2020;161:2394-2409. doi: 10.1097/j.pain.000000000001917.
- 77. Karalis KP, Kontopoulos E, Muglia LJ, Majzoub JA. Corticotropin-releasing hormone deficiency
 unmasks the proinflammatory effect of epinephrine. Proc Natl Acad Sci U S A. 1999;96:70938097. doi: 10.1073/pnas.96.12.7093.
- 78. Barrientos RM, Brunton PJ, Lenz KM, Pyter L, Spencer SJ. Neuroimmunology of the female brain
 across the lifespan: Plasticity to psychopathology. Brain Behav Immun. 2019; 79:39-55. doi:
 10.1016/j.bbi.2019.03.010.
- 79. Chen YC, Lin KC, Yeh SH, Wang CH, Pan AW, Chen HL et al. Associations among quality of
 life, activities, and participation in elderly residents with joint contractures in long-term care
 facilities: a cross-sectional study. BMC Geriatr. 2022; 22:197. doi: 10.1186/s12877-022-02870-6.
- 19 80. Radke RM, Baumgartner H. Diagnosis and treatment of Marfan syndrome: an update. Heart. 2014;
 20 100:1382-91. doi: 10.1136/heartjnl-2013-304709.
- 81. Ng PC, Levy S, Huang J, Stockwell TB, Walenz BP, Li K, et al. Genetic variation in an individual
 human exome. PLoS Genet. 2008 ;4:e1000160. doi: 10.1371/journal.pgen.1000160.
- 82. Wilson GN, Tonk VS. A protocol for qualifying DNA variants associated with complex diseases
 like Ehlers-Danlos syndrome. GEN Protocols 2021--an open access component of the
 genengnews.com website that has now been discontinued.
- 83. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. ACMG Laboratory Quality
 Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint
 consensus recommendation of the American College of Medical Genetics and Genomics and the
 Association for Molecular Pathology Genet Med. 2015; 17:405-424. doi: 10.1038/gim.2015.30.

- 84. MacArthur DG, Manolio TA, Dimmock DP, Rehm HL, Shendure J, Abecasis GR. Guidelines for
 investigating causality of sequence variants in human disease. Nature. 2014; 24:469-76. doi:
 10.1038/nature13127.
- 4 85. Tam B, Sinha S, Wang SM. Combining Ramachandran plot and molecular dynamics simulation
 5 for structural-based variant classification: Using *TP53* variants as model. Comput Struct
 6 Biotechnol J, 2020; 18:4033-4039. doi: 10.1016/j.csbj.2020.11.041.
- 86. Genome Browser, University of California Santa Clara https://genome.ucsc.edu/, accessed January
 2023.
- 87. Hu Z, Yu C, Furutsuki M, Andreoletti G, Ly M, Hoskins R, et al. VIPdb, a genetic Variant Impact
 Predictor database. Hum Mutat. 2019; 40:1202-1214. doi: 10.1002/humu.23858.
- 11 88. ClinVar, https://www.ncbi.nlm.nih.gov/clinvar/ accessed January 2023.
- 89. MITOMAP: A Human Mitochondrial Genome Database. http://www.mitomap.org, 2019, accessed
 January 2023.
- 90. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Exome Aggregation
 Consortium. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;
 536:285-91. doi: 10.1038/nature19057.
- 17 91. Gnomad, https://gnomad.broadinstitute.org/ accessed January 2023.
- 92. Posey JE, Harel T, Liu P, Rosenfeld JA, James RA, Coban Akdemir ZH, et al. Resolution of
 disease phenotypes resulting from multilocus genomic variation. N Engl J Med. 2017; 376:21-31.
 doi: 10.1056/NEJMoa1516767.
- 93. Abdalla EM, Rohrbach M, Bürer C, Kraenzlin M, El-Tayeby H, Elbelbesy MF, et al.
 Kyphoscoliotic type of Ehlers-Danlos Syndrome (EDS VIA) in six Egyptian patients presenting
 with a homogeneous clinical phenotype. Eur J Pediatr. 2015; 174:105-112. doi: 10.1007/s00431-
- 24 014-2429-9.
- 94. Hunter DJ, Drazen JM. Has the genome granted our wish yet? N Engl J Med. 2019; 380:23912393. doi: 10.1056/NEJMp1904511
- 27 95. Serjeant GR, Vichinsky E. Variability of homozygous sickle cell disease: The role of alpha and
 28 beta globin chain variation and other factors. Blood Cells Mol Dis. 2018; 70:66-77. doi:
- 29 10.1016/j.bcmd.2017.06.004.

1	96. Wilson GN, Tonk VS. Demon genes may deform common syndromes: Collagen VI gene change
2	in Down syndrome unifies the medical and molecular approach to hypermobility disorders. J
3	Biosci Med. 2020; 10:1-7. doi: 10.4236/jbm.2022.103001.
4	97. Wenstrup, R. J. et al. Type V collagen controls the initiation of collagen fibril assembly. J Biol
5	Chem 279 :53331-53337 (2004).
6	98. Colombi M, Dordoni C, Venturini M, Zanca A, Calzavara-Pinton P, Ritelli M. Delineation of
7	Ehlers-Danlos syndrome phenotype due to the c.934C>T, p.(Arg312Cys) mutation in COL1A1:
8	Report on a three-generation family without cardiovascular events, and literature review. Am J
9	Med Genet A 2017; 173:524-530.
10	99. Claeys L, Storoni S, Eekhoff M, Elting M, Wisse L, Palset G et al. Collagen transport and related
11	pathways in osteogenesis imperfecta. Hum Genet. 2021;140(8):1121-1141. doi:10.1007/s00439-
12	021-02302-2
13	100. Kuivaniemi H, Tromp G. Type III collagen (COL3A1): Gene and protein structure, tissue
14	distribution, and associated diseases. Gene. 2019;707:151-171. doi:10.1016/j.gene.2019.05.003
15	101. Craven NM, Watson RE, Jones CJ, Shuttleworth CA, Kielty CM, Griffiths CE. Clinical features
16	of photodamaged human skin are associated with a reduction in collagen VII. Br J Dermatol.
17	1997;137:344-350.
18	102. Zhang P, An Z, Sun C, Xu Y, Zhang Z. FLG gene mutation up-regulates the abnormal tumor
19	immune response and promotes the progression of prostate cancer. Curr Pharm Biotechnol. 2022;
20	23:1658-1670. doi: 10.2174/1389201023666220413092507.
21	103. Legrand, A., Cornez, L., Samkari, W., Mazzella, JM., Venisse, A., Boccio, V. et al. Mutation
22	spectrum in the ABCC6 gene and genotype-phenotype correlations in a French cohort with
23	pseudoxanthoma elasticum. Genet Med. 2017;19:909-917. doi: 10.1038/gim.2016.213.
24	104. Vockley J, Rinaldo P, Bennett MJ, Matern D, Vladutiu GD. Synergistic heterozygosity: disease
25	resulting from multiple partial defects in one or more metabolic pathways. Mol Genet Metab.
26	2000; 71:10-8. doi: 10.1006/mgme.2000.3066.
27	105. Sheen VL, Jansen A, Chen MH, Parrini E, Morgan T, Ravenscroft R, et al. Filamin A mutations
28	cause periventricular heterotopia with Ehlers-Danlos syndrome. Neurology. 2005; 64:254-262.
29	doi: 10.1212/01.WNL.0000149512.79621.DF.

- 106. Larson C, Oronsky B, Carter CA, Oronsky A, Knox SJ, Sher D, et al. TGF-beta: a master
 immune regulator. Expert Opin Ther Targets. 2020; 24:427-438. doi:
- 3 10.1080/14728222.2020.1744568.
- Lichtman MK, Otero-Vinas M, Falanga V. Transforming growth factor beta (TGF-β) isoforms in
 wound healing and fibrosis. Wound Repair Regen 2016; 24:215-22. doi: 10.1111/wrr.12398.
- 108. Parker BA, Capizzi JA, Grimaldi AS, Clarkson PM, Cole SM, Keadle J, et al. Effect of statins
 on skeletal muscle function. Circulation. 2013; 127:96-103. doi:
- 8 10.1161/CIRCULATIONAHA.112.136101.
- 9 109. Kuivaniemi H, Peltonen L, Kivirikko KI. Type IX Ehlers-Danlos syndrome and Menkes
 10 syndrome: the decrease in lysyl oxidase activity is associated with a corresponding deficiency in
 11 the enzyme protein. Am J Hum Genet. 1985;37:798-808. PMID: 9556668; PMCID: PMC1684617.

12 110. Clark KM, Taylor RW, Johnson MA, Chinnery PF, Chrzanowska-Lightowlers ZM, et al. An

- mtDNA mutation in the initiation codon of the cytochrome C oxidase subunit II gene results in
 lower levels of the protein and a mitochondrial encephalomyopathy. Am J Hum Genet. 1999
 May;64(5):1330-9. doi: 10.1086/302361.
- 16 111. Noda K, Kitagawa K, Miki T, Horiguchi M, Akama TO, Taniguchi T, et al. A matricellular
 17 protein fibulin-4 is essential for the activation of lysyl oxidase. Sci Adv. 2020;6:eabc1404. doi:
 10.1126/sciadv.abc1404.
- 19 112. Liu Y, Miao J. An emerging role of defective copper metabolism in heart disease. Nutrients.
 20 2022; 14:700. doi: 10.3390/nu14030700.
- 113. Vitaliti A, De Luca A, Rossi L. Copper-dependent kinases and their role in cancer inception,
 progression and metastasis. Biomolecules. 2022; 12:1520. doi: 10.3390/biom12101520.
- 114. Gromadzka G, Tarnacka B, Flaga A, Adamczyk A. Copper dyshomeostasis in neurodegenerative
 diseases-therapeutic implications. Int J Mol Sci. 2020;21:9259. doi: 10.3390/ijms21239259.
- 115. de Villiers JN, Hillermann R, Loubser L, Kotze MJ. Spectrum of mutations in the *HFE* gene
 implicated in haemochromatosis and porphyria. Hum Molec Genet. 1999;8:1517–1522.
 doi.org/10.1093/hmg/8.8.1517
- 116. Maltese PE, Manara E, Beccari T, Dundar M, Capodicasa N, Bertelli M. Genetic testing for
 autonomic dysfunction or dysautonomias. Acta Biomed. 2020; 91:e2020002. doi:
- 30 10.23750/abm.v91i13-S.10518.

- 117. Brusseau V, Tauveron I, Bagheri R, Ugbolue UC, Magnon V, Navel V, et al. Heart rate
 variability in hypothyroid patients: A systematic review and meta-analysis. PLoS One. 2022;
 17:e0269277. doi: 10.1371/journal.pone.0269277.
- 4 118. Jang JY, Blum A, Liu J. Finkel T. The role of mitochondria in aging. J Clin Invest
 5 2018;128:3662–3670. doi: 10.1172/JCI64125.
- 6 119. Shenoy S. Coronavirus (Covid-19) sepsis: revisiting mitochondrial dysfunction in pathogenesis,
 7 aging, inflammation, and mortality. Inflamm Res 2020; 69:1077-1085. doi: 10.1007/s00011-0208 01389-z.
- 20. Zou Y, Zwolanek D, Izu Y, Gandhy S, Schreiber G, Brockmann B et al. Recessive and dominant
 mutations in *COL12A1* cause a novel EDS/myopathy overlap syndrome in humans and mice. Hum
 Molec Genet. 2014; 23:2339–2352. doi.org/10.1093/hmg/ddt627.
- 12 121. Mitchell T, Barlow CE. Review of the role of exercise in improving quality of life in healthy
 individuals and in those with chronic diseases. Curr Sports Med Rep. 2011; 10:211-6. doi:
 10.1249/JSR.0b013e318223cc9e.
- 15 122. Benkusky NA, Farrell EF, Valdivia HH. Ryanodine receptor channelopathies. Biochem Biophys
 16 Res Commun. 2004;322:1280-1285. doi: 10.1016/j.bbrc.2004.08.033.
- 17 123. Wilson GN, Tonk SS, Tonk VS, Lampe R. Complement gene mutation and Ehlers-Danlos
 18 syndrome. J Biosciences Med. 2020; 8:28-36. doi: 10.4236/jbm.2020.86003
- 19 124. Xie JH, Li YY, Jin J. The essential functions of mitochondrial dynamics in immune cells. Cell
 20 Mol Immunol. 2020;1 7:712-721. doi:10.1038/s41423-020-0480-1
- 125. Field CS, Baixauli F, Kyle RL, Puleston DJ, Alanna M, Cameron AM, et al. Mitochondrial
 integrity regulated by lipid metabolism is a cell-intrinsic checkpoint for Treg suppressive function.
 Cell Metab 2020; 31: 422–437. doi.org/10.1016/j.cmet.2019.11.021
- 126. Torre-Fuentes L, Matías-Guiu J, Hernández-Lorenzo L, Montero-Escribano P, Pytel V, PortaEtessam J, et al. ACE2, TMPRSS2, and Furin variants and SARS-CoV-2 infection in Madrid,
 Spain. J Med Virol. 2021; 93:863-869. doi: 10.1002/jmv.26319.
- 127. Pairo-Castineira E, Clohisey S, Klaric L, Bretherick AD, Rawlik K, Pasko D, *et al.* Genetic
 mechanisms of critical illness in COVID-19. Nature 2021; 591:92–98. doi: 10.1038/s41586-02003065-y.

1 128. Weis MA, Hudson DM, Kim L, Scott M, Wu JJ, Eyre DR. Location of 3-hydroxyproline 2 residues in collagen types I, II, III, and V/XI implies a role in fibril supramolecular assembly. J 3 Biol Chem. 2010; 285:2580-90. doi: 10.1074/jbc.M109.068726. 4 129. Human Phenotype Ontology (https://hpo.jax.org/app/), accessed January 2023. 5 130. Weinfurt KP, Reeve BB. Patient-reported outcome measures in clinical research. JAMA. 2022; 6 328:472-473. doi: 10.1001/jama.2022.11238. 7 131. Talarico R, Aguilera S, Alexander T, Amoura Z, Antunes AM, Arnaud L, The impact of 8 COVID-19 on rare and complex connective tissue diseases: the experience of ERN ReCONNET. 9 Nat Rev Rheumatol. 2021; 17:177-184. doi: 10.1038/s41584-020-00565-z. 10 132. McHenry HM. Tempo and mode in human evolution. Proc Natl Acad Sci U S A. 1994; 91:6780-11 6786. doi: 10.1073/pnas.91.15.6780. 12 133. Begun, D. R. Phyletic diversity and locomotion in primitive European hominids. Am J Phys 13 Anthropol 1992; 87:311-340 (1992). doi: 10.1002/ajpa.1330870307. 14 134. Chae JK, Greenfield JP. Revision Chiari surgery in young children: Predictors and outcomes. 15 Pediatr Neurosurg. 2021; 56:529-537. doi: 10.1159/000519201. 16 135. Birkhold M, Khalifeh A, Nagarsheth K, Kavic SM. Median arcuate ligament syndrome is 17 effectively relieved with minimally invasive surgery. JSLS. 2022; 26:e2022.00067. doi: 18 10.4293/JSLS.2022.00067. 19 136. Kolber MK, Cui Z, Chen CK, Habibollahi P, Kalva SP. Nutcracker syndrome: diagnosis and 20 therapy. Cardiovasc Diagn Ther. 2021; 11:1140-1149. doi: 10.21037/cdt-20-160. 21 137. Feldstein LR, Tenforde MW, Friedman KG, Newhams M, Rose EB, Dapul H, et al. Overcoming 22 COVID-19 Investigators. Characteristics and outcomes of US children and adolescents With 23 multisystem inflammatory syndrome in children (MIS-C) compared with severe acute COVID-19. 24 JAMA. 2021; 325:1074-1087. doi: 10.1001/jama.2021.2091. 25 138. Wilson GN, Tonk VS. Do severe complications like aneurysms from Kawasaki and Kawasaki-26 like infections arise in children with underlying articulo-autonomic dysplasia/Ehlers-Danlos 27 syndrome? Ann Ped Res 2020;4:1-4. www.remedypublications.com/open-access/do-severe-28 complications-like-aneurysms-from-kawasaki-and-kawasaki-like-infections-6248.pdf. 29 139. D'Agnelli S, Arendt-Nielsen L, Gerra MC, Zatorri K, Boggiani L, Baciarello M, et al. 30 Fibromyalgia: Genetics and epigenetics insights may provide the basis for the development of 31 diagnostic biomarkers. Mol Pain. 2019; 15:1744806918819944. doi: 10.1177/1744806918819944.

- 140. Lewis MT, Levitsky Y, Bazil JN, Wiseman RW. Measuring mitochondrial function: From
 organelle to organism. Methods Mol Biol. 2022; 2497:141-172. doi: 10.1007/978-1-0716-2309 1 10.
- 4 141. Grünewald A, Voges L, Rakovic A, Kasten M, Vandebona H, Hemmelmann C, et al. Mutant
 5 Parkin impairs mitochondrial function and morphology in human fibroblasts. PLoS One.
 6 2010;5:e12962. doi: 10.1371/journal.pone.0012962.
- Russek LN, Block NP, Byrne E, Chalela S, Chan C, Comerford M et al. Presentation and
 physical therapy management of upper cervical instability in patients with symptomatic
 generalized joint hypermobility: International expert consensus recommendations. Front Med
 (Lausanne). 2023;9:1072764. doi:10.3389/fmed.2022.1072764
- 143. Whalen KC, Crone W. Multidisciplinary approach to treating chronic pain in patients with
 Ehlers-Danlos syndrome: Critically appraised topic. *J Pain Res.* 2022;15:2893-2904.
 doi:10.2147/JPR.S377790
- 14 144. Doudna JA. The promise and challenge of therapeutic genome editing. Nature. 2020 578:229236. doi: 10.1038/s41586-020-1978-5.
- 16 145. Nancarrow-Lei R, Mafi P, Mafi R, Khan W. A Systemic Review of Adult Mesenchymal Stem
- 17 Cell Sources and their Multilineage Differentiation Potential Relevant to Musculoskeletal Tissue
 18 Repair and Regeneration. Curr Stem Cell Res Ther. 2017; 12:601-610. doi:
- 19 10.2174/1574888X12666170608124303.

Figure legends

20 Fig 1. Clinical protocol for DNA variant qualification

21 Clinical DNA variant (column 4) and 1-4+ medical diagnostic utilities (last column) are added to consensus

22 qualifications (column 2) as discussed in the text, DNA/protein change and gene abbreviations except for *MTHFR*

23 (methylene tetrahydrofolate reductase) and *HBB* (beta-globin) are explained in S2, S3 Tables.

Fig 2. Mapping of nuclear and mitochondrial genes associated with EDS and COVID19 severity.

- A. Nuclear genes from S2 Table are shown with numbers of primary variants in bold followed by *, of
- 26 additional variants in italics followed by +, recurring variants in red, genes encoding products
- 27 transported to mitochondria in green, genes related to COVID19 severity in blue (S5 Table); gene
- abbreviations, exact loci in S2 and S6 Tables, chromosome sizes modified for display by factors $\approx x1/2$
- 29 for numbers 4-5-9, x1/4 for 8, x2/3 for 10; x1.1 for 14-21-X; x 1.3 for 22, x 1.7 for 20; x2 for 16-17-19

- 1 [63]; B, Primary DNA variants are described by DNA (m.) or protein (p.) position, additional ones by
- 2 --see variant details in S2 Table for Fig 2A, S3 Table adds 473 to variant numbers in Fig. 2B, patient
- 3 473 is number 1 above; map from MITOMAP [89].

4 Fig 3. Similar EDS-dysautonomia finding numbers in patients with recurring gene variants. Gene

- 5 abbreviations and patient numbers are from S2 Table, the first four columns showing all patients with variants,
- 6 then with primary variants (PrimVar), with only additional variants (AdVar), and female patients over age 10.5
- 7 years with variants—only the latter qualify for finding comparison; finding categories from S1 Table include
- 8 mean age (years), history (of 80), physical (of 40), Beighton (of 9), joint-skeletal by history-by physical (JtSkSk
- 9 of 21), skin (of 11), neuromuscular by history-physical (NmHP of 16), and dysautonomia (DysA of 20) ,
- 10 significant difference p<0.05, see Methods; Ç, with; X, mean; SD, standard deviation.

11 Fig. 4 Genes relevant to EDS or COVID19 infection by tissue element or product type.

- 12 A, process/connective tissue element relations (box, Fig 2A bottom) are from associated diseases (S2, S5 Tables);
- 13 COVID19 percentages of 83 genes after 21 impacting viral-related processes were subtracted; B, gene product
- 14 functions are explained in the legend to Table S2, COVID19 percentages are of all 104 genes listed in Table S4
- 15 (the *PNPLA3* gene associated with gastrointestinal disease is not listed); significantly (p < 0.05) lower O or higher
- 16 O proportions (see Methods).

Fig. 5. Genes and symptoms related to EDS and COVID19

Genes related to EDS (Table S2) and COVID19 infection (Table S5) are envisioned as overlapping parts of a network (rhizome below) connected through pathogenic mechanisms (trunk sap, phloem) to common symptoms of EDS (Table S1) and long COVID19 (canopy above). EDS symptom ranges are for females over age 10.5 years from the EDS1261database, long COVID percentages and ranges taken from Fig. 2 of Deer et al.[37].

Supporting information

Supporting information includes an Appendix (Supporting information Appendix for a shared EDS-COVID19 gene network.docx) containing 5175 words and an Excel file (Supporting information S1-S5 Tabs for EDS-COVID19 gene network.xls) that contains 5 supplemental S1-S5 Tables and, for review, Sheets 6 containing the EDS1261GW database with deidentified patient numbers, age ranges, sex, findings, and positive-negative DNA results without gene-variant details. This is the database that will be mailed to scholars by request to the author along with the key to encoded findings placed in Sheet 7 of the Excel file for review. The Supporting Information tables meant to be published if accepted are:

S1 Table. History and physical finding frequencies in 1064 EDS females and 197 EDS males with
 systematic evaluations

S2 Table. Genes variant in EDS with their descriptions and associated diseases

S3 Table. Primary and additional DNA variants found in EDS patients listed by patient number

S4 Table. DNA variants in patients with developmental disability

S5 Table. Genes relevant to COVID19 infection severity (with references to specialized articles below the table)

Acknowledgements

Collaboration of Dr. Vijay S Tonk on the protocol for variant qualification, assistance of genetic counselor Melissa Alderdice and others at the GeneDx Company© with coordination of genetic testing, referrals and insights from cardiologists Amer Suleman and Lee Ann Pearse, orthopedist W. Barry Humeniuk are appreciated.

Molecular qual	ification	Clinical genet	ic qualification	Medical diagnostic utility qualification				
		Gene relevance,	tic qualification					
Molecular-	<u>_</u>		Variant significance	Adjust for additional				
biochemical	impact	History, Inheritance	→ <u>D</u> iagnostic <u>U</u> tility	DNA variants	<u>D</u> iagnostic <u>U</u> tility			
considerations	1 /	1	(for primary variant)	1				
DEFG	Vi 0-2+	GHI (?add +)	V*DU 0-4+	J (?add +)	MDna1-4+ DU			
Disruption protein/ RNA structure	0+ Benign Likely Benign	G New gene-disease associations may	0+ or Benign→V <u>N</u> oDU Benign → <u>V</u> ariant of <u>No D</u> iagnostic <u>U</u> tility	Variant of 1-4+ DU with synergistic action V*DUS	Patient 1 : MDnaO+ DU ^{clot} 1.0 MTHFR c.677C>T p.V222A 0+→VNoDU Diagnostic utility for clotting diathesis			
aa charge, conformation <u>E</u> volutionary conservation —E— —— Same emphasis on aa usage and domain	VUS Variant of Uncertain Significance	Add +	1+ or VUS→VUDU VUS→ VUS→	Add 1+ for VM/S/E/DU variants	Patient 2: MDna1+ DU ^{eds} 2.0 COL5A2 p.I373L 1+→VUDU Diagnostic utility for EDS			
Eunctional analysis JF	1+ <i>L</i> ²	Add + H With many typical	2+ or LkPath→V <u>M</u> DU _{LkPath} → <u>V</u> ariant of <u>M</u> oderate <u>DU</u>	Variant of 1-4+ DU with <u>o</u> ther action	Patient 3: MDna2+ DU^{eds} 3.0 COL11A1 p.I416V 1+→VMDU(G) EDS diagnostic utility			
Gene-disease relevance ↑↓G More as seen with disease	Likely Pathogenic 2+	With many typical history findings With expected inheritance pattern	history findings 3+ or LkPath→VSDU With expected Lkpath→	V*DUO Consider other (dual) diagnoses	Patient 4: MDna3+ DU ^{DD} 4.1POLG p.R574QfsX8 2+Path→VSDUO(G) and: MDna4+ DU ^{sc} 4.2 HBB p.Glu6Ala 2+Path→VEDUO			
in question Less as seen in normal databases None as seen with other trait or disease	∠⊤ Pathogenic	With relatives concordant for variant and disease	4+ or Path→VEDU Pathogenic→ Variant of <u>E</u> videnced <u>DU</u>	b, c, d,	Patient 5: MDna4+ DU ^{EDS} 5.1 FBN1 p.T207S matSx 2+→VEDUS(GIJ) 5.2 FLG p.R501X 2+Path→VSDUS(G) and: MDna4+ DU ^{brca} 5.3 BRCA1 p.D825Efs21X 2+Path→VEDUO			

	*SKI Bn +AGRN		+ODC1	p 25.1	+COLO	P 16.3	+DOK7	P 13.1	+LIFR LIFR
^p 36.33 36.22	*+UBE4B Nc	p 25.1	2*2+LPINI Mu	24.2	*THRB Athy	16.1	+DOK/	- 15.1	TLIFK LIFK
30.22	*+ <i>MFN2</i> Np	22.3	*NLRC4 Aim	24.2	4*1+TGFBR2 Vs	10.1		5	↓13.1 3*PIK3R1 Jt
	3*3+PLOD1 Jt	22.1	+SOS1	24.1	2*SCN5A Ns	4		14.3	1*2+ADGRV1 Nc
36.12	*ALPL Bn		NDUFAF7		5*2+SCN10A Ns	11.2	*MYH7 Mu	23.1	3*LOX Vs
34.3	*DLGAP3 Nc 个RPA2	16.3	+FSHR		4*SCN11A Ns	24	NFKBI	23.3	5*1+FBN2 Vs
	*PPT1 Nm	11.2	*MAT2A Vs	22.2	CXCR6 CX3CR1	25-26	*+ANK2 Vs	31.3	*NR3CI Ans
34.2	*P3H1 Jt \U00c0 RBM15				4*COL7A1 Sn	31.3	*3+LRBA Aim	32	*SH3TC Np
22.1	*ABCA4 Nc 1JUN	2			CCR1-2-5 SACMIL	32.1	+FGG TLL1	35.1	DOCK2
21.1	4*COLIIAI Bn +AGL	4	\downarrow + <i>IKZF2</i>	21.31	LZTF SLC6A20	35.2	2+F11 TLR3	9 35.3	2*ADAMTS2 Jt
1	↑+ZNF644 +AMPD1	12	*ANO6 Clot	2	↑21.3 FYCO1				
1	↓+GBA +ATP1A2	14.1	+PAX8 IL1B	3	个14.3 *+FLNB Jt	P 12.33	+CACNB2	p 13.32	*KCNA5 Vs
	*HJV/HFE2 Ans		ILIRN	11.2	*CPOX Apor	10			11*7+VWF Clot
21.2	*+ADAMTSL4 Jt	23.3	*NEB Mu	12.2	+TFG ATP6VIA	10	$\downarrow +ANK3$	13.31	*CIR Aim KLRC2 Aim
21.3	28*12+ FLG Sn	24.2	*+IFIH1	21.1	+MYLK RAB7A	↓11.21	*RET Ans MAPK8	11.21	+PKP2
22	*LMNA Nm MUCI	24.3	7*4+SCN9A Ns	24	*GYGI Mu AGTRI	21.3	+EGR2 MBL2 PRF1	12	2+GUCY2C
23.1	2*2+NTRK1 Ans	31.1	+CHRNA1	25.2	*MME Np	23.2	+LDB3 SFTPD	12	+TRPV4
23.2	2*2+CASO1 Mu	31.2	+TTN PRKPA	26.1		24.32	2+NFKB2	12	
23.3	*PPOXApr FASLG	32.2	13*COL3A1 Vs	27.1	+THPO	25.1	*COL17A1 Sn		2*COL2A1 Bn
	2*CACNAIS Nm		16*1+COL5A2 Jt	9 29	2*OPA1 Ne MUC4	25.2	+RBM20	13.12	+KMT2D
32.1	*+TNNT2 Mu CFH		*STAT1Aim			926.3	+EBF3	13.3	*MARS Np STAT2 Aim
41	3*TGFB2 Vs +LYST	35	4*2+WNT10A Sn	p 11.2	+FGFR			14.3	+IRAK3 TBK1 Nc
43	3*1+RYR2 Mu AGT	36.2	*CUL3 Nc	0		P15.4	+DCHSI IRF7		IFNG Aim
۹44	2*2+NLRP3 Aim	37.1	*CHRND Ans	8		15.1	*ABCC8JtM MUC5AC	23.2	+MYBPC1 FBRSL1
	NLRP3	9 37.3	5*1+COL6A3 Mu	924.22	*4+TG Athy	14.3	*ANO3 Nm ELF5	9 24.31	OAS Aim GOLGA3 No
						11.2	3*5+MYBPC3 Mu		
p 22.2	3*13+HFE Apor	p 15.3	IL6 ↓TNFRSF13B	p 21.3	IFNA1-IFNB1	11	↑+F2 F2 +CKAP5	P 13.2	+CHRNE
21.33	7*3+TNXB Jt TNFA	1101/2000	14 2*FKBP14 Jt	13.3	*GNE Mu +VCP	11	ot	13.1	3+MYH2
21.32	which was not certified by peer r	eview) is the	author/funder, who has grant	ed medRxiv	a license to display the preprin	t in perpetuity.	*+BSCL2 Np	12	2*PMP22 Np
21.1	Rxiv preprint doi: https://doi.org/10 vhich was not certified by peer r +APOBEC2 FOXP4 TEAD3 DDR1	21.11 and a	valiable under a CC-BY 4.0 ir	ternational li	cense.	13.1	*PYGM Mu UNC93B1	11.2	*2+TNFRSF13B Aim
	FOXP4 TEAD3 DDR1		*CACNA2D1 Nm	122.33	2*ASPN Bn		*MENI Ans POLD4	1 -	+NLRP1 +GP1BA
12.3	*+PLA2G7 Aim	21.3	7*COLIA2 Bn		+COL15A1	-	*+EFEMP2 Sn +LRP5	17	+TP53+ACADVL
6		22.1	+EPHB4		4*TGFBR1 Vs	9 23.3	*SCN4B Vs		+G6PC +CACNAIG
6	1. Sec. 1. Sec		2*1+PLOD3 Jt	31.3	*IKBKAP Ans	-	+SCN2B	12	*SLFN14 Clot CCL2
13	3*COL9A1 Bn	22.3	2+SLC26A4	32	*ALAD Apor		5*1+HMBS Apor	21.1	*THRA Athy TACACA
	+KCNQ5	31.1	*FOXP2 Nc		*COL27A1 Bn			21.2	*JUPVs NSF WNT3
13-14	17*6+COL12A1 Mu	31.2		33.2	3*GSN Ans TLR4	-	2*1+CACNAIH Ans		3*FKBP10 JtM
14.1	+MYO6	32.1	2*FLNC Mu	33.3	2*LMXIB Bn		2*PKD1 Vs	21.31	*ITGA2B Clot KANSL
21	3*+FIG4 Np		*TNPO3 Mu	34.11	*STXBP1 Nc	· ·	2*1+MEFV Aim		8*COLIAI Bn
22.1	*+DSE Ez-Jt	34	*TBXAS1 Clot		+ENG+SNAPC4	P 13.3	+DNASE1	21.32	*+ITGB3 Clot ACE1
23.3	+TNFAIP3		*2+CLCNI Mu	34.2	*DBHAnsADAMTS	13.13	+LITAF	23.2	2*SCN4A Mu
					DDHAISADAMISI	15.15		•	
25.2	*+SYNE1 Mu	36.1	+PRKAG2+KCNH2	P 34.3	35*1+COL5A1 Jt	1 15.15	3*2+MYH11 Mu	925.3	+SEPT9 FASN
25.2 9 27	*+SYNE1 Mu	36.1 36.3	+PRKAG2+KCNH2 +DNAJB6			10.10		•	
	*+SYNE1 Mu				35*1+COL5A1 Jt	13.11	3*2+MYH11 Mu 2*1+ABCC6 Jt +ABCC1	925.3	+SEPT9 FASN
9 27	*+SYNE1 Mu	36.3	+DNAJB6	P 34.3	35*1+COL5A1 Jt	-	3*2+MYH11 Mu 2*1+ABCC6 Jt +ABCC1 *UMOD Jt	925.3	
	*+SYNE1 Mu	^{36.3}	+DNAJB6 ↓12 *NUBPL Mt	» 34.3 15	35*1+COL5A1 Jt 2*NOTCH1 Vs	13.11	3*2+MYH11 Mu 2*1+ABCC6 Jt +ABCC1 *UMOD Jt *PRRT2 Nc	925.3	+SEPT9 FASN
9 27	*+SYNE1 Mu	36.3	+DNAJB6	P 34.3	35*1+COL5A1 Jt	13.11 12.3	3*2+MYH11 Mu 2*1+ABCC6 Jt +ABCC1 *UMOD Jt *PRRT2 Nc *TBX6 Bn	925.3 P11.22	+SEPT9 FASN
⁴ 27 13	*+ <i>SYNE1</i> Mu 5*1+ <i>GJB2</i> Sn	^{36.3}	+DNAJB6 \$\$\p\$ 12 *NUBPL Mt NFKB1 IRF9 *ATLI Ans	» 34.3 15	35*1+COL5A1 Jt 2*NOTCH1 Vs	13.11 12.3	3*2+MYH11 Mu 2*1+ABCC6 Jt +ABCC1 *UMOD Jt *PRRT2 Nc	925.3 P11.22 18	+SEPT9 FASN 2*PIEZO2 Mu
⁴ 27 13	5*1+ <i>GJB2</i> Sn	36.3 14 13.2 22.1 23.2	+DNAJB6 \$\$\p\$ 12 *NUBPL Mt \$\$NFKB1 IRF9 *ATL1 Ans +SYNE2	P 34.3 15 12 13.3 15.1	35*1+COL5A1 Jt 2*NOTCH1 Vs +ATP10A +TRPMI IFITM3 3*CAPN3 Mu	13.11 12.3 11.2	3*2+MYH11 Mu 2*1+ABCC6 Jt +ABCC1 *UMOD Jt *PRRT2 Nc *TBX6 Bn	925.3 P11.22	+SEPT9 FASN 2*PIEZO2 Mu +TTR NPC1
⁴ 27 13		36.3 14 13.2 22.1 23.2 24.1	+DNAJB6 \$\$\frac\$\frac\$\$ 12 *NUBPL Mt \$\$NFKB1 IRF9 *ATLI Ans +SYNE2 *ACTNI Clot	P 34.3	35*1+COL5A1 Jt 2*NOTCH1 Vs +ATP10A +TRPM1 IFITM3 3*CAPN3 Mu 2*1+DUOX2 Athy	13.11 12.3 11.2 16	3*2+MYH11 Mu 2*1+ABCC6 Jt +ABCC1 *UMOD Jt *PRRT2 Nc *TBX6 Bn +FUS	925.3 P11.22 18 12.1	+SEPT9 FASN 2*PIEZO2 Mu +TTR NPC1 PIK3C3
9 27 13 12.11 14.3	5*1+ <i>GJB2</i> Sn + <i>ATP7B</i>	36.3 14 13.2 22.1 23.2	+DNAJB6 \$\$\sqrt{12 *NUBPL Mt} \$\$NFKB1 IRF9 *ATL1 Ans +SYNE2 *ACTN1 Clot *TGFB3 Vs	P 34.3 15 12 13.3 15.1	35*1+COL5A1 Jt 2*NOTCH1 Vs +ATP10A +TRPM1 IFITM3 3*CAPN3 Mu 2*1+DUOX2 Athv *DUQXA2 Athv	13.11 12.3 11.2	3*2+MYH11 Mu 2*1+ABCC6 Jt +ABCC1 *UMOD Jt *PRRT2 Nc *TBX6 Bn +FUS 4*NOD2 Aim	925.3 P11.22 18 12.1 21.11	+SEPT9 FASN 2*PIEZO2 Mu +TTR NPC1 PIK3C3 *TRPA1 Ans
⁹ 27 13 12.11	5*1+ <i>GJB2</i> Sn	36.3 14 13.2 22.1 23.2 24.1 24.3	+DNAJB6 \$\$\prod_12 *NUBPL Mt\$ NFKB1 IRF9 *ATLI Ans +SYNE2 *ACTNI Clot *TGFB3 Vs *+SPTLC2 Ans	P 34.3 12 13.3 15.1 21.1	35*1+COL5A1 Jt 2*NOTCH1 Vs +ATP10A +TRPM1 IFITM3 3*CAPN3 Mu 2*1+DUOX2 Athv *DUQXA2 Athv 18*4+FBN1 Vs	13.11 12.3 11.2 16 12.1	3*2+MYH11 Mu 2*1+ABCC6 Jt +ABCC1 *UMOD Jt *PRRT2 Nc *TBX6 Bn +FUS 4*NOD2 Aim +SALL1	925.3 P11.22 18 12.1	+SEPT9 FASN 2*PIEZO2 Mu +TTR NPC1 PIK3C3
⁹ 27 13 12.11 14.3	5*1+ <i>GJB2</i> Sn + <i>ATP7B</i>	36.3 14 13.2 22.1 23.2 24.1 24.3 31.1	+DNAJB6 \$\$\presspace{2}\$+DNAJB6 \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	P 34.3 12 13.3 15.1 21.1 21.2	35*1+COL5A1 Jt 2*NOTCH1 Vs +ATP10A +TRPM1 IFITM3 3*CAPN3 Mu 2*1+DUOX2 Athv *DUOX42 Athv 18*4+FBN1 Vs *+VPS13C Nc	13.11 12.3 11.2 16 12.1 12.2	3*2+MYH11 Mu 2*1+ABCC6 Jt +ABCC1 *UMOD Jt *PRRT2 Nc *TBX6 Bn +FUS 4*NOD2 Aim +SALL1 3*1+SLC6A2 Ans	9 25.3 P 11.22 18 12.1 21.11 9 22.1	+SEPT9 FASN 2*PIEZO2 Mu +TTR NPCI PIK3C3 *TRPA1 Ans +DSEL
^q 27 12.11 14.3 32.1	<u>5*1+GJB2 Sn</u> +ATP7B *UGGT2 Nm	36.3 14 13.2 22.1 23.2 24.1 24.3 31.1 32.12	+DNAJB6 \$\$\prod 12 *NUBPL Mt \$\$NFKB1 IRF9 *ATL1 Ans +SYNE2 *ACTNI Clot *TGFB3 Vs *+SPTLC2 Ans *TSHR Athy *FBLN5 Sn	P 34.3 12 13.3 15.1 21.1	35*1+COL5A1 Jt 2*NOTCH1 Vs +ATP10A +TRPM1 IFITM3 3*CAPN3 Mu 2*1+DUOX2 Athv *DUQXA2 Athv 18*4+FBN1 Vs *+VPS13C Nc 14*3+POLG Ans	13.11 12.3 11.2 12.1 12.1 12.2 13	3*2+MYH11 Mu 2*1+ABCC6 Jt +ABCC1 *UMOD Jt *PRRT2 Nc *TBX6 Bn +FUS 4*NOD2 Aim +SALL1 3*1+SLC6A2 Ans +SLC12A3	925.3 P11.22 18 12.1 21.11	+SEPT9 FASN 2*PIEZO2 Mu +TTR NPC1 PIK3C3 *TRPA1 Ans +DSEL *ARSF Bn
^q 27 13 12.11 14.3 32.1 33.3	5*1+GJB2 Sn +ATP7B *UGGT2 Nm +LIG4	36.3 14 13.2 22.1 23.2 24.1 24.3 31.1 32.12 32.13	+DNAJB6 \$\$\prod 12 *NUBPL Mt \$\$ NFKB1 IRF9 *ATLI Ans +SYNE2 *ACTNI Clot *TGFB3 Vs *+SPTLC2 Ans *TSHR Athy *FBLN5 Sn *+SERPINA6 Ans	P 34.3 12 13.3 15.1 21.1 21.2 26.1	35*1+COL5A1 Jt 2*NOTCH1 Vs +ATP10A +TRPM1 IFITM3 3*CAPN3 Mu 2*1+DUOX2 Athv *DUOXA2 Athv 18*4+FBN1 Vs *+VPS13C Nc 14*3+POLG Ans FURIN	13.11 12.3 11.2 12.1 12.1 12.2 13 22.1	3*2+MYH11 Mu 2*1+ABCC6 Jt +ABCC1 *UMOD Jt *PRRT2 Nc *TBX6 Bn +FUS 4*NOD2 Aim +SALL1 3*1+SLC6A2 Ans +SLC12A3 2*AARSI Np	9 25.3 P 11.22 18 12.1 21.11 9 22.3	+SEPT9 FASN 2*PIEZO2 Mu +TTR NPC1 PIK3C3 *TRPA1 Ans +DSEL *ARSF Bn ACE2 TLR7 CCDC22
^q 27 12.11 14.3 32.1	<u>5*1+GJB2 Sn</u> +ATP7B *UGGT2 Nm	36.3 14 13.2 22.1 23.2 24.1 24.3 31.1 32.12 32.13 32.31	+DNAJB6 \$\$\prod 12 *NUBPL Mt \$\$NFKB1 IRF9 *ATL1 Ans +SYNE2 *ACTNI Clot *TGFB3 Vs *+SPTLC2 Ans *TSHR Athy *FBLN5 Sn *+SERPINA6 Ans +DYNCIHI TRAF3	P 34.3 12 13.3 15.1 21.1 21.2 26.1	35*1+COL5A1 Jt 2*NOTCH1 Vs +ATP10A +TRPM1 IFITM3 3*CAPN3 Mu 2*1+DUOX2 Athv *DUQXA2 Athv 18*4+FBN1 Vs *+VPS13C Nc 14*3+POLG Ans	13.11 12.3 11.2 12.1 12.2 13 22.1 22.2	3*2+MYH11 Mu 2*1+ABCC6 Jt +ABCC1 *UMOD Jt *PRRT2 Nc *TBX6 Bn +FUS 4*NOD2 Aim +SALL1 3*1+SLC6A2 Ans +SLC12A3 2*AARSI Np *ZFHX3 N ^c	9 25.3 P 11.22 18 12.1 21.11 9 22.3 22.2	+SEPT9 FASN 2*PIEZO2 Mu +TTR NPC1 PIK3C3 *TRPA1 Ans +DSEL *ARSF Bn ACE2 TLR7 CCDC22 *CLCN4 Mu +RPS6KA3
⁹ 27 13 12.11 14.3 32.1 33.3	5*1+GJB2 Sn +ATP7B *UGGT2 Nm +LIG4	36.3 14 13.2 22.1 23.2 24.1 24.3 31.1 32.12 32.13	+DNAJB6 \$\$\presspace{2}\$ +DNAJB6 \$\$\presspace{2}\$ +DYNE1 IRF9 \$\$ATL1 Ans \$\$ATL1 Ans \$	P 34.3 12 13.3 15.1 21.1 21.2 26.1	35*1+COL5A1 Jt 2*NOTCH1 Vs +ATP10A +TRPM1 IFITM3 3*CAPN3 Mu 2*1+DUOX2 Athv *DUOXA2 Athv 18*4+FBN1 Vs *+VPS13C Nc 14*3+POLG Ans FURIN	13.11 12.3 11.2 12.1 12.2 13 22.1 22.2 23.2	3*2+MYH11 Mu 2*1+ABCC6 Jt +ABCC1 *UMOD Jt *PRRT2 Nc *TBX6 Bn +FUS 4*NOD2 Aim +SALL1 3*1+SLC6A2 Ans +SLC12A3 2*AARSI Np *ZFHX3 N ^c *+PKD1L2 Vs	9 25.3 P 11.22 18 12.1 21.11 9 22.3	+SEPT9 FASN 2*PIEZO2 Mu +TTR NPC1 PIK3C3 *TRPA1 Ans +DSEL *ARSF Bn ACE2 TLR7 CCDC22 *CLCN4 Mu +RPS6KA3 *RSI Nc
^q 27 13 12.11 14.3 32.1 33.3 ^q 34	5*1+GJB2 Sn +ATP7B *UGGT2 Nm +LIG4 2*1+F10 Clot	36.3 14 13.2 22.1 23.2 24.1 24.3 31.1 32.12 32.13 32.31	+DNAJB6 \$\$\prod 12 *NUBPL Mt \$\$NFKB1 IRF9 *ATL1 Ans +SYNE2 *ACTNI Clot *TGFB3 Vs *+SPTLC2 Ans *TSHR Athy *FBLN5 Sn *+SERPINA6 Ans +DYNCIHI TRAF3	P 34.3 12 13.3 15.1 21.1 21.2 26.1	35*1+COL5A1 Jt 2*NOTCH1 Vs +ATP10A +TRPM1 IFITM3 3*CAPN3 Mu 2*1+DUOX2 Athv *DUOXA2 Athv 18*4+FBN1 Vs *+VPS13C Nc 14*3+POLG Ans FURIN	13.11 12.3 11.2 12.1 12.2 13 22.1 22.2 23.2 23	3*2+MYH11 Mu 2*1+ABCC6 Jt +ABCC1 *UMOD Jt *PRRT2 Nc *TBX6 Bn +FUS 4*NOD2 Aim +SALL1 3*1+SLC6A2 Ans +SLC12A3 2*AARS1 Np *ZFHX3 N ^c *+PKD1L2 Vs 3*1+PLCG2 Aim	9 25.3 P 11.22 18 12.1 21.11 9 22.3 22.2	+SEPT9 FASN 2*PIEZO2 Mu +TTR NPC1 PIK3C3 *TRPA1 Ans +DSEL *ARSF Bn ACE2 TLR7 CCDC22 *CLCN4 Mu +RPS6KA3
⁹ 27 13 12.11 14.3 32.1 33.3	5*1+GJB2 Sn +ATP7B *UGGT2 Nm +LIG4 2*1+F10 Clot DPP9 ICAM1	36.3 14 13.2 22.1 23.2 24.1 24.3 31.1 32.12 32.13 32.31 ^q 32.22	+DNAJB6 \$\$\prod 12 *NUBPL Mt NFKB1 IRF9 *ATL1 Ans +SYNE2 *ACTNI Clot *TGFB3 Vs *+SPTLC2 Ans *TSHR Athy *FBLN5 Sn *+SERPINA6 Ans +DYNCIHI TRAF3 *KIF26A Ans *+ADSSL1 Mu	P 34.3 12 13.3 15.1 21.1 21.2 26.1	35*1+COL5A1 Jt 2*NOTCH1 Vs +ATP10A +TRPM1 IFITM3 3*CAPN3 Mu 2*1+DUOX2 Athv *DUOXA2 Athv 18*4+FBN1 Vs *+VPS13C Nc 14*3+POLG Ans FURIN	13.11 12.3 11.2 12.1 12.2 13 22.1 22.2 23.2 23	3*2+MYH11 Mu 2*1+ABCC6 Jt +ABCC1 *UMOD Jt *PRRT2 Nc *TBX6 Bn +FUS 4*NOD2 Aim +SALL1 3*1+SLC6A2 Ans +SLC12A3 2*AARSI Np *ZFHX3 N ^c *+PKD1L2 Vs	9 25.3 P 11.22 18 12.1 9 22.3 22.2 22.13	+SEPT9 FASN 2*PIEZO2 Mu +TTR NPC1 PIK3C3 *TRPA1 Ans +DSEL *ARSF Bn ACE2 TLR7 CCDC22 *CLCN4 Mu +RPS6KA3 *RS1 Nc *HAP3K15 Ans
^q 27 13 12.11 14.3 32.1 33.3 q34	5*1+GJB2 Sn +ATP7B *UGGT2 Nm +LIG4 2*1+F10 Clot	36.3 14 13.2 22.1 23.2 24.1 24.3 31.1 32.12 32.13 32.31 ^q 32.22	+DNAJB6 \$\$\presspace{2}\$ +DNAJB6 \$\$\presspace{2}\$ +DYNE1 IRF9 \$\$ATL1 Ans \$\$ATL1 Ans \$	P 34.3 12 13.3 15.1 21.1 21.2 26.1	35*1+COL5A1 Jt 2*NOTCH1 Vs +ATP10A +TRPM1 IFITM3 3*CAPN3 Mu 2*1+DUOX2 Athv *DUOXA2 Athv 18*4+FBN1 Vs *+VPS13C Nc 14*3+POLG Ans FURIN	13.11 12.3 11.2 12.1 12.2 13 22.1 22.2 23.2 23	3*2+MYH11 Mu 2*1+ABCC6 Jt +ABCC1 *UMOD Jt *PRRT2 Nc *TBX6 Bn +FUS 4*NOD2 Aim +SALL1 3*1+SLC6A2 Ans +SLC12A3 2*AARS1 Np *ZFHX3 N ^c *+PKD1L2 Vs 3*1+PLCG2 Aim	9 25.3 P 11.22 18 12.1 9 22.3 22.2 22.13 22.12	+SEPT9 FASN 2*PIEZO2 Mu +TTR NPCI PIK3C3 *TRPA1 Ans +DSEL *ARSF Bn ACE2 TLR7 CCDC22 *CLCN4 Mu +RPS6KA3 *RSI Nc *HAP3K15 Ans 2*MBTPS2 Sn
^q 27 13 12.11 14.3 32.1 33.3 ^q 34	5*1+GJB2 Sn +ATP7B *UGGT2 Nm +LIG4 2*1+F10 Clot DPP9 ICAM1	36.3 14 13.2 22.1 23.2 24.1 24.3 31.1 32.12 32.13 32.31 ° 32.22 P11.23	+DNAJB6 \$\$\prod 12 *NUBPL Mt NFKB1 IRF9 *ATL1 Ans +SYNE2 *ACTNI Clot *TGFB3 Vs *+SPTLC2 Ans *TSHR Athy *FBLN5 Sn *+SERPINA6 Ans +DYNCIHI TRAF3 *KIF26A Ans *+ADSSL1 Mu	P 34.3 12 13.3 15.1 21.2 26.1 926.3	35*1+COL5A1 Jt 2*NOTCH1 Vs +ATP10A +TRPM1 IFITM3 3*CAPN3 Mu 2*1+DUOX2 Athv *DUOXA2 Athv 18*4+FBN1 Vs *+VPS13C Nc 14*3+POLG Ans FURIN	13.11 12.3 11.2 16 12.1 12.2 13 22.1 22.2 23.2 23.3 9 24.2	3*2+MYH11 Mu 2*1+ABCC6 Jt +ABCC1 *UMOD Jt *PRRT2 Nc *TBX6 Bn +FUS 4*NOD2 Aim +SALL1 3*1+SLC6A2 Ans +SLC12A3 2*AARS1 Np *ZFHX3 N ^c *+PKD1L2 Vs 3*1+PLCG2 Aim	9 25.3 P 11.22 18 12.1 9 22.3 22.2 22.13 22.12	+SEPT9 FASN 2*PIEZO2 Mu +TTR NPC1 PIK3C3 *TRPA1 Ans +DSEL *ARSF Bn ACE2 TLR7 CCDC22 *CLCN4 Mu +RPS6KA3 *RSI Nc *HAP3K15 Ans 2*MBTPS2 Sn *PHEX Bn ↓ CCDC22
^q 27 13 12.11 14.3 32.1 33.3 ^q 34 ^p 13.3	5*1+GJB2 Sn +ATP7B *UGGT2 Nm +LIG4 2*1+F10 Clot DPP9 ICAM1 +TICAMI TICAM1	36.3 14 13.2 22.1 23.2 24.1 24.3 31.1 32.12 32.13 32.31 ^q 32.22	+DNAJB6 \$\$\psymbol{4}\$ 12 *NUBPL Mt \$\$NFKB1 IRF9 *ATLI Ans \$\$+SYNE2 *ACTNI Clot *TGFB3 Vs *+SPTLC2 Ans *TSHR Athy *FBLN5 Sn *+SERPINA6 Ans +DYNCIHI TRAF3 *KIF26A Ans *+ADSSL1 Mu 1*3+RIN2 Sn	P 34.3 12 13.3 15.1 21.1 21.2 26.1	35*1+COL5A1 Jt 2*NOTCH1 Vs +ATP10A +TRPM1 IFITM3 3*CAPN3 Mu 2*1+DUOX2 Athv *DUOXA2 Athv 18*4+FBN1 Vs *+VPS13C Nc 14*3+POLG Ans FURIN	13.11 12.3 11.2 12.1 12.2 13 22.1 22.2 23.2 23	3*2+MYH11 Mu 2*1+ABCC6 Jt +ABCC1 *UMOD Jt *PRRT2 Nc *TBX6 Bn +FUS 4*NOD2 Aim +SALL1 3*1+SLC6A2 Ans +SLC12A3 2*AARS1 Np *ZFHX3 N ^c *+PKD1L2 Vs 3*1+PLCG2 Aim 2*2+ZNF469 Jt	9 25.3 P 11.22 18 12.1 9 22.3 22.2 22.13 22.12 22.11	+SEPT9 FASN 2*PIEZO2 Mu +TTR NPC1 PIK3C3 *TRPA1 Ans +DSEL *ARSF Bn ACE2 TLR7 CCDC22 *CLCN4 Mu +RPS6KA3 *RS1 Nc *HAP3K15 Ans 2*MBTPS2 Sn
^q 27 13 12.11 14.3 32.1 33.3 ^q 34 ^p 13.3 13.2 13.2 13.13	5*1+GJB2 Sn +ATP7B *UGGT2 Nm +LIG4 2*1+F10 Clot DPP9 ICAMI +TICAMI TICAMI *NDUFA11 Nc C3 *LDLR Mu TYK2 3+CACNAIA	36.3 14 13.2 22.1 23.2 24.1 24.3 31.1 32.12 32.13 32.31 ^q 32.22 ^p 11.23 20 11.22	+DNAJB6 ↓12 *NUBPL Mt NFKB1 IRF9 *ATLI Ans +SYNE2 *ACTNI Clot *TGFB3 Vs *+SPTLC2 Ans *TSHR Athy *FBLN5 Sn *+SERPINA6 Ans +DYNCIHI TRAF3 *KIF26A Ans *+ADSSL1 Mu 1*3+RIN2 Sn ↑THBD *MYH7B Mu	P 34.3 12 13.3 15.1 21.2 26.1 9 26.3 211 22.11	35*1+COL5AI Jt 2*NOTCHI Vs +ATPI0A +TRPMI IFITM3 3*CAPN3 Mu 2*1+DUOX2 Athv *DUOX42 Athv 18*4+FBNI Vs *+VPSI3C Nc 14*3+POLG Ans FURIN +IGF1R IFNARI-IFNAR2	13.11 12.3 11.2 12.1 12.2 13 22.1 22.2 23.2 23	3*2+MYH11 Mu 2*1+ABCC6 Jt +ABCC1 *UMOD Jt *PRRT2 Nc *TBX6 Bn +FUS 4*NOD2 Aim +SALL1 3*1+SLC6A2 Ans +SLC12A3 2*AARS1 Np *ZFHX3 N ^c *+PKD1L2 Vs 3*1+PLCG2 Aim 2*2+ZNF469 Jt +CECR1	^q 25.3 ^p 11.22 18 12.1 ^q 22.1 ^p 22.3 22.2 22.13 22.12 22.11 X	+SEPT9 FASN 2*PIEZO2 Mu +TTR NPCI PIK3C3 *TRPA1 Ans +DSEL *ARSF Bn ACE2 TLR7 CCDC22 *CLCN4 Mu +RPS6KA3 *RSI Nc *HMAP3K15 Ans 2*MBTPS2 Sn *PHEX Bn ↓ CCDC22 ↑+OTC +TIMP1
^q 27 13 12.11 14.3 32.1 33.3 ^q 34 ^p 13.3 13.2 13.13 13.12	5*1+GJB2 Sn +ATP7B *UGGT2 Nm +LIG4 2*1+F10 Clot DPP9 ICAM1 +TICAMI TICAM1 *NDUFA11 Nc C3 *LDLR Mu TYK2 3+CACNA1A *3+NOTCH3 Vs	36.3 14 13.2 22.1 23.2 24.1 24.3 31.1 32.12 32.13 32.31 ^q 32.22 P11.23 20 11.22 13.32	+DNAJB6 ↓12 *NUBPL Mt NFKB1 IRF9 *ATL1 Ans +SYNE2 *ACTNI Clot *TGFB3 Vs *ACTNI Clot *TGFB3 Vs *TGFB3 Vs *ACTNI Clot *TGFB3 Vs *TGFB3 Vs *TGFB2 Vs *TGFB3 Vs *TGF	P 34.3 12 13.3 15.1 21.2 26.1 926.3 21	35*1+COL5AI Jt 2*NOTCHI Vs +ATPI0A +TRPMI IFITM3 3*CAPN3 Mu 2*1+DUOX2 Athv *DUOXA2 Athv 18*4+FBNI Vs *+VPSI3C Nc 14*3+POLG Ans FURIN +IGF1R IFNARI-IFNAR2 *AIRE Aim	13.11 12.3 11.2 12.1 12.2 13 22.1 22.2 23.2 23	3*2+MYH11 Mu 2*1+ABCC6 Jt +ABCC1 *UMOD Jt *PRRT2 Nc *TBX6 Bn +FUS 4*NOD2 Aim +SALL1 3*1+SLC6A2 Ans +SLC12A3 2*AARSI Np *ZFHX3 N ^c *+PKD1L2 Vs 3*1+PLCG2 Aim 2*2+ZNF469 Jt +CECR1 +NEFH	^q 25.3 ^p 11.22 18 12.1 ^q 22.1 ^p 22.3 22.2 22.13 22.12 22.11 X 12	+SEPT9 FASN 2*PIEZO2 Mu +TTR NPC1 PIK3C3 *TRPA1 Ans +DSEL *ARSF Bn ACE2 TLR7 CCDC22 *CLCN4 Mu +RPS6KA3 *RSI Nc *HAP3K15 Ans 2*MBTPS2 Sn *PHEX Bn ↓ CCDC22 ↑+OTC +TIMP1 +EDA2R AR
^q 27 13 12.11 14.3 32.1 33.3 ^q 34 ^p 13.3 13.2 13.13 13.12	5*1+GJB2 Sn +ATP7B *UGGT2 Nm +LIG4 2*1+F10 Clot DPP9 ICAMI +TICAMI TICAMI *NDUFA11 Nc C3 *LDLR Mu TYK2 3+CACNAIA	36.3 14 13.2 22.1 23.2 24.1 24.3 31.1 32.12 32.13 32.31 ^q 32.22 P11.23 20 11.22 13.32	+DNAJB6 ↓12 *NUBPL Mt NFKB1 IRF9 *ATLI Ans +SYNE2 *ACTNI Clot *TGFB3 Vs *+SPTLC2 Ans *TSHR Athy *FBLN5 Sn *+SERPINA6 Ans +DYNCIHI TRAF3 *KIF26A Ans *+ADSSLI Mu 1*3+RIN2 Sn ↑THBD *MYH7B Mu +GNAS TMEM189 *LAMA5 Jt	P 34.3 12 13.3 15.1 21.2 26.1 9 26.3 211 22.11	35*1+COL5AI Jt 2*NOTCHI Vs +ATPI0A +TRPMI IFITM3 3*CAPN3 Mu 2*1+DUOX2 Athv *DUOX42 Athv 18*4+FBNI Vs *+VPSI3C Nc 14*3+POLG Ans FURIN +IGF1R IFNARI-IFNAR2	13.11 12.3 11.2 12.1 12.2 13 22.1 22.2 23.2 23	3*2+MYH11 Mu 2*1+ABCC6 Jt +ABCC1 *UMOD Jt *PRRT2 Nc *TBX6 Bn +FUS 4*NOD2 Aim +SALL1 3*1+SLC6A2 Ans +SLC12A3 2*AARS1 Np *ZFHX3 N ^c *+PKD1L2 Vs 3*1+PLCG2 Aim 2*2+ZNF469 Jt +CECR1 +NEFH +MORC2	^q 25.3 ^p 11.22 18 12.1 ^q 22.1 ^p 22.3 22.2 22.13 22.12 22.11 X	+SEPT9 FASN 2*PIEZO2 Mu +TTR NPC1 PIK3C3 *TRPAI Ans +DSEL *ARSF Bn ACE2 TLR7 CCDC22 *CLCN4 Mu +RPS6KA3 *RSI Nc *HAP3K15 Ans 2*MBTPS2 Sn *PHEX Bn ↓ CCDC22 ↑+OTC +TIMP1 +EDA2R AR *EDA1 Sn
^q 27 13 12.11 14.3 32.1 33.3 ^q 34 ^p 13.3 13.2 13.13 13.12 13.11	5*1+GJB2 Sn +ATP7B *UGGT2 Nm +LIG4 2*1+F10 Clot DPP9 ICAM1 +TICAMI TICAM1 *NDUFA11 Nc C3 *LDLR Mu TYK2 3+CACNA1A *3+NOTCH3 Vs	36.3 14 13.2 22.1 23.2 24.1 24.3 31.1 32.12 32.13 32.31 ^q 32.22 P11.23 20 11.22 13.32	+DNAJB6 ↓12 *NUBPL Mt NFKB1 IRF9 *ATLI Ans +SYNE2 *ATLI Ans +SYNE2 *ACTNI Clot *TGFB3 Vs *+SPTLC2 Ans *TSHR Athy *FBLN5 Sn *+SERPINA6 Ans +DYNCIHI TRAF3 *KIF26A Ans *+ADSSL1 Mu 1*3+RIN2 Sn ↑THBD *MYH7B Mu +GNAS TMEM189 *LAMA5 Jt +GATA5	P 34.3 12 13.3 15.1 21.2 26.1 9 26.3 211 22.11	35*1+COL5AI Jt 2*NOTCHI Vs +ATPI0A +TRPMI IFITM3 3*CAPN3 Mu 2*1+DUOX2 Athv *DUQX42 Athv 18*4+FBNI Vs *+VPSI3C Nc 14*3+POLG Ans FURIN +IGF1R 	13.11 12.3 11.2 12.1 12.2 13 22.1 22.2 23.2 23	3*2+MYH11 Mu 2*1+ABCC6 Jt +ABCC1 *UMOD Jt *PRRT2 Nc *TBX6 Bn +FUS 4*NOD2 Aim +SALL1 3*1+SLC6A2 Ans +SLC12A3 2*AARS1 Np *ZFHX3 N ^c *+PKD1L2 Vs 3*1+PLCG2 Aim 2*2+ZNF469 Jt +CECR1 +NEFH +MORC2 +TMPRSS6	^q 25.3 ^p 11.22 18 12.1 ^q 22.1 ^p 22.3 22.2 22.13 22.12 22.11 X 12	+SEPT9 FASN 2*PIEZO2 Mu +TTR NPCI PIK3C3 *TRPA1 Ans +DSEL *ARSF Bn ACE2 TLR7 CCDC22 *CLCN4 Mu +RPS6KA3 *RSI Nc *HAP3K15 Ans 2*MBTPS2 Sn *PHEX Bn ↓ CCDC22 ↑+OTC +TIMP1 +EDA2R AR *EDA1 Sn 2*MED12 Nc
^q 27 13 12.11 14.3 32.1 33.3 ^q 34 ^p 13.3 13.2 13.13 13.12	5*1+GJB2 Sn +ATP7B *UGGT2 Nm +LIG4 2*1+F10 Clot DPP9 ICAM1 +TICAMI TICAM1 *NDUFA11 Nc C3 *LDLR Mu TYK2 3+CACNA1A *3+NOTCH3 Vs	36.3 14 13.2 22.1 23.2 24.1 24.3 31.1 32.12 32.13 32.31 ^q 32.22 P11.23 20 11.22 13.32	+DNAJB6 ↓12 *NUBPL Mt NFKB1 IRF9 *ATLI Ans +SYNE2 *ACTNI Clot *TGFB3 Vs *+SPTLC2 Ans *TSHR Athy *FBLN5 Sn *+SERPINA6 Ans +DYNCIHI TRAF3 *KIF26A Ans *+ADSSLI Mu 1*3+RIN2 Sn ↑THBD *MYH7B Mu +GNAS TMEM189 *LAMA5 Jt	P 34.3 12 13.3 15.1 21.2 26.1 9 26.3 211 22.11	35*1+COL5AI Jt 2*NOTCHI Vs +ATPI0A +TRPMI IFITM3 3*CAPN3 Mu 2*1+DUOX2 Athv *DUOX42 Athv 18*4+FBNI Vs *+VPSI3C Nc 14*3+POLG Ans FURIN +IGF1R HIGF1R IFNARI-IFNAR2 *AIRE Aim 2*UBE2G2 Jt	$\begin{array}{c} 13.11\\ 12.3\\ 11.2\\ \hline 16\\ 12.1\\ 12.2\\ 13\\ 22.1\\ 23.2\\ 23.2\\ 23.3\\ @ 24.2\\ \hline 11.1\\ 12.2\\ 11.1\\ 12.2\\ 12.3\\ 13.2\\ \end{array}$	3*2+MYH11 Mu 2*1+ABCC6 Jt +ABCC1 *UMOD Jt *PRRT2 Nc *TBX6 Bn +FUS 4*NOD2 Aim +SALL1 3*1+SLC6A2 Ans +SLC12A3 2*AARS1 Np *ZFHX3 N ^c *+PKD1L2 Vs 3*1+PLCG2 Aim 2*2+ZNF469 Jt +CECR1 +NEFH +MORC2 +TMPRSS6 *TCF20 Nc PNPLA3	^q 25.3 ^p 11.22 18 ^{12.1} ^q 22.1 ^p 22.3 ^{22.2} ^{22.13} ^{22.12} ^{22.11} X ¹² ^{13.1}	+SEPT9 FASN 2*PIEZO2 Mu +TTR NPC1 PIK3C3 *TRPA1 Ans +DSEL *ARSF Bn ACE2 TLR7 CCDC22 *CLCN4 Mu +RPS6KA3 *RSI Nc *HAP3K15 Ans 2*MBTPS2 Sn *PHEX Bn ↓ CCDC22 ↑+OTC +TIMP1 +EDA2R AR *EDA1 Sn 2*MED12 Nc +PHKA1
^q 27 13 12.11 14.3 32.1 33.3 ^q 34 ^p 13.3 13.2 13.13 13.12 13.11	5*1+GJB2 Sn +ATP7B *UGGT2 Nm +LIG4 2*1+F10 Clot DPP9 ICAM1 +TICAMI TICAM1 *NDUFA11 Nc C3 *LDLR Mu TYK2 3+CACNA1A *3+NOTCH3 Vs	36.3 14 13.2 22.1 23.2 24.1 24.3 31.1 32.12 32.13 32.31 ^q 32.22 P11.23 20 11.22 13.32	+DNAJB6 ↓12 *NUBPL Mt NFKB1 IRF9 *ATLI Ans +SYNE2 *ATLI Ans +SYNE2 *ACTNI Clot *TGFB3 Vs *+SPTLC2 Ans *TSHR Athy *FBLN5 Sn *+SERPINA6 Ans +DYNCIHI TRAF3 *KIF26A Ans *+ADSSL1 Mu 1*3+RIN2 Sn ↑THBD *MYH7B Mu +GNAS TMEM189 *LAMA5 Jt +GATA5	P 34.3 12 13.3 15.1 21.2 26.1 9 26.3 211 22.11	35*1+COL5AI Jt 2*NOTCHI Vs +ATPI0A +TRPMI IFITM3 3*CAPN3 Mu 2*1+DUOX2 Athv *DUQX42 Athv 18*4+FBNI Vs *+VPSI3C Nc 14*3+POLG Ans FURIN +IGF1R 	$\begin{array}{c} 13.11\\ 12.3\\ 11.2\\ \hline 16\\ 12.1\\ 12.2\\ 13\\ 22.1\\ 23.2\\ 23.2\\ 23.3\\ @ 24.2\\ \hline 22.2\\ 23.3\\ @ 24.2\\ \hline 11.1\\ 12.2\\ 11.1\\ 12.2\\ 12.3\\ 13.2\\ \end{array}$	3*2+MYH11 Mu 2*1+ABCC6 Jt +ABCC1 *UMOD Jt *PRRT2 Nc *TBX6 Bn +FUS 4*NOD2 Aim +SALL1 3*1+SLC6A2 Ans +SLC12A3 2*AARS1 Np *ZFHX3 N ^c *+PKD1L2 Vs 3*1+PLCG2 Aim 2*2+ZNF469 Jt +CECR1 +NEFH +MORC2 +TMPRSS6	^q 25.3 ^p 11.22 18 12.1 ^q 22.1 ^p 22.3 22.2 22.13 22.12 22.11 X 12	+SEPT9 FASN 2*PIEZO2 Mu +TTR NPCI PIK3C3 *TRPAI Ans +DSEL *ARSF Bn ACE2 TLR7 CCDC22 *CLCN4 Mu +RPS6KA3 *RSI Nc *HAP3K15 Ans 2*MBTPS2 Sn *PHEX Bn ↓ CCDC22 ↑+OTC +TIMP1 +EDA2R AR *EDA1 Sn 2*MED12 Nc +PHKA1 *+ATP7A Nm
^q 27 13 12.11 14.3 32.1 33.3 q34 ^p 13.3 13.12 13.13 13.12 13.11 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 1	5*1+GJB2 Sn +ATP7B *UGGT2 Nm +LIG4 2*1+F10 Clot DPP9 ICAM1 +TICAM1 TICAM1 *NDUFA11 Nc C3 *LDLR Mu TYK2 3+CACNAIA *3+NOTCH3 Vs 2+GDF1 MEF2B	36.3 14 13.2 22.1 23.2 24.1 24.3 31.1 32.12 32.13 32.31 ^q 32.22 P11.23 20 11.22 13.32	+DNAJB6 ↓12 *NUBPL Mt NFKB1 IRF9 *ATLI Ans +SYNE2 *ACTNI Clot *TGFB3 Vs *+SPTLC2 Ans *TSHR Athy *FBLN5 Sn *+SERPINA6 Ans +DYNCIHI TRAF3 *KIF26A Ans *+ADSSLI Mu 1*3+RIN2 Sn ↑THBD *MYH7B Mu +GNAS TMEM189 *LAMA5 Jt +GATA5 5*COL9A3 Bn	P 34.3 12 13.3 15.1 21.2 26.1 9 26.3 211 22.11	35*1+COL5AI Jt 2*NOTCHI Vs +ATPIOA +TRPMI IFITM3 3*CAPN3 Mu 2*1+DUOX2 Athv *DUOXA2 Athv 18*4+FBNI Vs *+VPSI3C Nc 14*3+POLG Ans FURIN +IGF1R +IGF1R IFNARI-IFNAR2 *AIRE Aim 2*UBE2G2 Jt *COL18A1 Nc 4*COL6A1 Mu	$\begin{array}{c} 13.11\\ 12.3\\ 11.2\\ \hline 16\\ 12.1\\ 12.2\\ 13\\ 22.1\\ 23.2\\ 23.3\\ @ 24.2\\ \hline 23.3\\ @ 24.2\\ \hline 11.1\\ 12.2\\ 11.1\\ 12.2\\ 12.3\\ 13.2\\ \end{array}$	3*2+MYH11 Mu 2*1+ABCC6 Jt +ABCC1 *UMOD Jt *PRRT2 Nc *TBX6 Bn +FUS 4*NOD2 Aim +SALL1 3*1+SLC6A2 Ans +SLC12A3 2*AARS1 Np *ZFHX3 N ^c *+PKD1L2 Vs 3*1+PLCG2 Aim 2*2+ZNF469 Jt +CECR1 +NEFH +MORC2 +TMPRSS6 *TCF20 Nc PNPLA3	^q 25.3 ^p 11.22 18 ^{12.1} ^q 22.1 ^p 22.3 ^{22.2} ^{22.13} ^{22.12} ^{22.11} X ¹² ^{13.1}	+SEPT9 FASN 2*PIEZO2 Mu +TTR NPC1 PIK3C3 *TRPA1 Ans +DSEL *ARSF Bn ACE2 TLR7 CCDC22 *CLCN4 Mu +RPS6KA3 *RSI Nc *HAP3K15 Ans 2*MBTPS2 Sn *PHEX Bn ↓ CCDC22 ↑+OTC +TIMP1 +EDA2R AR *EDA1 Sn 2*MED12 Nc +PHKA1
^q 27 13 12.11 14.3 32.1 33.3 ^q 34 ^p 13.3 13.2 13.13 13.12 13.11 14 14 15 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13	5*1+GJB2 Sn +ATP7B *UGGT2 Nm +LIG4 2*1+F10 Clot DPP9 ICAMI +TICAMI TICAMI *NDUFAII Nc C3 *LDLR Mu TYK2 3+CACNAIA *3+NOTCH3 Vs 2+GDF1 MEF2B	36.3 14 13.2 22.1 23.2 24.1 24.3 31.1 32.12 32.13 32.31 ^q 32.22 P11.23 20 11.22 13.32	+DNAJB6 ↓12 *NUBPL Mt NFKB1 IRF9 *ATL1 Ans +SYNE2 *ACTNI Clot *TGFB3 Vs *ACTNI Clot *TGFB3 Vs *TGFB3 Vs *TGFB3 Vs *TGFB3 Vs *ACTNI Clot *TGFB3 Vs *TGFB3 Vs *TG	P 34.3 12 13.3 15.1 21.2 26.1 9 26.3 21 22.11 9 22.3	35*1+COL5A1 Jt 2*NOTCH1 Vs +ATP10A +TRPM1 IFITM3 3*CAPN3 Mu 2*1+DUOX2 Athv *DUOX42 Athv 18*4+FBN1 Vs *+VPS13C Nc 14*3+POLG Ans FURIN +IGF1R IFNAR1-IFNAR2 *AIRE Aim 2*UBE2G2 Jt *COL18A1 Nc 4*COL6A1 Mu 2*COL6A2 Mu	$\begin{array}{c} 13.11\\ 12.3\\ 11.2\\ \hline 16\\ 12.1\\ 12.2\\ 13\\ 22.1\\ 22.2\\ 23.2\\ 23.3\\ @ 24.2\\ \hline 22.2\\ 23.3\\ @ 24.2\\ \hline 11.1\\ 12.2\\ 12.3\\ 13.2\\ @ 13.33\\ \hline \end{array}$	3*2+MYH11 Mu 2*1+ABCC6 Jt +ABCC1 *UMOD Jt *PRRT2 Nc *TBX6 Bn +FUS 4*NOD2 Aim +SALL1 3*1+SLC6A2 Ans +SLC12A3 2*AARS1 Np *ZFHX3 N ^c *+PKD1L2 Vs 3*1+PLCG2 Aim 2*2+ZNF469 Jt +CECR1 +NEFH +MORC2 +TMPRSS6 *TCF20 Nc PNPLA3	^q 25.3 ^p 11.22 18 ^{12.1} ^q 22.1 ^p 22.3 ^{22.2} ^{22.12} ^{22.12} ^{22.12} ^{22.11} X ¹² ^{13.1} ^{21.11}	+SEPT9 FASN 2*PIEZO2 Mu +TTR NPCI PIK3C3 *TRPAI Ans +DSEL *ARSF Bn ACE2 TLR7 CCDC22 *CLCN4 Mu +RPS6KA3 *RSI Nc *HAP3K15 Ans 2*MBTPS2 Sn *PHEX Bn ↓ CCDC22 ↑+OTC +TIMPI +EDA2R AR *EDA1 Sn 2*MED12 Nc +PHKAI *+ATP7A Nm
⁴ 27 13 12.11 14.3 32.1 33.3 ⁹ 13.3 ^{13.2} 13.12 13.13 13.12 13.11 19 13.2 13.21 13.12 13.13 13.12 13.13 13.12 13.13 13.12 13.13 13.12 13.13 13.12 13.13 13.12 13.13 13.12 13.13 13.12 13.13 13.12 13.21 13.13 13.12 13.13 13.12 13.21 13.13 13.12 13.21 13.13 13.12 13.13 13.22 13.13 13.12 13.21 13.21 13.13 13.12 13.13 13.22 13.13 13.22 13.13 13.12 13.13 13.22 13.13 13.22 13.13 13.22 13.13 13.22 13.13 13.22 13.13 13.22 13.13 13.22 13.13 13.22 13.13 13.22 13.21 13.21 13.21 13.21 13.22 13.21 13.22 13.21 13.22 13.21 13.22 13.21 13.22 13.21 13.22 13.21 13.22 13.21 13.22 13.22 13.22 13.22 13.22 13.22 13.22 13.22 13.22 13.22 13.22 13.22 13.22 13.22 13.22 13.22 13.22 13.23 13.22 13.23 13.22 13.23 13.22 13.23 13.22 13.23 13.23 13.23 13.23 13.22 13.31 13.22 13.23 13.23 13.22 13.23 13.23 13.23 13.23 13.23 13.23 13.23 13.23 13.23 13.23 13.23 13.23 13.22 13.23 13.23 13.22 13.23 13.23 13.22 13.23 13.22 13.23 13.22 13.23 13.22 13.23 13.22 13.23 13.22 13.23 13.22 13.23 13.2	5*1+GJB2 Sn +ATP7B *UGGT2 Nm +LIG4 2*1+F10 Clot DPP9 ICAM1 +TICAMI TICAM1 *NDUFA11 Nc C3 *LDLR Mu TYK2 3+CACNA1A *3+NOTCH3 Vs 2+GDF1 MEF2B ↓12 CCNE1 3*RYR1 Mu IFNL4 +CEACAM16	36.3 14 13.2 22.1 23.2 24.1 24.3 31.1 32.12 32.13 32.31 ^q 32.22 ^p 11.23 20 ^{11.22} 13.32 ^q 13.33	+DNAJB6 ↓12 *NUBPL Mt NFKB1 IRF9 *ATLI Ans +SYNE2 *ATLI Ans +SYNE2 *ACTNI Clot *TGFB3 Vs *FBLN5 Sn *+SERPINA6 Ans *FBLN5 Sn *+SERPINA6 Ans *DYNCIHI TRAF3 *KIF26A Ans *+ADSSL1 Mu 1*3+RIN2 Sn ↑THBD *MYH7B Mu +GNAS TMEM189 *LAMA5 Jt +GATA5 5*COL9A3 Bn *RTELI Sn	P 34.3 12 13.3 15.1 21.2 26.1 9 26.3 21 22.11 9 22.3	35*1+COL5AI Jt 2*NOTCHI Vs +ATPIOA +TRPMI IFITM3 3*CAPN3 Mu 2*1+DUOX2 Athv *DUQX42 Athv 18*4+FBNI Vs *+VPSI3C Nc 14*3+POLG Ans FURIN +IGF1R +IGF1R IFNARI-IFNAR2 *AIRE Aim 2*UBE2G2 Jt *COL18A1 Nc 4*COL6A1 Mu 2*COL6A2 Mu TMPSS2	13.11 12.3 11.2 16 12.1 12.2 13 22.1 22.2 23.2 23.3 ° 24.2 22 11.1 12.2 12.3 ° 24.2 11.1 12.2 ° 13.33 Nc Ne	3*2+MYH11 Mu 2*1+ABCC6 Jt +ABCC1 *UMOD Jt *PRRT2 Nc *TBX6 Bn +FUS 4*NOD2 Aim +SALL1 3*1+SLC6A2 Ans +SLC12A3 2*AARS1 Np *ZFHX3 N ^c *+PKD1L2 Vs 3*1+PLCG2 Aim 2*2+ZNF469 Jt 	^q 25.3 ^p 11.22 18 12.1 ^q 22.1 ^p 22.3 22.2 22.13 22.12 22.11 X 12 13.1 21.1 26.1	+SEPT9 FASN 2*PIEZO2 Mu +TTR NPC1 PIK3C3 *TRPA1 Ans +DSEL *ARSF Bn ACE2 TLR7 CCDC22 *CLCN4 Mu +RPS6KA3 *RSI Nc *HAP3K15 Ans 2*MBTPS2 Sn *PHEX Bn ↓ CCDC22 ↑+OTC +TIMP1 +EDA2R AR *EDA1 Sn 2*MED12 Nc +PHKA1 *+ATP7A Nm *BCORL1 Nc
⁴ 27 13 12.11 14.3 32.1 33.3 ⁹ 13.3 ^{13.2} 13.13 13.12 13.11 19 13.2 13.21 13.21 13.21 13.21 13.21 13.21	5*1+GJB2 Sn +ATP7B *UGGT2 Nm +LIG4 2*1+F10 Clot DPP9 ICAM1 +TICAM1 TICAM1 *NDUFA11 Nc C3 *LDLR Mu TYK2 3+CACNA1A *3+NOTCH3 Vs 2+GDF1 MEF2B ↓12 CCNE1 3*RYR1 Mu IFNL4 +CEACAM16 +SYMPK APOE	36.3 1.4 13.2 22.1 23.2 24.1 24.3 31.1 32.12 32.31 q32.22 P11.23 20 11.22 13.32 q 13.33 Black* Black +	+DNAJB6 ↓12 *NUBPL Mt NFKB1 IRF9 *ATLI Ans +SYNE2 *ACTNI Clot *TGFB3 Vs *FBLN5 Sn *+SPTLC2 Ans *TSHR Athy *FBLN5 Sn *+SERPINA6 Ans +DYNCIHI TRAF3 *KIF26A Ans *HDYNCIHI TRAF3 *KIF26A Ans *+ADSSL1 Mu 1*3+RIN2 Sn ^THBD *MYH7B Mu +GNAS TMEMI89 *LAMA5 Jt +GATA5 5*COL9A3 Bn *RTEL1 Sn +TNFRSF6B EDS-one prime varian EDS-additional varian	P 34.3 12 13.3 15.1 21.2 26.1 9 26.3 21 22.11 9 22.3	35*1+COL5AI Jt 2*NOTCHI Vs +ATPI0A +TRPMI IFITM3 3*CAPN3 Mu 2*1+DUOX2 Athv *DUOX42 Athv 18*4+FBNI Vs *+VPSI3C Nc 14*3+POLG Ans FURIN +IGF1R IFNAR1-IFNAR2 *AIRE Aim 2*UBE2G2 Jt *COL18A1 Nc 4*COL6A1 Mu 2*COL6A2 Mu TMPSS2 Jt Joint Sn Skin	13.11 12.3 11.2 12.1 12.2 13 22.1 22.2 23.3 9 24.2 23.3 9 24.2 11.1 12.2 12.3 13.2 9 13.33 Nc Nc Np Nc	3*2+MYH11 Mu 2*1+ABCC6 Jt +ABCC1 *UMOD Jt *PRRT2 Nc *TBX6 Bn +FUS 4*NOD2 Aim +SALL1 3*1+SLC6A2 Ans +SLC12A3 2*AARSI Np *ZFHX3 N ^c *+PKD1L2 Vs 3*1+PLCG2 Aim 2*2+ZNF469 Jt +CECR1 +NEFH +MORC2 +TMPRSS6 *TCF20 Nc PNPLA3 *2+TYMP Ans rve-central nervous system rve-peripheral NS	^q 25.3 ^p 11.22 18 ^{12.1} ^q 22.1 ^p 22.3 ^{22.2} ^{22.12} ^{22.12} ^{22.12} ^{22.11} X ¹² ^{13.1} ^{21.1} ^{21.1} ^{26.1} ^{26.2}	+SEPT9 FASN 2*PIEZO2 Mu +TTR NPC1 PIK3C3 *TRPA1 Ans +DSEL *ARSF Bn ACE2 TLR7 CCDC22 *CLCN4 Mu +RPS6KA3 *RS1 Nc *HAP3K15 Ans 2*MBTPS2 Sn *PHEX Bn ↓ CCDC22 ↑+OTC +TIMP1 +EDA2R AR *EDA1 Sn 2*MED12 Nc +PHKA1 *+ATP7A Nm *BCORL1 Nc +PHF6 CD40LG
⁴ 27 13 12.11 14.3 32.1 33.3 ⁹ 13.3 ^{13.2} 13.12 13.13 13.12 13.11 19 13.2 13.31 13.32 13.33	5*1+GJB2 Sn +ATP7B *UGGT2 Nm +LIG4 2*1+F10 Clot DPP9 ICAM1 +TICAMI TICAM1 *NDUFA11 Nc C3 *LDLR Mu TYK2 3+CACNA1A *3+NOTCH3 Vs 2+GDF1 MEF2B ↓12 CCNE1 3*RYR1 Mu IFNL4 +CEACAM16 +SYMPK APOE +TRPM4 IRF3 NAPSA	36.3 1.4 13.2 22.1 23.2 24.1 24.3 31.1 32.12 32.13 32.31 ^q 32.22 ^p 11.23 20 ^{11.22} 13.32 ^q 13.33 ^{Black*} Black + Red*+	+DNAJB6 ↓12 *NUBPL Mt NFKB1 IRF9 *ATLI Ans +SYNE2 *ACTNI Clot *TGFB3 Vs *+SPTLC2 Ans *TSHR Athy *FBLN5 Sn *+SERPINA6 Ans +DYNCIHI TRAF3 *KIF26A Ans *+ADSSLI Mu 1*3+RIN2 Sn ↑THBD *MYH7B Mu +GNAS TMEM189 *LAMA5 Jt +GATA5 5*COL9A3 Bn *RTEL1 Sn +TNFRSF6B EDS-one prime varian EDS-additional varian EDS-many variants	P 34.3 12 13.3 15.1 21.2 26.1 9 26.3 21 22.11 9 22.3	35*1+COL5A1 Jt 2*NOTCH1 Vs +ATP10A +TRPM1 IFITM3 3*CAPN3 Mu 2*1+DUOX2 Athv *DUOXA2 Athv 18*4+FBN1 Vs *+VPS13C Nc 14*3+POLG Ans FURIN +IGF1R IFNAR1-IFNAR2 *AIRE Aim 2*UBE2G2 Jt *COL18A1 Nc 4*COL6A1 Mu 2*COL6A2 Mu TMPSS2 Jt Joint Sn Skin Bn Bone	13.11 12.3 11.2 16 12.1 12.2 13 22.1 22.2 23.2 23.3 ° 24.2 23.2 23.3 ° 24.2 2 24.2 2 24.2 ° 24.2 °	3*2+MYH11 Mu 2*1+ABCC6 Jt +ABCC1 *UMOD Jt *PRRT2 Nc *TBX6 Bn +FUS 4*NOD2 Aim +SALL1 3*1+SLC6A2 Ans +SLC12A3 2*AARS1 Np *ZFHX3 N ^c *+PKD1L2 Vs 3*1+PLCG2 Aim 2*2+ZNF469 Jt +CECR1 +NEFH +MORC2 +TMPRSS6 *TCF20 Nc PNPLA3 *2+TYMP Ans rve-central nervous system rve-peripheral NS uromuscular-general	^q 25.3 ^p 11.22 18 ^{12.1} ^q 22.1 ^p 22.3 ^{22.2} ^{22.12} ^{22.12} ^{22.12} ^{22.11} X ¹² ^{13.1} ^{21.1} ^{21.1} ^{26.1} ^{26.2}	+SEPT9 FASN 2*PIEZO2 Mu +TTR NPC1 PIK3C3 *TRPA1 Ans +DSEL *ARSF Bn ACE2 TLR7 CCDC22 *CLCN4 Mu +RPS6KA3 *RSI Nc *HAP3K15 Ans 2*MBTPS2 Sn *PHEX Bn ↓ CCDC22 ↑+OTC +TIMP1 +EDA2R AR *EDA1 Sn 2*MED12 Nc +PHKA1 *+ATP7A Nm *BCORL1 Nc +PHF6 CD40LG *IDS Jt ATP6AP1
12.11 14.3 32.1 33.3 34 9 13.3 13.2 13.13 13.12 13.11 13.2 13.11 13.2 13.31 13.32 13.31 13.32 13.33	5*1+GJB2 Sn +ATP7B *UGGT2 Nm +LIG4 2*1+F10 Clot DPP9 ICAMI +TICAMI TICAMI *NDUFAII Nc C3 *LDLR Mu TYK2 3+CACNAIA *3+NOTCH3 Vs 2+GDF1 MEF2B ↓12 CCNEI 3*RYRI Mu IFNL4 +CEACAMI6 +SYMPK APOE +TRPM4 IRF3 NAPSA 3*4+NLRP12 Aim	36.3 1.4 13.2 22.1 23.2 24.1 24.3 31.1 32.12 32.13 32.31 q32.22 P11.23 20 11.22 13.32 q 13.33 Black* Black* Black + Red*+ Blue	+DNAJB6 ↓12 *NUBPL Mt NFKB1 IRF9 *ATLI Ans +SYNE2 *ACTNI Clot *TGFB3 Vs *FBLN5 Sn *FBLN5 Sn *COL943 Bn *RTELI Sn +TNFRSF6B EDS-one prime varian EDS-additional varian EDS-many variants COVID-related gene	P 34.3 12 13.3 15.1 21.2 26.1 9 26.3 21 22.11 9 22.3	35*1+COL5AI Jt 2*NOTCHI Vs +ATPI0A +TRPMI IFITM3 3*CAPN3 Mu 2*1+DUOX2 Athv *DUOX42 Athv 18*4+FBNI Vs *+VPSI3C Nc 14*3+POLG Ans FURIN +IGF1R IFNAR1-IFNAR2 *AIRE Aim 2*UBE2G2 Jt *COL18AI Nc 4*COL6A1 Mu 2*COL6A2 Mu TMPSS2 Jt Joint Sn Skin Bn Bone Mu Muscle	13.11 12.3 11.2 12.1 12.2 13 22.1 22.2 23.3 9 24.2 23.3 9 24.2 11.1 12.2 12.3 13.2 9 13.33 Nc Ne Np Ne Nm Ne Ans Au	3*2+MYH11 Mu 2*1+ABCC6 Jt +ABCC1 *UMOD Jt *PRRT2 Nc *TBX6 Bn +FUS 4*NOD2 Aim +SALL1 3*1+SLC6A2 Ans +SLC12A3 2*AARS1 Np *ZFHX3 N ^c *+PKD1L2 Vs 3*1+PLCG2 Aim 2*2+ZNF469 Jt +CECR1 +NEFH +MORC2 +TMPRSS6 *TCF20 Nc PNPLA3 *2+TYMP Ans rve-central nervous system rve-peripheral NS uromuscular-general tonomic-general	^q 25.3 ^p 11.22 18 ^{12.1} ^q 22.1 ^p 22.3 ^{22.2} ^{22.12} ^{22.12} ^{22.12} ^{22.11} X ¹² ^{13.1} ^{21.1} ^{21.1} ^{26.1} ^{26.2}	+SEPT9 FASN 2*PIEZO2 Mu +TTR NPC1 PIK3C3 *TRPA1 Ans +DSEL *ARSF Bn ACE2 TLR7 CCDC22 *CLCN4 Mu +RPS6KA3 *RSI Nc *HAAP3K15 Ans 2*MBTPS2 Sn *PHEX Bn ↓ CCDC22 ↑+OTC +TIMP1 +EDA2R AR *EDA1 Sn 2*MED12 Nc +PHKA1 *+ATP7A Nm *BCORL1 Nc +PHF6 CD40LG *IDS Jt ATP6AP1 *MTM1 Mu ZNF275 *SLC6A8 Ans IKBKG
⁴ 27 13 12.11 14.3 32.1 33.3 ⁹ 13.3 ^{13.2} 13.12 13.13 13.12 13.11 19 13.2 13.31 13.32 13.33	5*1+GJB2 Sn +ATP7B *UGGT2 Nm +LIG4 2*1+F10 Clot DPP9 ICAM1 +TICAMI TICAM1 *NDUFA11 Nc C3 *LDLR Mu TYK2 3+CACNA1A *3+NOTCH3 Vs 2+GDF1 MEF2B ↓12 CCNE1 3*RYR1 Mu IFNL4 +CEACAM16 +SYMPK APOE +TRPM4 IRF3 NAPSA	36.3 1.4 13.2 22.1 23.2 24.1 24.3 31.1 32.12 32.13 32.31 ^q 32.22 ^p 11.23 20 ^{11.22} 13.32 ^q 13.33 ^{Black*} Black + Red*+	+DNAJB6 ↓12 *NUBPL Mt NFKB1 IRF9 *ATLI Ans +SYNE2 *ACTNI Clot *TGFB3 Vs *+SPTLC2 Ans *TSHR Athy *FBLN5 Sn *+SERPINA6 Ans +DYNCIHI TRAF3 *KIF26A Ans *+ADSSLI Mu 1*3+RIN2 Sn ↑THBD *MYH7B Mu +GNAS TMEM189 *LAMA5 Jt +GATA5 5*COL9A3 Bn *RTEL1 Sn +TNFRSF6B EDS-one prime varian EDS-additional varian EDS-many variants	P 34.3 12 13.3 15.1 21.2 26.1 9 26.3 21 22.11 9 22.3	35*1+COL5AI Jt 2*NOTCHI Vs +ATPI0A +TRPMI IFITM3 3*CAPN3 Mu 2*1+DUOX2 Athv *DUQX42 Athv 18*4+FBNI Vs *+VPSI3C Nc 14*3+POLG Ans FURIN +IGF1R 	13.11 12.3 11.2 12.1 12.2 13 22.1 22.2 23.3 ° 24.2 23.3 ° 24.2 11.1 12.2 12.3 ° 24.2 12.3 13.2 ° 13.33 Nc Ne Np Ne Nm Ne Ans Au Aim Au	3*2+MYH11 Mu 2*1+ABCC6 Jt +ABCC1 *UMOD Jt *PRRT2 Nc *TBX6 Bn +FUS 4*NOD2 Aim +SALL1 3*1+SLC6A2 Ans +SLC12A3 2*AARSI Np *ZFHX3 N ^c *+PKD1L2 Vs 3*1+PLCG2 Aim 2*2+ZNF469 Jt 	^q 25.3 ^p 11.22 18 ^{12.1} ^q 22.1 ^p 22.3 ^{22.2} ^{22.13} ^{22.12} ^{22.12} ^{22.11} X ¹² ^{13.1} ^{21.1} ^{21.1} ^{26.1} ^{26.2}	+SEPT9 FASN 2*PIEZO2 Mu +TTR NPC1 PIK3C3 *TRPA1 Ans +DSEL *ARSF Bn ACE2 TLR7 CCDC22 *CLCN4 Mu +RPS6KA3 *RSI Nc *HAP3K15 Ans 2*MBTPS2 Sn *PHEX Bn ↓ CCDC22 ↑+OTC +TIMP1 +EDA2R AR *EDA1 Sn 2*MED12 Nc +PHKA1 *+ATP7A Nm *BCORL1 Nc +PHF6 CD40LG *IDS Jt ATP6AP1 *MTM1 Mu ZNF275 *SLC6A8 Ans IKBKG *+LICAM Nc
⁴ 27 13 12.11 14.3 32.1 33.3 ⁹ 13.3 ^{13.2} 13.12 13.13 13.12 13.11 19 13.2 13.31 13.32 13.33	5*1+GJB2 Sn +ATP7B *UGGT2 Nm +LIG4 2*1+F10 Clot DPP9 ICAMI +TICAMI TICAMI *NDUFAII Nc C3 *LDLR Mu TYK2 3+CACNAIA *3+NOTCH3 Vs 2+GDF1 MEF2B ↓12 CCNEI 3*RYRI Mu IFNL4 +CEACAMI6 +SYMPK APOE +TRPM4 IRF3 NAPSA 3*4+NLRP12 Aim	36.3 1.4 13.2 22.1 23.2 24.1 24.3 31.1 32.12 32.13 32.31 q32.22 P11.23 20 11.22 13.32 q 13.33 Black* Black* Black + Red*+ Blue	+DNAJB6 ↓12 *NUBPL Mt NFKB1 IRF9 *ATLI Ans +SYNE2 *ACTNI Clot *TGFB3 Vs *FBLN5 Sn *FBLN5 Sn *COL943 Bn *RTELI Sn +TNFRSF6B EDS-one prime varian EDS-additional varian EDS-many variants COVID-related gene	P 34.3 12 13.3 15.1 21.2 26.1 9 26.3 21 22.11 9 22.3	35*1+COL5AI Jt 2*NOTCHI Vs +ATPI0A +TRPMI IFITM3 3*CAPN3 Mu 2*1+DUOX2 Athv *DUOX42 Athv 18*4+FBNI Vs *+VPSI3C Nc 14*3+POLG Ans FURIN +IGF1R HIGF1R IFNARI-IFNAR2 *AIRE Aim 2*UBE2G2 Jt *COL18AI Nc 4*COL6A1 Mu 2*COL6A2 Mu TMPSS2 Jt Joint Sn Skin Bn Bone Mu Muscle	13.11 12.3 11.2 16 12.1 12.2 13 22.1 22.2 23.2 23.3 ° 24.2 22 11.1 12.2 23.3 ° 24.2 22 11.1 12.2 12.3 13.2 ° 13.33 Nc Ne Nm Ne Ans Au Apor Au	3*2+MYH11 Mu 2*1+ABCC6 Jt +ABCC1 *UMOD Jt *PRRT2 Nc *TBX6 Bn +FUS 4*NOD2 Aim +SALL1 3*1+SLC6A2 Ans +SLC12A3 2*AARS1 Np *ZFHX3 N ^c *+PKD1L2 Vs 3*1+PLCG2 Aim 2*2+ZNF469 Jt +CECR1 +NEFH +MORC2 +TMPRSS6 *TCF20 Nc PNPLA3 *2+TYMP Ans rve-central nervous system rve-peripheral NS uromuscular-general tonomic-general	^q 25.3 ^p 11.22 18 ^{12.1} ^q 22.1 ^p 22.3 ^{22.2} ^{22.13} ^{22.12} ^{22.12} ^{22.11} X ¹² ^{13.1} ^{21.1} ^{21.1} ^{26.1} ^{26.2}	+SEPT9 FASN 2*PIEZO2 Mu +TTR NPC1 PIK3C3 *TRPA1 Ans +DSEL *ARSF Bn ACE2 TLR7 CCDC22 *CLCN4 Mu +RPS6KA3 *RSI Nc *HAAP3K15 Ans 2*MBTPS2 Sn *PHEX Bn ↓ CCDC22 ↑+OTC +TIMP1 +EDA2R AR *EDA1 Sn 2*MED12 Nc +PHKA1 *+ATP7A Nm *BCORL1 Nc +PHF6 CD40LG *IDS Jt ATP6AP1 *MTM1 Mu ZNF275 *SLC6A8 Ans IKBKG

Figure 2a

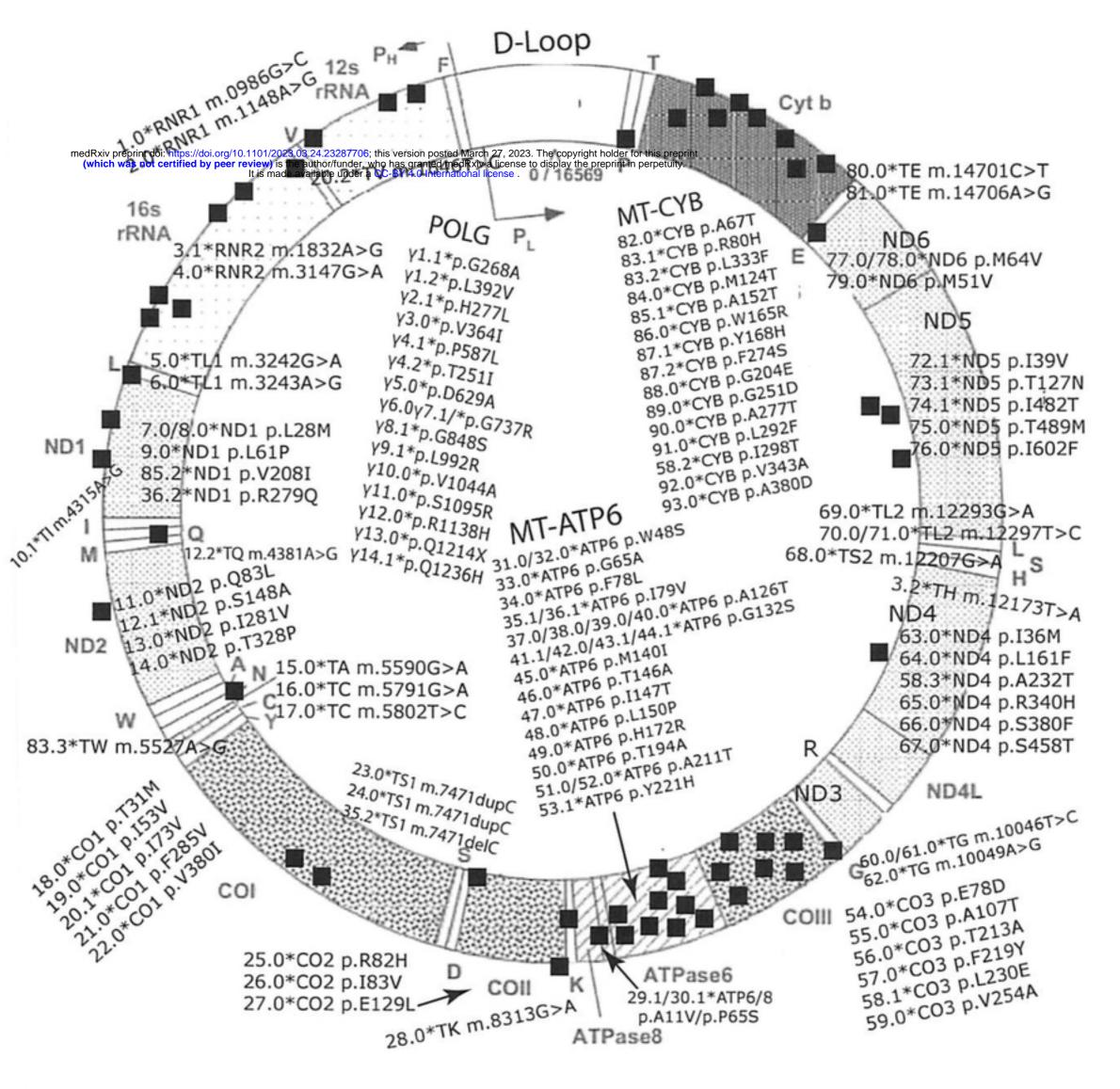
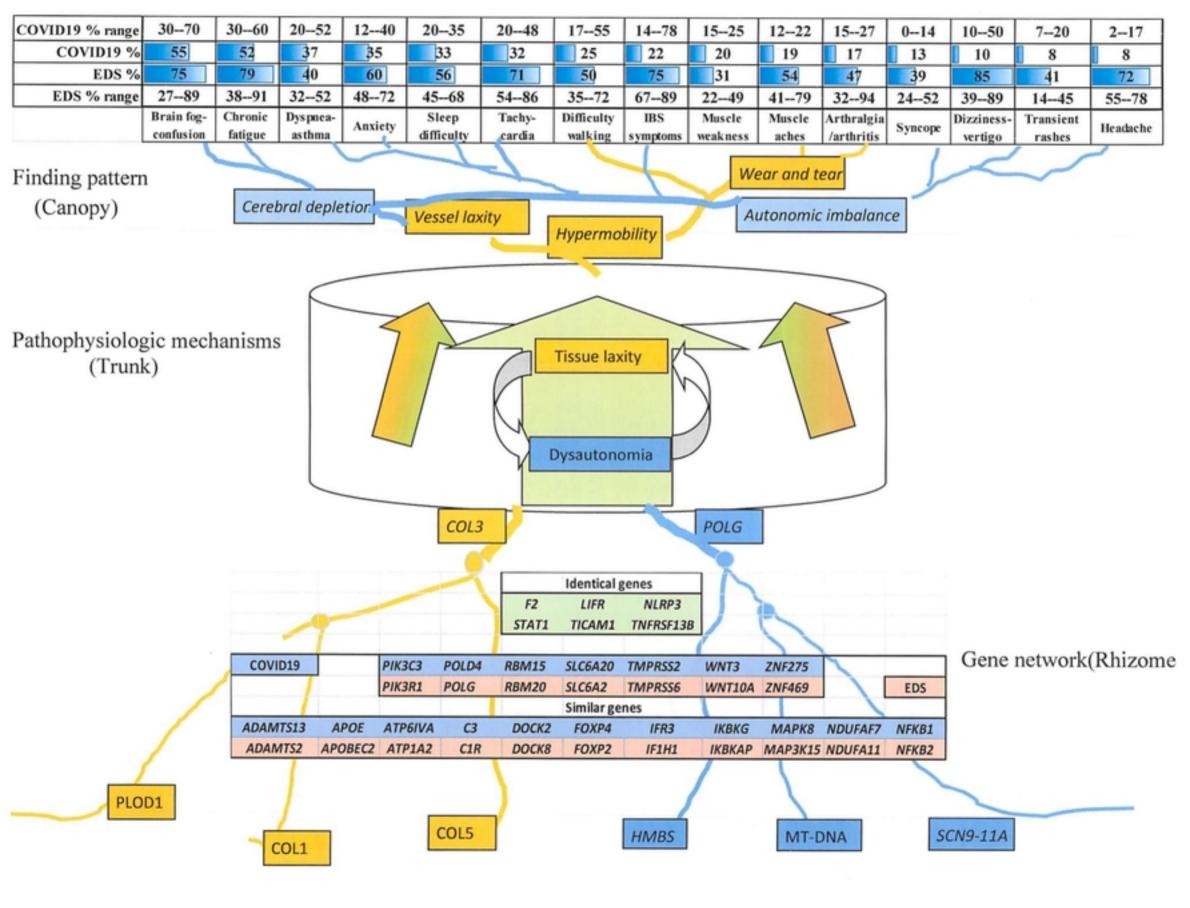



Figure 2b

	EDS	COVID 19	EDS	COVID19
A Genes classified by impact on process-connective tissue element	No.(%)	No.(%)	%	%
Neural (Nc, Nm, Np, Ns)	101 (32)	26 (31)	32	31
Cardiovascular (Vs)	42 (13)	10 (12)	13	12
Other autonomic (Ans, Athy, Apor)	43 (14)	2 (2.4)	14	2.4
Muscle (Mu)	34 (11)	3 (3.6)	11	3.6
Immune-inflammatory (Aim-not viral related)	28 (8.8)	26 (31)	8.8	31
Bone (Bn)	22 (6.9)	1 (1.2)	6.9	1.2
Jo ints (Jt)	20 (6.3)	2 (2.4)	6.3	2.4
Clotting issues (Clot)	13 (4.1)	4 (4.8)	4.1	4.8
Skin (Sn)	11 (3.5)	4 (4.8)	3.5	4.8
Renal (GU)	3 (0.95)	4 (4.8)	0.95	4.8
Immune-inflammatory (Aim-viral related)	0	21 (20)	0	20
B Genes classified by product type	No.(%)	No.(%)	%	%
Enzyme (Ez)	90 (28)	20(24)	28	24
Structural molecule (St)	78 (25)	6(7.2)	25	7.2
Signal molecule (Si)	39 (12)	29(35)	12	35
Membrane channel (Mc)	35 (11)	3(3.6)	11	3.6
Receptor (Rc)	29 (9.1)	10(12)	9.1	12
Transcription factor (Tf)	26 (8.2)	10(12)	8.2	12
Adhesive protein (Ad)	20 (6.3)	5(6.0)	6.3	6

Genes (Pts with variant-Female pts >10.5 years with variant)		CPrimVar	CAd Var	CPrimVar	Age	History	PE	Beighton	JtSkSk	SkinHP	NmHP	DysA
Tissue laxity with tissue element impacted	+ Taticitis		→	No. F>10.5y					X findings		→	\rightarrow
COL1 A1 (8-5)/A2 (7-3) Bone Bn	15	15	0	8	36	36	17	6.4	10.0	4.5	5.8	11
COL9 A1 (3-3)/A3 (5-5) Bn	8	8	0	8	33	40	20	6.6	9.9	6.8	6.9	14
COL5A1 Jt	35	34	1	32	33	35	17	6.1	8.8	5.5	5.3	12
COL5 A2 Joint Jt	16	16	0	12	34	37	19	6.5	8.5	5.9	5.8	13
COL7 A1 (4-4)/COL17 A1 (1-1) Skin Sn	5	5	0	5	37	39	20	7.8	11.0	5.4	6.5	13
COL3 A1 Vessel Vs	13	13	0	12	37	43	21	6.8	11.0	6.4	7.1	14
<u>FBN</u> I Vs	21	18	3	13	32	42	21	7.4	8.3	6.2	6.2	15
TGF B2 (3-2)/B3 (1-1)/BRI (4-4)BR2 (5-4) Vs	13	12	1	11	34	34	18	6.3	8.3	5.5	5.8	12
<u>VWF</u> Clot	15	10	5	7	37	38	23	7.1	9.6	7.3	6.1	14
				Mean SD	14	7.4	4.7	1.7	2.5	2.1	2.1	2.4
Neuromuscular with tissue element impacted												
COL6 A1 (4-2) A2 (2-2) A3 (6-5) Muscle Mu	12	11	1	9	34	37	19	7.3	8.4	5.9	4.9	13
COL12A1 Muscle Mu	23	17	6	13	33	32	19	6.5	8.2	5.6	5.3	10
MT-ND 1 (8-3)/ND2 (5-4)/ND4 (7-4)/ND5 (8-5)/ND6 (3-3)	31	20	8	19	30	35	20	7.0	8.5	6.1	5.8	11
<u>MT-C0</u> 1(7-3)/CO2(4-3)/CO3(13-6)	24	14	10	12	28	35	16	7.2	8.0	4.1	5.4	12
MT-CYB Neuromuscular Nm	20	12	8	9	31	37	18	6.8	8.9	6.6	5.8	13
MT-rRNA 1/2 (12-3)/MT-tRNA-T A/C/E/G/L2/S1/S2 (31-12) Nm	43	22	21	15	32	38	19	6.8	8.9	6.5	5.8	14
AARS1(3-2) + 6 genes Peripheral nerve (Charcot-Marie-Tooth) Np	22	13	9	10	37	36	22	6.7	10	6.2	7.0	13
SCN9A Neurosensory Ns	7	7	4	7	33	41	16	6.0	10	5.4	6.6	15
				Mean SD	12	9	4.5	1.7	2.8	2.2	1.9	3.0
Autonomic with process impacted		· · · · · · · · · · · · · · · · · · ·										
HFE (9-0)/HMBS (6-5)/ALAD - CPOX - PPOX (3-3) Apor	18	10	8	8	33	33	20	6.6	7.1	5.8	5.9	12
MT-ATP6 Autonomic general Ans	32	23	9	17	29	35	18	6.6	9.1	5.1	4.9	12
POLG Ans	17	15	2	14	41	41	20	7.6	9.2	6.7	7.2	14
FLG Autonomic-inflammation/immune Aim	35	28	7	23	28	40	20	7.3	9.0	5.9	5.9	14
				Mean SD	10	8.2	3.9	1.7	2.5	2.2	2.2	2.7