Treatment options for COVID-19: the reality and challenges

Shio-Shin Jean, Ping-Ing Lee, Po-Ren Hsueh

PII: S1684-1182(20)30094-3

DOI: https://doi.org/10.1016/j.jmii.2020.03.034

Reference: JMII 1222

To appear in: Journal of Microbiology, Immunology and Infection

Received Date: 30 March 2020

Accepted Date: 31 March 2020

Please cite this article as: Jean S-S, Lee P-I, Hsueh P-R, Treatment options for COVID-19: the reality and challenges, *Journal of Microbiology, Immunology and Infection*, https://doi.org/10.1016/j.jmii.2020.03.034.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Copyright © 2020, Taiwan Society of Microbiology. Published by Elsevier Taiwan LLC. All rights reserved.

	Journal Pre-proof
1	Treatment options for COVID-19: the reality
2	and challenges
3	
4	Shio-Shin Jean ^{a,b} , Ping-Ing Lee ^c , Po-Ren Hsueh ^{d,e} *
5	
6	^a Department of Emergency, School of Medicine, College of Medicine, Taipei
7	Medical University, Taipei, Taiwan;
8	^b Department of Emergency Medicine, Department of Emergency and Critical
9	Care Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan;
10	^c Department of Pediatrics, National Taiwan University Children's Hospital and
11	National Taiwan University College of Medicine, Taipei, Taiwan;
12	^d Department of Laboratory Medicine, National Taiwan University Hospital,
13	National Taiwan University College of Medicine, Taipei, Taiwan;
14	^e Department of Internal Medicine, National Taiwan University Hospital,
15	National Taiwan University College of Medicine, Taipei, Taiwan
16	
17	*Corresponding author. Departments of Laboratory Medicine and Internal
18	Medicine, National Taiwan University Hospital, National Taiwan University
19	College of Medicine, No. 7 Chung-Shan South Road, Taipei, 100, Taiwan.
20	E-mail address: hsporen@ntu.edu.tw (PR. Hsueh).
21	

22	Abstract An outbreak related to the severe acute respiratory syndrome
23	coronavirus 2 (SARS-CoV-2) was first reported in Wuhan, China in December
24	2019. An extremely high potential for dissemination resulted in the global
25	coronavirus disease 2019 (COVID-19) pandemic in 2020. Despite the
26	worsening trends of COVID-19, no drugs are validated to have significant
27	efficacy in clinical treatment of COVID-19 patients in large-scale studies.
28	Remdesivir is considered the most promising antiviral agent; it works by
29	inhibiting the activity of RNA-dependent RNA polymerase (RdRp). A
30	large-scale study investigating the clinical efficacy of remdesivir (200 mg on
31	day 1, followed by 100 mg once daily) is on-going. The other excellent
32	anti-influenza RdRp inhibitor favipiravir is also being clinically evaluated for its
33	efficacy in COVID-19 patients. The protease inhibitor lopinavir/ritonavir
34	(LPV/RTV) alone is not shown to provide better antiviral efficacy than standard
35	care. However, the regimen of LPV/RTV plus ribavirin was shown to be
36	effective against SARS-CoV in vitro. Another promising alternative is
37	hydroxychloroquine (200 mg thrice daily) plus azithromycin (500 mg on day 1,
38	followed by 250 mg once daily on day 2-5), which showed excellent clinical
39	efficacy on Chinese COVID-19 patients and anti-SARS-CoV-2 potency in vitro.
40	The roles of teicoplanin (which inhibits the viral genome exposure in cytoplasm)

41	and monoclonal and polyclonal antibodies in the treatment of SARS-CoV-2 are
42	under investigation. Avoiding the prescription of non-steroidal
43	anti-inflammatory drugs, angiotensin converting enzyme inhibitors, or
44	angiotensin II type I receptor blockers is advised for COVID-19 patients.
45	
46	KEYWORDS : Severe acute respiratory syndrome coronavirus 2
47	(SARS-CoV-2), coronavirus disease 2019 (COVID-19), remdesivir,
48	hydroxychloroquine, non-steroidal anti-inflammatory drugs, angiotensin
49	converting enzyme inhibitors.
50	

51 Introduction

In December 2019, Wuhan city (the capital city of Hubei province, China) 52 53 experienced a major outbreak caused by a novel coronavirus. This outbreak was found to be caused by a novel virus, the severe acute respiratory 54 syndrome coronavirus 2 (SARS-CoV-2).¹⁻³ Numerous clinical SARS-Co-2 55 cases have been reported and were distributed among more than half of the 56 countries of the world during a less than 6-month period (data till March 28, 57 2020).⁴⁻⁷ The lower respiratory tract is the primary target of the SARS-CoV-2 58 infection. It is noteworthy that adults with coronavirus disease 2019 (COVID-19) 59 often present with a profound decrease in both CD4⁺ and CD8⁺ T-cell subsets 60 at the early stage of this disease.^{1,8} Subsequently, patients suffered acute 61 respiratory distress syndrome for about 7-10 days after the onset of COVID-19 62 due to rapid viral replication, a stormy increase of pro-inflammatory cytokines 63 as well as chemokine response, and inflammatory cell infiltrates.^{8,9} 64 Nevertheless, contrary to the SARS cases in 2003,¹⁰ some SARS-CoV-2 65 infection patients did not have the prodromal symptoms of upper respiratory 66 tract infection (e.g., cough, sore throat, rhinorrhea), viremia-associated 67 laboratory abnormalities (e.g., leukopenia, lymphopenia, anemia, elevation of 68 liver enzymes and lactic dehydrogenase), or initial evidence of diagnostic 69

70	chest roentgenographic abnormalities. ^{6,11} In addition, uncertain seasonality
71	and the incubation period of SARS-CoV-2 infection oscillating between 2 and
72	14 days make it remarkably difficult to achieve early diagnosis and initiate
73	treatment on time. ^{5,9} Previous studies demonstrated that human
74	coronavirus-NL63 (HCoV-NL63) is able to use angiotensin-converting
75	enzyme-2 (ACE2) as a cell receptor in humans.5,12 Although children are
76	considered to be significantly less susceptible to HCoV-NL63 infection and
77	have milder disease severity than adults, ^{1,5,8,13} the SARS-CoV-2 infection has
78	become a public health menace to people around the world presently because
79	of high transmission potential and unpredictability of disease progression. ¹⁴ In
80	order to contain SARS-CoV-2 spread among community residents, stringent
81	infection control measures were implemented by the Centers for Disease
82	Control (CDC) and Prevention of Taiwan since February, 2020. According to
83	an investigation by To et al. (2020), ¹⁵ patients with SARS-CoV infection had
84	the highest viral load (measured from posterior oropharyngeal saliva samples)
85	close to when they presented. To et al. concluded that since viral load had
86	already peaked around the time of hospital admissions, early use of potent
87	antiviral agents might be beneficial in controlling COVID-19 severity. ¹⁵
88	However, standard treatment against COVID-19 is presently lacking. Herein,

	a** a a i
Journal Pre-1	

89	the roles of several drugs including antiviral agents, some antibiotics and
90	anti-inflammatory agents have been reviewed to explore their efficacy in
91	combating the SARS-CoV-2 (data until March 28, 2020).
92	
93	RNA-dependent RNA polymerase inhibitors
94	Remdesivir
95	Among several potential drugs tested for efficacy in treatment of SARS-CoV-2
96	infection, ¹⁶ remdesivir (GS-5734; Gilead Sciences Inc., Foster City, CA, USA)
97	is shown to be the most promising and hopeful anti-viral therapeutic. It works
98	by targeting viral RNA-dependent RNA polymerase (RdRp) while evading
99	proofreading by viral exoribonuclease, ¹⁷ resulting in premature termination of
100	viral RNA transcription. Unlike other nucleotide analogues, remdesivir is a
101	phosphoramidate prodrug with broad-spectrum activity against many virus
102	families, including Filoviridae, Paramyxoviridae, Pneumoviridae, and
103	Orthocoronavirinae (such as pathogenic SARS-CoV and Middle East
104	respiratory syndrome coronavirus [MERS-CoV]). ^{18,19}
105	Information regarding the pharmacokinetics of remdesivir in humans is not
106	available. Nevertheless, valuable data from rhesus monkeys revealed an
107	intravenous 10 mg/kg dose of remdesivir could lead to a remarkably high

108	intracellular concentration (>10 μ M) of active triphosphate form in peripheral
109	blood mononuclear cells for at least 24 h, ²⁰ supporting its clinical potential in
110	the treatment of human SARS-CoV-2 infection. Additionally, data on the safety
111	of remdesivir in humans are available online. ²¹ The first COVID-19 patient in
112	the USA was successfully treated with remdesivir for the progression of
113	pneumonia on day 7 of hospitalization in January, 2020. ⁴ Phase 3 human trials
114	(ClinicalTrials.gov Identifier: NCT04292899 and NCT04292730, for severe and
115	moderate adult SARS-CoV-2 cases, respectively) have been initiated to
116	evaluate its efficacy in patients with SARS-CoV-2 infection since March, 2020.
117	Patients received 200 mg on day 1, followed by 100 mg once daily from day 2.
118	Despite its encouragingly high in vitro potency against SARS-CoV-2 and the
119	clinical success in treatment of COVID-19,4,18 uncertainties about adverse
120	effects (e.g., nausea, vomiting, rectal hemorrhage, and hepatic toxicity) and
121	clinical efficacy of remdesivir have been reported recently.22
122	In a mouse model investigating the pathogenesis of SARS-CoV,

prophylactic and early therapeutic post-exposure administration of remdesivir were shown to produce a significant reduction in pulmonary viral load (i.e., >2orders of magnitude on day 2-5 post-infection), mitigate disease progression and prominently improve respiration function.¹⁸ Furthermore, Brown *et al.*

127	observed that remdesivir displayed half-maximum effective concentrations
128	(EC_{50}s) of 0.069 μM for SARS-CoV, and 0.074 μM for MERS-CoV in tissue
129	culture models. ²³ In addition, tissue culture experiments also revealed that
130	many highly divergent CoV including the endemic human CoVs (HCoV-OC43,
131	HCoV-229E) and zoonotic CoV are effectively inhibited by remdesivir within
132	the submicromolar $EC_{50}s$. ^{23,24} Of note, the similar efficacy of prophylactic and
133	therapeutic remdesivir treatment (24 h prior to inoculation, and 12 h
134	post-inoculation, respectively) was also seen in the context of a non-human
135	primate (rhesus macaque) model of MERS-CoV infection. ²⁵ Although two
136	amino acid substitutions (F476L, V553L) in the non-structural protein 12
137	polymerase were demonstrated to confer low-level resistance to remdesivir,
138	this resistance also impaired the fitness of the tested CoVs and is actually
139	difficult to select. ¹⁷

140

141 **Favipiravir**

The other RdRp inhibitor favipiravir (Fujifilm Toyama Chemical Co. Ltd, Tokyo,
Japan) is known to be active *in vitro* against oseltamivir-resistant influenza A, B,
and C viruses.²⁶ After being converted into an active phosphoribosylated form,
favipiravir is easily recognized as a substrate of viral RNA polymerase in many

146	RNA viruses. ²⁷ The recommended dose of favipiravir against influenza virus is
147	1600 mg administered orally twice daily on day 1, then 600 mg orally twice
148	daily on day 2-5, and 600 mg once on day 6. Recently, preliminary results of
149	clinical studies have shown favipiravir to have promising potency in treatment
150	of Chinese patients with SARS-CoV-2 infection. ²⁸ Favipiravir was approved for
151	the treatment of COVID-19 in China in March, 2020. In addition, patients with
152	COVID-19 infection are being recruited for randomized trials to evaluate the
153	efficacy of favipiravir plus interferon- α (ChiCTR2000029600) and favipiravir
154	plus baloxavir marboxil (ChiCTR2000029544).

155

156 Ribavirin

Ribavirin (Bausch Health Companies Inc., Bridgewater, NJ, USA) is a guanosine analogue antiviral drug that has been used to treat several viral infections, including hepatitis C virus, respiratory syncytial virus (RSV), and some viral hemorrhagic fevers. The *in vitro* antiviral activity of ribavirin against SARS-CoV was estimated to be at a concentration of 50 µg/mL.²⁹ However, it has the undesirable adverse effect of reducing hemoglobin, which is harmful for patients in respiratory distress.¹⁹

165 Interferons

166 Treatment with interferon β (IFNb)-1b (Bayer Pharmaceutical Co., Leverkusen,

167 Germany), an immunomodulatory agent, was shown to result in clinical 168 improvement among MERS-CoV-infected common marmosets, but the 169 benefits of IFNb-1b for SARS patients remains uncertain.^{29,30}

170

171 **Protease inhibitors**

172 Lopinavir/ritonavir

Protease inhibitors (PIs) are important agents in the contemporary treatment of 173 patients with chronic human immunodeficiency virus (HIV) infection. In the 174 Orthocoronavirinae family, the targets of PIs are papain-like protease and 175 3C-like protease.³⁰ The antiviral activity of lopinavir (LPV; Abbott Laboratories, 176 Lake Bluff, Illinois, US) against MERS-CoV in a tissue culture model is 177 controversial, despite a good effect in mitigating disease progression in 178 MERS-CoV-infected marmosets.²⁹ Of note, Sheahan et al. (2020) compared 179 the efficacy of prophylactic remdesivir (25 mg/kg twice a day, administered 1 180 day prior to infection) as well as therapeutic remdesivir with that of 181 LPV/ritonavir (RTV, used to prolong the LPV's half-life)-IFNb combination 182 therapy in a humanized transgenic mouse MERS-CoV infection model. They 183

184	observed the efficacy of remdesivir was superior to that of LPV/RTV-IFNb
185	against MERS-CoV in terms of viral load reduction and improvement in extent
186	of pathologic change in lung tissue. ³¹ In addition to gastrointestinal adverse
187	effects (nausea, vomiting, and diarrhea) induced by LPV/RTV, it is noteworthy
188	that LPV/RTV treatment alone (400/100 mg administered orally twice daily for
189	14 days; Chinese Clinical Trial Register number, ChiCTR2000029308) failed to
190	provide benefits compared to standard care alone. Median time to clinical
191	improvement in both cases was 16 days (hazard ratio [HR], 1.31; 95%
192	confidence interval [CI], 0.95 to 1.85; P=0.09) and there was no difference in
193	the reduction of viral RNA loading for severe SARS-CoV-2 patients. ³²
194	Despite discouraging results, it is intriguing that a slightly lower number of
195	deaths was observed in the group receiving LPV/RTV in the late stage of
196	SARS-CoV-2 infection compared with the standard-care group. Moreover,
197	Reden and Ruben (2000) and Checken of all (2000) appreciated that the
	Baden and Ruben (2020) and Sheahan et al. (2020) suggested that the
198	LPV/RTV concentration necessary to inhibit pulmonary SARS-CoV-2
198 199	
	LPV/RTV concentration necessary to inhibit pulmonary SARS-CoV-2
199	LPV/RTV concentration necessary to inhibit pulmonary SARS-CoV-2 replication might be higher than the serum level. ^{31,33} A randomized, controlled

203	Pharmaceutica, Beerse, Belgium), also a promising PI against SARS-CoV-2 in
204	vitro, needs to be further evaluated. ³⁴ Ribavirin in combination with interferon- α
205	2b was shown to be active against MERS-CoV in a rhesus macaque model. ³⁵
206	Additionally, the regimen of LPV/RTV plus ribavirin was shown to be effective
207	against SARS-CoV in patients and in tissue culture.36

208

209 Chloroquine, hydroxychloroquine, and azithromycin

Chloroquine is active against malaria as well as autoimmune diseases (such 210 as rheumatoid arthritis [RA], lupus erythematosus). It was recently reported as 211 a potential broad-spectrum antiviral drug for treatment of viruses such as 212 influenza H₅N₁ in an animal model.³⁷ Chloroquine was shown to increase 213 endosomal pH, which prevents virus/cell fusion. It also interferes with the 214 glycosylation of cellular receptors of SARS-CoV.^{38,39} Although the *in vitro* data 215 of chloroquine is promising (EC₉₀ of 6.90 μ M, using Vero E6 cells infected by 216 SARS-CoV-2), an extensive prescription of chloroquine in clinical treatment of 217 SARS-CoV-2 is a completely off-label use. It is not recommended in light of 218 safety concerns (adverse effects on the hematologic, hepatic and renal 219 systems, QTc prolongation with ventricular dysrhythmia) and will likely result in 220 a major shortage of anti-malarial armamentaria.⁴⁰ 221

222	Hydroxychloroquine is also proposed to control the cytokine storm that
223	occurs in critically ill late phase SARS-CoV-2 infected patients.41
224	Hydroxychloroquine is significantly more potent than chloroquine in vitro (EC $_{50}$
225	values: 0.72 and 5.47 μ M, respectively) and has lower potential for drug-drug
226	interactions than chloroquine. Pharmacokinetic models demonstrate that
227	hydroxychloroquine sulfate is significant superior (5 days in advance) to
228	chloroquine phosphate in inhibiting SARS-CoV-2 in vitro.41 The Taiwan CDC
229	declared hydroxychloroquine as an important anti-SARS-CoV-2 agent on 26
230	March, 2020. Of note, patients with retinopathy, deficiency of
231	glucose-6-phosphatase, QTc prolongation in electrocardiograms, history of
232	allergy to hydroxychloroquine or who are pregnant or breastfeeding are
233	contraindicated for receiving hydroxychloroquine therapy.42
234	Azithromycin (Pfizer Inc., Manhattan, New York City, NY, USA) was shown

to be active *in vitro* against Ebola viruses.⁴³ Furthermore, azithromycin is
thought to have good potential in preventing severe respiratory tract infections
among pre-school children when it is administrated to patients suffering viral
infection.⁴⁴ According to one recent study, azithromycin (500 mg on day 1,
followed by 250 mg per day on day 2-5) was shown to significantly reinforce
the efficacy of hydroxychloroquine (200 mg three times per day for 10 days) in

241	the treatment of 20 patients with severe COVID-19. Mean serum
242	hydroxychloroquine concentration was 0.46 \pm 0.20 μ g/mL. The good clinical
243	outcome among these COVID-19 patients was thought to be due to the
244	excellent efficiency of virus elimination after administration of this combination
245	therapy. ⁴² Consequently, the regimen of hydroxychloroquine in combination
246	with azithromycin might be a promising alternative to remdesivir in the
247	treatment of patients with SARS-CoV-2 infection in the future. Nevertheless,
248	the possibility of complicated QTc prolongation should be concerned.

249

250 **Teicoplanin and other glycopeptides**

The other antibiotics worth mentioning in this review are glycopeptides. 251 Teicoplanin (Sanofi Pharmaceuticals, Paris, France) was demonstrated to 252 potently prevent the entry of Ebola envelope pseudotyped viruses into the 253 cytoplasm, and also has an inhibitory effect on transcription- as well as 254 replication-competent virus-like particles in the low micromolar range (IC₅₀, 255 330 nM).⁴⁵ Moreover, teicoplanin is able to block the MERS and SARS 256 envelope pseudotyped viruses as well.⁴⁵ Mechanistic investigations revealed 257 that teicoplanin specifically inhibits the activities of host cell's cathepsin L and 258 cathepsin B, which are responsible for cleaving the viral glycoprotein allowing 259

260	exposure of the receptor-binding domain of its core genome and subsequent
261	release into the cytoplasm of host cells.46,47 Thus, teicoplanin blocks Ebola
262	virus entry in the late endosomal pathway. These studies indicate the potential
263	role of teicoplanin and its derivatives (dalbavancin, oritavancin, and telavancin)
264	as novel inhibitors of cathepsin L-dependent viruses.
265	A brief summary of the mechanism of action and targets of potential
266	antimicrobial agents against SARS-CoV-2 is shown in Table 1.
267	
268	Monoclonal or polyclonal antibodies and other therapies
269	Monoclonal or polyclonal antibodies have been suggested as prophylactic and
270	therapeutic tools (targeting hemagglutinin binding) against some viral
270 271	therapeutic tools (targeting hemagglutinin binding) against some viral infections, such as influenza. ⁴⁸ Current efforts in developing monoclonal and
271	infections, such as influenza. ⁴⁸ Current efforts in developing monoclonal and
271 272	infections, such as influenza. ⁴⁸ Current efforts in developing monoclonal and polyclonal antibodies against coronaviruses mainly target MERS-CoV. ¹⁸ For
271 272 273	infections, such as influenza. ⁴⁸ Current efforts in developing monoclonal and polyclonal antibodies against coronaviruses mainly target MERS-CoV. ¹⁸ For example, a human polyclonal antibody SAB-301 (50 mg/kg) that was
271 272 273 274	infections, such as influenza. ⁴⁸ Current efforts in developing monoclonal and polyclonal antibodies against coronaviruses mainly target MERS-CoV. ¹⁸ For example, a human polyclonal antibody SAB-301 (50 mg/kg) that was generated in transchromosomic cattle was observed to be well tolerated and
271 272 273 274 275	infections, such as influenza. ⁴⁸ Current efforts in developing monoclonal and polyclonal antibodies against coronaviruses mainly target MERS-CoV. ¹⁸ For example, a human polyclonal antibody SAB-301 (50 mg/kg) that was generated in transchromosomic cattle was observed to be well tolerated and safe in healthy participants of a phase 1 clinical trial. ⁴⁹ However, Cockrell <i>et al.</i>

279	Numerous in vitro studies have shown that the spike protein of SARS-CoV									
280	is important in mediating viral entry into target cells. Furthermore, the cleavage									
281	and subsequent activation of the SARS-CoV spike protein by a protease of the									
282	host cell is absolutely essential for infectious viral entry. ⁵¹ Type II									
283	transmembrane serine protease TMPRSS2 was suggested to be an important									
284	host protease that cleaves and activates the SARS-CoV spike protein in cell									
285	cultures, and was thus explored as a potential antiviral agent. ¹⁸ In the past									
286	decade, the serine protease inhibitor camostat mesylate was shown to inhibit									
287	the enzymatic activity of TMPRSS2.52 Additionally, the cysteine PI K11777									
288	showed promising potency in inhibiting MERS-CoV and SARS-CoV replication									
289	within the submicromolar range.53									
290	Use of stem cells against COVID-19 has been under evaluation in China									
291	recently. Additionally, tocilizumab (Roche Pharmaceuticals, Basel, Switzerland)									
292	is a monoclonal antibody that is used in the treatment of RA exacerbation. It									
293	was designed to inhibit the binding of interleukin-6 to its receptors, thus									
294	alleviating cytokine release syndrome. Currently, it is also being investigated									
295	for treatment of COVID-19.54									

296

297 Convalescent plasma

298	Convalescent plasma has also been used as a last resort to improve the
299	survival rate of patients with various viral infections, such as SARS, H_5N_1 avian
300	influenza, pandemic 2009 influenza A H_1N_1 ($H_1N_1pdm09),$ and severe Ebola
301	virus infection.55,56 One possible explanation for the efficacy of convalescent
302	plasma therapy is that the immunoglobulin antibodies in the plasma of patients
303	recovering from viral infection might suppress viremia. Shen et al. (2020)
304	reported on five critically ill patients with laboratory-confirmed COVID-19 and
305	acute respiratory distress syndrome (ARDS) who received transfusion with
306	convalescent plasma with a SARS-CoV-2-specific antibody (binding titer
307	>1:1000 and neutralization titer >40). The convalescent plasma was obtained
308	from 5 patients who recovered from COVID-19 and it was administered to the
309	five enrolled patients between 10 and 22 days after admission. Antiviral agents
310	and methylprednisolone were also administered. Following plasma
311	transfusions, improvements in clinical condition were observed, including
312	normalization of body temperature within 3 days (in 4/5 patients), decrease in
313	Sequential Organ Failure Assessment score, rise in PaO ₂ /FiO ₂ , resolution of
314	ARDS (4 patients at 12 days after transfusion), a success of weaning from
315	mechanical ventilation (3 patients within 2 weeks of treatment), and decline in
316	viral loads (became negative within 12 days) and increase in SARS-CoV-2-

specific ELISA and neutralizing antibody titers. Of the 5 patients, 3 were discharged from the hospital (lengths of stay: 53, 51, and 55 days), while 2 were in stable condition at 37 days after transfusions.⁵⁶ The authors concluded that use of convalescent plasma transfusion is beneficial among patients infected with SARS-CoV-2, even though the sample number in this study is small.⁵⁶

323

324 Herbal medications

Based on the historical records and anecdotal evidence of SARS and H₁N₁ 325 pdm09 prevention, Chinese herbal drugs were also considered as an 326 327 alternative approach for prevention of COVID-19 in high-risk populations. 328 However, clinical evidence for these treatments in the prevention of this emerging viral infection is lacking.^{57,58} During the COVID-19 outbreak in China, 329 some traditional Chinese medicine was widely used, and the six most 330 commonly used herbal medicines were Astragali Radix (Huangqi), 331 Glycyrrhizae Radix Et Rhizoma (Gancao), Saposhnikoviae Radix (Fangfeng), 332 Atractylodis Macrocephalae Rhizoma (Baizhu), Lonicerae Japonicae Flos and 333 Fructus forsythia (Liangiao). However, rigorous clinical trials on large 334 populations should be conducted to confirm the potential preventive effect of 335

336 Chinese medicine.^{57,58}

337

338 Antimicrobial agents for potential co-infection

339	The prevalence of co-infection varied among COVID-19 patients, ranging from									
340	0% to 50% among non-survivors. Reported co-pathogens included bacteria,									
341	such as Mycoplasma pneumoniae, Candida species, and viruses (influenza,									
342	rhinovirus, coronavirus, and HIV). Influenza A virus was the commonest									
343	co-infective virus. ⁵⁹ Co-administration of anti-influenza agents and									
344	anti-bacterial agents in patients with COVID-19 pneumonia was common.59									
345	Consequently, a cautious prescription of effective antibiotic(s) covering									
346	Staphylococcus aureus (including methicillin-resistant S. aureus),									
347	multidrug-resistant Streptococcus pneumoniae, Klebsiella pneumoniae, and									
348	Pseudomonas aeruginosa as well as Acinetobacter baumannii species for									
349	patients undergoing long hospitalization (> 6 days) is advised. ^{60,61}									

350

351 Other considerations and precautions regarding concomitant

352 medication

Based on the research of Yang *et al.* (2020),⁶² the most distinctive comorbidities among the non-survivors of COVID-19 in intensive care units

355	were cerebrovascular disease and diabetes. Similar findings were also
356	observed by Guan et al. (2020); ⁶³ these patients were usually treated with ACE
357	inhibitors or angiotensin II type I receptor blockers (ARB). As mentioned
358	above, ^{5,12} SARS-CoV-2 and SARS-CoV can bind to their target cells through
359	ACE2 receptors expressed by the epithelial cells of lung, intestine and
360	kidney. ⁶⁴ Consequently, careful administration of an ACE inhibitor or ARB for
361	patients with SARS-CoV infection in the absence of ARDS is advised.
362	Additionally, despite conflicting advice from the US Food and Drug
363	Administration, ⁶⁵ the use of non-steroidal anti-inflammatory drugs (NSAIDs),
364	such as ibuprofen, was thought to be likely to result in an induction of
365	increased ACE2 receptors. ⁶⁶ For critically ill adults with COVID-19 who
366	develop fever, acetaminophen might be a better choice for temperature control
367	than NSAIDs. ⁶⁷ Of note, according to a study by Wu et al. (2020), treatment of
368	COVID-19 patients with methylprednisolone was shown to decrease the
369	case-fatality risk (HR, 0.38; 95% CI, 0.20-0.72).68 However, the administered
370	dose of methylprednisolone is not specified in that investigation. Despite a lack
371	of supporting evidence, some critical care experts advocate the use of
372	low-dose corticosteroid therapy in adults with COVID-19 and refractory shock
373	(e.g., intravenous hydrocortisone 200 mg per day, as a "shock-reversal"

374 strategy).⁶⁸

375	Moreover, a recent report by Tang et al. (2020) demonstrated that
376	anticoagulant therapy with heparin (mainly with low molecular weight heparin)
377	was associated with better prognosis in severe COVID-19 patients. The
378	28-day mortality of heparin users was lower than that of non-users among
379	patients with sepsis-induced coagulopathy scores \geq 4 (40.0% vs. 64.2%,
380	P=0.029), or D-dimer > 6-fold the upper limit of normal (32.8% vs. 52.4%,
381	<i>P</i> =0.017). ⁶⁹
382	Finally, high ACE2 activity is associated with reduced severity of ARDS
383	among patients with lower respiratory tract infection caused by RSV. ⁷⁰ Fedson
384	et al. (2016, 2020) observed that statins target the host response to infection
385	(endothelial dysfunction) rather than the virus itself, and suggested that
385 386	(endothelial dysfunction) rather than the virus itself, and suggested that combination therapy with ARB and statins might accelerate a return to

389 **Conclusions**

In summary, we are facing a terrible virus with greater infectivity than the SARS-CoV pandemic of 2003. There is presently no vaccine or documented specific anti-SARS-CoV-2 drug regimen to treat critically ill patients. Most of

393	the potential drugs for treatment of COVID-19 are being investigated for safety
394	and efficacy against SARS-CoV-2. Remdesivir is the most promising agent. In
395	addition, favipiravir and combination therapy with hydroxychloroquine plus
396	azithromycin appear to be acceptable alternatives for treatment of COVID-19
397	patients. For patients with SARS-CoV-2 infection, ACE inhibitor and ARB need
398	to be prescribed with caution. Compared with NSAIDs, acetaminophen might
399	be a safer agent for treating fever in COVID-19 patients. Finally, low-dose
400	steroid (hydrocortisone) might be prescribed for treatment of refractory shock
401	in patients with COVID-19.

402

403 Statement of interests

404 The authors declare that they have no conflicts of interest.

405 **Funding**

- 406 No external funding.
- 407

408 **References**

409 1.	Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk							
410	factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a							
411	retrospective cohort study. Lancet 2020 Mar 11. pii:							
412	S0140-6736(20)30566-3. doi: 10.1016/S0140-6736(20)30566-3. [Epub							
413	ahead of print].							
414 2.	Cheng ZJ, Shan J. 2019 Novel coronavirus: where we are and what we							
415	know. Infection 2020 Feb 18. doi: 10.1007/s15010-020-01401-y. [Epub							
416	ahead of print].							
417 3.	Wu Z, McGoogan JM. Characteristics of and important lessons from the							
418	coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a							
419	report of 72314 cases from the Chinese Center for Disease Control and							
420	Prevention. JAMA 2020 Feb 24. doi: 10.1001/jama.2020.2648. [Epub							
421	ahead of print].							
422 4.	Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, et al.							
423	First case of 2019 novel coronavirus in the United States. N Engl J Med							
424	2020; 382 :929-36. doi: 10.1056/NEJMoa2001191.							
425 5.	Lee PI, Hu YL, Chen PY, Huang YC, Hsueh PR. Are children less							
426	susceptible to COVID-19? J Microbiol Immunol Infect 2020 Feb 25. pii:							

427		S1684-1182(20)30039-6. doi: 10.1016/j.jmii.2020.02.011. [Epub ahead of							
428		print].							
429	6.	Huang WH, Teng LC, Yeh TK, Chen YJ, Lo WJ, Wu MJ, et al. 2019 novel							
430		coronavirus disease (COVID-19) in Taiwan: Reports of two cases from							
431		Wuhan, China. J Microbiol Immunol Infect 2020 Feb 19. pii:							
432		S1684-1182(20)30037-2. doi: 10.1016/j.jmii.2020.02.009. [Epub ahead of							
433		print].							
434	7.	Burke RM, Midgley CM, Dratch A, Fenstersheib M, Haupt T, Holshue M, et							
435		al. Active monitoring of persons exposed to patients with confirmed							
436		COVID-19 - United States, January-February 2020. MMWR Morb Mortal							
437		Wkly Rep 2020; 69 :245-6.							
438	8.	Liu J, Liu Y, Xiang P, Pu L, Xiong H, Li C, et al. Neutrophil-to-lymphocyte							
439		ratio predicts severe illness patients with 2019 novel coronavirus in the							
440		early stage. <i>medRxiv</i> 2020. doi:							
441	https://doi.org/10.1101/2020.02.10.20021584.								
442	9.	Cao Q, Chen YC, Chen CL, Chiu CH. SARS-CoV-2 infection in children:							
443		Transmission dynamics and clinical characteristics. J Formos Med Assoc							
444		2020; 119 :670-3.							
445	10.	Peiris JS, Chu CM, Cheng VC, Chan KS, Hung IF, Poon LL, et al. Clinical							

446		progression and viral load in a community outbreak of
447		coronavirus-associated SARS pneumonia: a prospective study. Lancet
448		2003; 361 :1767-72. doi: 10.1016/s0140-6736(03)13412-5.
449	11.	Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and
450		clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia
451		in Wuhan, China: a descriptive study. Lancet 2020;395:507-13.
452	12.	Hofmann H, Pyrc K, van der Hoek L, Geier M, Berkhout B, Pöhlmann S.
453		Human coronavirus NL63 employs the severe acute respiratory syndrome
454		coronavirus receptor for cellular entry. Proc Natl Acad Sci USA
455		2005; 102 :7988-93.
456	13.	Lee KH, Yoo SG, Cho Y, Kwon DE, La Y, Han SH, et al. Characteristics of
457		community-acquired respiratory viruses infections except seasonal
458		influenza in transplant recipients and non-transplant critically ill patients. J
459		Microbiol Immunol Infect 2019 Jun 19. pii: S1684-1182(18)30233-0. doi:
460		10.1016/j.jmii.2019.05.007.
461	14.	Lee PI, Hsueh PR. Emerging threats from zoonotic coronaviruses-from
462		SARS and MERS to 2019-nCoV. J Microbiol Immunol Infect 2020 Feb 4.
463		pii: S1684-1182(20)30011-6. doi: 10.1016/j.jmii.2020.02.001.
464	15.	To KW, Tsang TY, Leung WS, Tam AR, Wu TC, Lung DC, et al. Temporal

465 profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational 466 cohort study. Lancet Infect Dis 2020 Mar 23. 467 doi:https://doi.org/10.1016/S1473-3099(20)30196-1. 468 16. Li G, De Clercq E. Therapeutic options for the 2019 novel coronavirus 469 (2019-nCoV). 470 Nat Rev Drug Discov 2020;**19**:149-50. doi: 10.1038/d41573-020-00016-0. 471 17. Agostini ML, Andres EL, Sims AC, Graham RL, Sheahan TP, Lu X, et al. 472 Coronavirus susceptibility to the antiviral remdesivir (GS-5734) Is 473 mediated by the viral polymerase and the proofreading exoribonuclease. 474 *mBio* 2018;**9**. pii: e00221-18. doi: 10.1128/mBio.00221-18. 475 476 18. Sheahan TP, Sims AC, Graham RL, Menachery VD, Gralinski LE, Case JB, et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and 477 zoonotic coronaviruses. Sci Transl Med 2017;9. pii: eaal3653. doi: 478 10.1126/scitranslmed.aal3653. 479 19. Martinez MA. Compounds with therapeutic potential against novel 480 respiratory 2019 coronavirus. Antimicrob Agents Chemother 2020 Mar 9. 481 pii: AAC.00399-20. doi: 10.1128/AAC.00399-20. 482

483 20. Warren TK, Jordan R, Lo MK, Ray AS, Mackman RL, Soloveva V, et al.

	urn		Dre	<u>ar</u>	~ (
JU	ulli	ai i		 JI	U.

484		Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in
485		rhesus monkeys. <i>Nature</i> 2016; 531 :381-5.
486	21.	Mulangu S, Dodd LE, Davey RT Jr, Tshiani Mbaya O, Proschan M, Mukadi
487		D, et al. A randomized, controlled trial of Ebola virus disease therapeutics.
488		N Engl J Med 2019; 381 :2293-303.
489	22.	Medrxiv News, from: https://times.hinet.net/mobile/news/22831665; data
490		accessed 20 March, 2020.
491	23.	Brown AJ, Won JJ, Graham RL, Dinnon KH 3rd, Sims AC, Feng JY, et al.
492		Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic
493		deltacoronaviruses with a highly divergent RNA dependent RNA
494		polymerase. Antiviral Res 2019; 169 :104541.
495	24.	Ko WC, Rolain JM, Lee NY, Chen PL, Huang CT, Lee PI, et al. Arguments
496		in favour of remdesivir for treating SARS-CoV-2 infections. Int J
497		Antimicrob Agents 2020 Mar 6:105933. doi:
498		10.1016/j.ijantimicag.2020.105933.
499	25.	de Wit E, Feldmann F, Cronin J, Jordan R, Okumura A, Thomas T, et al.
500		Prophylactic and therapeutic remdesivir (GS-5734) treatment in the
501		rhesus macaque model of MERS-CoV infection. Proc Natl Acad Sci USA
502		2020 Feb 13. pii: 201922083. doi: 10.1073/pnas.1922083117.

503	26.	Wang Y, Fan G, Salam A, Horby P, Hayden FG, Chen C, et al.
504		Comparative effectiveness of combined favipiravir and oseltamivir therapy
505		versus oseltamivir monotherapy in critically ill patients with influenza virus
506		infection. J Infect Dis 2019 Dec 11. pii: jiz656. doi: 10.1093/infdis/jiz656.
507	27.	Furuta Y, Komeno T, Nakamura T. Favipiravir (T-705), a broad spectrum
508		inhibitor of viral RNA polymerase. Proc Jpn Acad Ser B Phys Biol Sci
509		2017; 93 :449-63.
510	28.	XinhuaNet. Favipiravir shows good clinical efficacy in treating COVID-19:
511		official. From:
512		http://www.xinhuanet.com/english/2020-03/17/c_138888226.htm
513		(accessed 19 March, 2020).
514	29.	Chan JFW, Yao Y, Yeung ML, Deng W, Bao L, Jia L, et al. Treatment with
515		lopinavir/ritonavir or interferon-β1b improves outcome of MERS-CoV
516		infection in a nonhuman primate model of common marmoset. J Infect Dis
517		2015; 212 :1904-13.
518	30.	Zumla A, Chan JF, Azhar EI, Hui DS, Yuen KY. Coronaviruses - drug
519		discovery and therapeutic options. Nat Rev Drug Discov 2016;15:327-47.
520	31.	Sheahan TP, Sims AC, Leist SR, Schäfer A, Won J, Brown AJ, et al.
521		Comparative therapeutic efficacy of remdesivir and combination lopinavir,

- 522 ritonavir, and interferon beta against MERS-CoV. *Nat Commun*523 2020;**11**:222. doi: 10.1038/s41467-019-13940-6.
- 524 32. Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A trial of
- 525 lopinavir-ritonavir in adults hospitalized with severe COVID-19. N Engl J
- 526 *Med* 2020 Mar 18. doi: 10.1056/NEJMoa2001282.
- 527 33. Baden LR, Rubin EJ. COVID-19 The search for effective therapy. *N Engl*

528 *J Med* 2020 Mar 18. doi: 10.1056/NEJMe2005477.

529 34. News. Abidol and darunavir can effectively inhibit coronavirus

530 http://www.sd.chinanews.com/2/2020/0205/70145.html (accessed

- 531 February 21, 2020) (in Chinese).
- 532 35. Falzarano D, de Wit E, Rasmussen AL, Feldmann F, Okumura A, Scott DP,
- 533 et al. Treatment with interferon- α 2b and ribavirin improves outcome in
- 534 MERS-CoV-infected rhesus macaques. *Nat Med* 2013;**19**:1313-7.
- 535 36. Chu CM, Cheng VC, Hung IF, Wong MM, Chan KH, Chan KS, et al. Role
- of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical
- 537 findings. *Thorax* 2004;**59**:252-6.
- 538 37. Yan Y, Zou Z, Sun Y, Li X, Xu KF, Wei Y, et al. Anti-malaria drug 539 chloroquine is highly effective in treating avian influenza A H_5N_1 virus 540 infection in an animal model. *Cell Res* 2013;**23**:300-2.

541	38.	Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek
542		TG, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection
543		and spread. <i>Virol J</i> 2005; 2 :69. doi: 10.1186/1743-422X-2-69.
544	39.	Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and
545		chloroquine effectively inhibit the recently emerged novel coronavirus
546		(2019-nCoV) in vitro. <i>Cell Res</i> 2020; 30 :269-71.
547	40.	Cortegiani A, Ingoglia G, Ippolito M, Giarratano A, Einav S. A systematic
548		review on the efficacy and safety of chloroquine for the treatment of
549		COVID-19. J Crit Care 2020 Mar 10. pii: S0883-9441(20)30390-7. doi:
550		10.1016/j.jcrc.2020.03.005.
551	41.	Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, et al. In vitro antiviral activity
552		and projection of optimized dosing design of hydroxychloroquine for the
553		treatment of severe acute respiratory syndrome coronavirus 2
554		(SARS-CoV-2). Clin Infect Dis 2020 Mar 9. pii: ciaa237. doi:
555		10.1093/cid/ciaa237.
556	42.	Gautret P, Lagier J, Parola P, Hoang VT, Meddeb L, Mailhe M, et al.
557		Hydroxychloroquine and azithromycin as a treatment of COVID-19:
558		results of an open-label non-randomized clinical trial. Int J Antimicrob

559 Agents 2020 Mar 17. doi : 10.1016/j.ijantimicag.2020.105949.

urn		D			
urn	aı			ιU	U.

560	43.	Madrid PB, Panchal RG, Warren TK, Shurtleff AC, Endsley AN, Green CE,
561		et al. Evaluation of Ebola virus inhibitors for drug repurposing. ACS Infect
562		<i>Dis</i> 2015; 1 :317-26.
563	44.	Bacharier LB, Guilbert TW, Mauger DT, Boehmer S, Beigelman A,
564		Fitzpatrick AM, et al. Early administration of azithromycin and prevention
565		of severe lower respiratory tract illnesses in preschool children with a
566		history of such illnesses: A randomized clinical trial. JAMA
567		2015; 314 :2034-44.
568	45.	Wang Y, Cui R, Li G, Gao Q, Yuan S, Altmeyer R, et al. Teicoplanin inhibits
569		Ebola pseudovirus infection in cell culture. Antiviral Res 2016; 125 :1-7. doi:
570		10.1016/j.antiviral.2015.11.003.
571	46.	Zhou N, Pan T, Zhang J, Li Q, Zhang X, Bai C, et al. Glycopeptide
572		antibiotics potently inhibit cathepsin L in the late endosome/lysosome and
573		block the entry of Ebola virus, Middle East respiratory syndrome
574		coronavirus (MERS-CoV), and Severe Acute Respiratory Syndrome
575		coronavirus (SARS-CoV). <i>J Biol Chem</i> 2016; 291 :9218-32.
576	47.	Baron SA, Devaux C, Colson P, Raoult D, Rolain JM. Teicoplanin: an
577		alternative drug for the treatment of coronavirus COVID-19? Int J
578		Antimicrob Agents 2020 Mar 13:105944. doi:

- 579 10.1016/j.ijantimicag.2020.105944.
- 580 48. Beigel JH, Nam HH, Adams PL, Krafft A, Ince WL, El-Kamary SS, et al.

581 Advances in respiratory virus therapeutics - A meeting report from the 6th

- isirv Antiviral Group conference. *Antiviral Res* 2019;**167**:45-67. doi:
- 583 10.1016/j.antiviral.2019.04.006.
- 49. Beigel JH, Voell J, Kumar P, Raviprakash K, Wu H, Jiao JA, Sullivan E, et
- 585 al. Safety and tolerability of a novel, polyclonal human anti-MERS
- 586 coronavirus antibody produced from transchromosomic cattle: a phase 1
- 587 randomised, double-blind, single-dose-escalation study. *Lancet Infect Dis*
- 588 2018;**18**:410-8.
- 50. Cockrell AS, Yount BL, Scobey T, Jensen K, Douglas M, Beall A, et al. A
 mouse model for MERS coronavirus-induced acute respiratory distress
 syndrome. *Nat Microbiol* 2016;**2**:16226.
- 592 51. Glowacka I, Bertram S, Müller MA, Allen P, Soilleux E, Pfefferle S, et al.
- 593 Evidence that TMPRSS2 activates the severe acute respiratory syndrome
- 594 coronavirus spike protein for membrane fusion and reduces viral control
- 595 by the humoral immune response. *J Virol* 2011;**85**:4122-34.
- 596 52. Kawase M, Shirato K, van der Hoek L, Taguchi F, Matsuyama S.
- 597 Simultaneous treatment of human bronchial epithelial cells with serine and

urnal	1.120	10100	\sim 1

598		cysteine protease inhibitors prevents severe acute respiratory syndrome
599		coronavirus entry. J Virol 2012; 86 :6537-45.
600	53.	Zhou Y, Vedantham P, Lu K, Agudelo J, Carrion R Jr, Nunneley JW, et al.
601		Protease inhibitors targeting coronavirus and filovirus entry. Antiviral Res
602		2015; 116 :76-84.
603	54.	News. FDA approves COVACTA trial for RA drug Actemra in COVID-19
604		patients. From:
605		https://www.pharmaceutical-business-review.com/news/covacta-trial-
606		actemra-covid-19/. Accessed 28 March, 2020.
607	55.	Chen L, Xiong J, Bao L, Shi Y. Convalescent plasma as a potential
608		therapy for COVID-19. Lancet Infect Dis 2020;S1473-3099(20)30141-9.
609	56.	Shen C, Wang Z, Zhao F, Yang Y, Li J, Yuan J, et al. Treatment of 5
610		critically ill patients with COVID-19 with convalescent plasma. JAMA 2020
611		Mar 27. doi:10.1001/jama.2020.4783.
612	57.	Cunningham AC, Goh HP, Koh D. Treatment of COVID-19: old tricks for
613		new challenges. Crit Care 2020;24:91.
614	58.	Luo H, Tang QL, Shang YX, Liang SB, Yang M, Robinson N, et al. Can
615		Chinese medicine be used for prevention of corona virus disease 2019
616		(COVID-19)? A review of historical classics, research evidence and

617		current prevention programs. Chin J Integr Med 2020 Feb 22. doi:
618		10.1007/s11655-020-3192-6.
619	59.	Lai CC, Wang CY, Hsueh PR. Co-infection among patients with COVID-19
620		(manuscript submitted).
621	60.	Chou CC, Shen CF, Chen SJ, Chen HM, Wang YC, Chang WS, et al.
622		Recommendations and guidelines for the treatment of pneumonia in
623		Taiwan. J Microbiol Immunol Infect 2019; 52 :172-99. doi:
624		10.1016/j.jmii.2018.11.004.
625	61.	Jean SS, Chang YC, Lin WC, Lee WS, Hsueh PR, Hsu CW. Epidemiology,
626		treatment, and prevention of nosocomial bacterial pneumonia. J Clin Med
627		2020; 9 :275. doi: 10.3390/jcm9010275.
628	62.	Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and
629		outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan,
630		China: A single-centered, retrospective, observational study. Lancet
631		Respir Med 2020 Feb 24. doi: 10.1016/S2213-2600(20)30079-5.
632	63.	Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical
633		characteristics of coronavirus disease 2019 in China. N Engl J Med 2020
634		Feb 28. doi: 10.1056/NEJMoa2002032.

635 64. Fang L, Karakiulakis G, Roth M. Are patients with hypertension and

	Drea		
Journal	-91 P	DIU	ΟI

636		diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir
637		<i>Med</i> 2020 Mar 11. doi: 10.1016/S2213-2600(20)30116-8.
638	65.	FDA News. No scientific evidence that NSAID use worsens COVID-19
639		symptoms. From:
640		https://www.drugtopics.com/latest/fda-no-scientific-evidence-nsaid-
641		use-worsens-covid-19-symptoms (accessed 24 March, 2020).
642	66.	Day M. COVID-19: Ibuprofen should not be used for managing symptoms,
643		say doctors and scientists. BMJ 368, m1086. 2020 Mar 17. doi:
644		10.1136/bmj.m1086.
645	67.	Society of Critical Care Medicine. COVID-19 Guidelines. From:
646		https://www.sccm.org/SurvivingSepsisCampaign/Guidelines/COVID-19.
647	68.	Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al. Risk factors associated
648		with acute respiratory distress syndrome and death in patients with
649		coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med
650		2020 Mar 13. doi: 10.1001/jamainternmed.2020.0994.
651	69.	Tang N, Bai H, Chen X, Gong J, Li D, Sun Z, et al. Anticoagulant
652		treatment is associated with decreased mortality in severe coronavirus
653		disease 2019 patients with coagulopathy. J Thromb Haemost 2020 March
654		27. doi.org/10.1111/jth.14817.

655	70.	Wösten-van Asperen RM, Bos AP, Bem RA, Dierdorp BS, Dekker T, van
656		Goor H, et al. Imbalance between pulmonary angiotensin-converting
657		enzyme and angiotensin-converting enzyme 2 activity in acute respiratory
658		distress syndrome. Pediatr Crit Care Med 2013;14:e438-41. doi:
659		10.1097/PCC.0b013e3182a55735.
660	71.	Fedson DS. Treating the host response to emerging virus diseases:
661		lessons learned from sepsis, pneumonia, influenza and Ebola. Ann Transl
662		Med 2016; 4 :421. doi: 10.21037/atm.2016.11.03.
663	72.	Fedson DS, Opal SM, Rordam OM. Hiding in plain sight: an approach to
664		treating patients with severe COVID-19 infection. <i>mBio</i> 2020;11. doi:
665		10.1128/mBio.00398-20.
666		

Table 1 Mechanisms of action and targets of potential treatment agents for SARS-CoV-2 infections

Mechanism of action and targets	Drugs
Inhibition of the RNA-dependent RNA polymerase	Remdesivir
	Favipiravir
	Ribavirin
Inhibition of spike protein on SARS-CoV-2 (non-endosomal pathway)	TMPRSS2 inhibitor (camostat mesylate)
Inhibition of endosomal acidification (early endosomal pathway)	Chloroquine, hydroxychloroquine
	(azithromycin is reported to greatly enhance the
	anti-SARS-CoV-2 activity of hydroxychloroquine)
Inhibition of viral exocytosis	Interferon-α 2a
	Interferon-β 1b
Inhibition of papain-like protease and 3C-like protease	Lopinavir/ritonavir
Inhibition of cathepsin L and cathepsin B in host cells (late endosomal	Teicoplanin (other glycopeptides including dalbavancin,
pathway)	oritavancin, and telavancin)
Enhancement of the anti-SARS-CoV-2 activity of hydroxychloroquine	Azithromycin