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We analyse infectious disease case surveillance data stratified by region and2

age group to estimate COVID-19 spread and gain an understanding of the3

impact of introducing vaccines to counter the disease in Switzerland. The data4

used in this work is extensive and detailed and includes information on weekly5

number of cases and vaccination rates by age and region. Our approach takes6

into account waning immunity. The statistical analysis allows us to determine7

the effects of choosing alternative vaccination strategies. Our results indicate8

greater uptake of vaccine would have led to fewer cases with a particularly9

large effect on undervaccinated regions while an alternative distribution scheme10

ignoring age would affect the vulnerable population at the time (the elderly)11

and is less ideal.12

Keywords: Vaccination coverage, infectious disease surveillance, endemic-epidemic mod-13

elling, coronavirus disease 2019 (COVID-19)14

15

1 Introduction16

Each year vaccines (pre-exposure pharmaceutical prophylaxis interventions) save lives17

by reducing preventable illness and death. Though vaccines are tested vigorously to en-18

sure they are efficacious and monitored extensively to ensure they are effective and safe,19
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they are underutilised in routine immunisation. This has lead to outbreaks of vaccine-20

preventable diseases that were previously eliminated in Europe, such as measles [1]. There21

is a concern that newly developed vaccines in response to pandemics will not be accepted22

by the population they seek to protect.23

In December 2020, vaccines to prevent severe acute respiratory syndrome coronavirus24

2 (SARS-CoV-2, the causative agent of COVID-19) infections were authorised for use in25

Switzerland. They were distributed in 2021 following an age-based distribution scheme26

going from oldest to youngest. A booster (additional dose of vaccine after immunity is27

achieved which is used to maintain immunity) was included in the immunisation schedule28

for COVID-19 late in 2021 and continued during 2022 following the same age-based distri-29

bution scheme. As those aged 65 years and older were first invited to be immunised, later30

followed by 16 to 64 year olds, and finally 12 to 15 year olds, changes in the age profile of31

cases (who is getting sick) have been observed. Additionally, in Switzerland, changes in32

the spatial distribution of cases (where people are getting sick) have also been observed,33

with a shift from urban centres to more rural, unvaccinated communities.34

Vaccine hesitancy (defined as a delay in acceptance or refusal of vaccines despite avail-35

ability) is found in Switzerland, where vaccination is not mandatory. This is a current issue36

of mounting concern that needs to be solved. The World Health Organization named vac-37

cine hesitancy as one of the ten threats to global health already in 2019, noting its detri-38

mental effects on populations who are less protected against life-threatening diseases even39

in non-pandemic settings. Vaccine hesitancy affects the uptake of vaccines and likely also40

the adherence to other public health interventions in certain population groups. An un-41

dervaccinated population has the potential to hamper disease control efforts for the entire42

country. Others have noted that in the Swiss context “vaccine hesitancy and underimmu-43

nisation seem to be specific to certain population subgroups” [2]. COVID-19 is currently44

the only human coronavirus for which there is a vaccine available but hesitancy persists [3].45

Ongoing work seeks to understand the drivers of Swiss vaccine hesitancy [4].46

We study COVID-19 incidence data from 2021 (from 1st January 2021 to 30th Novem-47

ber 2021, both dates included) to examine the effect of vaccines on the spread of disease48
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in Switzerland. We analyse weekly cases in two separate analyses, one is stratified by age49

group and one is stratified by region. This approach is motivated by cases being observed50

among younger ages in this time period (compared with earlier), with cases also exhibiting51

spatial heterogeneity in regions, as well as vaccination rates differing by unit (age group or52

region). Switzerland provides a unique opportunity to examine the effects of vaccination53

heterogeneity due to its federalised nature. Regions are less harmonised than in other Eu-54

ropean countries. We seek to determine the impact of the current vaccination strategy and55

the effect of regions with low vaccine uptake.56

Using epidemic data sources from infectious disease surveillance systems at weekly57

resolution, we are able to capture the spread of disease across space and between age58

groups through an endemic-epidemic modelling approach. The vaccination coverage is59

time-dependent, age group-dependent, and region-dependent. Our approach builds upon60

a unique incorporation of time-varying vaccination coverage in an endemic-epidemic model61

with time-varying transmission weights. Time-varying transmission weights reflecting weekly62

levels of situational measures (amount of disease control) is a novel inclusion in the model63

since the advent of COVID-19, which has proven to be useful in examining policy questions64

[5–7]. Outlined here is a wider application which also includes vaccination effects. We in-65

vite interested readers to our study protocol [8] which contains even more detail.66

Vaccination coverage has previously been included in endemic-epidemic modelling [9–67

12] for routine immunisation without taking into account changes over time (assuming68

stationarity). We include vaccination coverage in a similar manner in our models; to our69

knowledge the first endemic-epidemic model for COVID-19 which includes time and unit-70

specific vaccination rates. Calls for other vaccination distribution criteria than age to be71

considered when introducing novel vaccines to immunisation schedules in pandemic set-72

tings, such as socio-economic status [13], have been made. For this reason, we analyse73

alternative scenarios (an approach which has successfully been utilised in the analysis of74

non-pharmaceutical interventions to evaluate the impact of their timing [5–7]) to examine75

other rollout strategy schemes and uptake options (increased coverage).76
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2 Material77

The data considered in this work includes temporal variables (week of reporting or78

recording/entry), biological variables (number of cases, age of case, dose-specific vac-79

cination information), and spatial variables (region). Data is publicly available from the80

Swiss public health authority’s COVID-19-specific website (BAG) www.covid19.admin.ch81

and introduced in our study protocol [8]. Auxiliary data is provided by Mistry et al. [14]82

(contacts), Hale et al. [15] (policy), and Data for Good1 (mobility) and where merging of83

data is necessary, the groupings and temporal resolution used in the data from BAG are84

matched. The age bands provided are ten year age bands, however we have not included85

the age group 0 − 9 in this work as the focus is on the protective effect of vaccines and86

they received none during the study period leading to a vaccination coverage which is con-87

stantly zero, providing no information to the model.88

2.1 Spatial dispersion89

Spatial dispersion is included in the model to reflect how disease spreads. Switzerland90

consists of 26 regions (Figure 2). The adjacencies between the 26 Swiss regions are given91

in a matrix of neighbourhood order o = (orr′) denoting the distance from one region r to92

another r′ (Figure 2). In this calculation, we decided that Neuchâtel (NE) and Jura (JU)93

as well as Schaffhausen (SH) and Thurgau (TG) do not share a border as when looking at94

a regular map they did not share most of their border in common.95

To reflect additional changes in movement during the study period as a result of dis-96

ease control policy implemented, we include mobility data mrt (Figure 1) measuring the97

average change in mobility in region r in week t. The data is provided as a change from98

baseline (February 2020) which we normalise by transforming it by x−min(x)
max(x)−min(x)

to ensure99

that we do not have negative transmission weights in our model (as the change from base-100

line is sometimes given as a negative value). Mobility data was not available for Appen-101

zell Innerrhoden (AI) so we imputed them with values from the adjoining region Appenzell102

1Use of this data is not an endorsement of Facebook/Meta
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Ausserrhoden (AR).103

The adjacency matrix is adjusted by mobility data like in Grimée et al. [5] such that we
obtain time-varying adjacency matrices w (short form for adjacency matrices at each time
point t) with entries:

wr,r′,t =
1

(orr′ + 1)
·mrt (1)

(Figure 3). We see an increase in mobility during the middle of the study period (Figure 1).104

This means we will expect to observe increased transmission opportunities in certain re-105

gions during that time.106

2.2 Contacts107

Respiratory diseases such as COVID-19 are transmitted through contact between age
group a and a′. We incorporate a contact matrix c = (caa′) in the model to reflect the
pattern of spread of the disease across age groups. The Swiss contact matrices from Mis-
try et al. [14] (Figure 2) are used in this work and aggregated to the ten year age bands
used in the case data. Contacts occur in four locations l (household, school, work, and
other). The contact matrices are adjusted by the policy data like in Bekker-Nielsen Dunbar
et al. [6, 7] such that we obtain time-varying contact matrices w for each week t across all
locations l with entries given by:

wa,a′,t = mt ·
∑
l

qlt · ca,a′,l (2)

where the proportionality factor qlt = ql · qt is informed by ql which is a weight for con-108

tacts in location l (which is provided with the location-specific contact matrices) and qt109

which denotes policy implemented in week t (Figure 3). Once we have calculated the to-110

tal contacts using this factor, we additionally incorporate the average change in mobility111

across regions in week t, mt (Figure 1) across all contacts because the policy indicators qt112

do not capture more nuanced changes in transmission opportunities such as those caused113

by public holidays whereas the mobility data is expected to encapsulate such aspects. The114

mobility mrt is averaged over regions to obtain mt. Earlier policy data was more granular.115

We divide the raw policy indicators by the maximum level it can take and then impose a116
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lower bound of 0.001 to obtain qt (the lower bound reflects that some contacts still oc-117

cur when measures are in place). As in Bekker-Nielsen Dunbar et al. [6, 7] qt ≡ 1 in the118

household setting.119

2.3 Vaccines120

The vaccination coverage is calculated based on the second (full immunity) and third
doses (“booster”) of the vaccine as

xit =
∑
s≤t

u(t− s)
(
x
(2)
is + x

(3)
is

)
(3)

where x(d)is is the vaccination coverage of dose d (d = 2, 3) for unit i in week s (doses121

given at time s scaled by the population of unit i), week s occurs before week t, and u(.)122

is the waning function (Figure 4). We apply the waning function u(.) to account for wan-123

ing immunity in our vaccination coverage calculation (see the supporting information (file124

sens) for a sensitivity analysis of u(.)). The unit i can either be age groups (a) or regions125

(r). This approach allows us to determine the vaccination coverage in each week t taking126

into account that the COVID-19 vaccines do not provide lifelong immunity. For each unit127

at each time point, the cumulative doses given are the sum of vaccines given in that week128

as well as the waned vaccines given in previous weeks t. The vaccination coverage is shown129

in Figure 5.130

3 Methods131

We fit four types of endemic-epidemic models using the open source software package132

developed by Meyer et al. [17]. The endemic-epidemic model is a time series-based mod-133

elling approach for infectious disease surveillance first formulated in Held et al. [18]. Since134

its introduction it has been extended to include vaccination coverage [9], random inter-135

cepts [19], seasonal effects [20], time-constant transmission weights between units relaxing136

a homogenous mixing assumption [21, 22], prediction and forecasting [23], and most re-137

cently time-varying transmission weights [5–7].138
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Figure 1: Mobility mrt (above left) and mt (above right), policy qt (bottom left), and the trace

(sum of the diagonal) of the contact matrix (bottom middle) and adjacency matrix

(bottom right) at each time compared with the trace of the equivalent unadjusted

hence time-constant transmission weights matrix (dashed lines). The abbreviations for

regions are listed in the supporting information (file supp)
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Figure 2: Swiss regions presented as map tiles (left; source: EBG [16]), adjacencies between

the regions o = (orr′) (middle), and contacts between age groups in Switzerland

c = (caa′) (right)

We chose which effects to include in our model on the basis of scoping the literature139

for other endemic-epidemic models with vaccination coverage (Table 1). The inclusion of140

previous season’s incidence does not make sense for emerging infectious disease such as141

COVID-19 as the situation is ever-changing.142

3.1 Model143

The endemic-epidemic model is given by

Yit | Yi,t−1 ∼ NegBin(λit, ψ) (4)

λit = νitfi︸︷︷︸
endemic

+ϕit

∑
i′

wi,i′,tYi′,t−1︸ ︷︷ ︸
epidemic

(5)

Cases Yit observed in week t in unit i are conditionally negative binomially distributed144

with by mean λ and overdispersion ψ (4). The unit i can either be age groups (a) or re-145

gions (r). The mean of the negative binomial distribution λ is additively decomposed into146

an endemic component with log-linear predictor ν and an epidemic component with log-147

linear predictor ϕ (5). Previous cases Y·,t−1 in all units are weighted by the transmission148

weights wi,i′,t and the population fraction fi (given as the size of the population for unit i149

compared with the total population) enters as an offset in the endemic component.150

We name our four types of endemic-epidemic models based on the components where
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contact matrices w (below), see the supporting information (file supp) for the full sets
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Figure 4: Waning function u(p) used in calculation of (3). Adapted from Bekker-Nielsen Dunbar

and Held [8]

the vaccination coverage is included. We consider the following four combinations of log-
linear predictors ν and ϕ

log(νit) = α
(ν)
i + +γ(ν)⊤z

(ν)
it (Neither)

log(ϕit) = α
(ϕ)
i + +γ(ϕ)⊤z

(ϕ)
it

log(νit) = α
(ν)
i + β(ν) log(1− xit) + γ(ν)⊤z

(ν)
it (Endemic)

log(ϕit) = α
(ϕ)
i + +γ(ϕ)⊤z

(ϕ)
it

log(νit) = α
(ν)
i + +γ(ν)⊤z

(ν)
it (Epidemic)

log(ϕit) = α
(ϕ)
i + β(ϕ) log(1− xit) + γ(ϕ)⊤z

(ϕ)
it
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Figure 5: Calculated vaccination coverage taking into account waning immunity xit by region

(left) and age group (right). The time scale goes from bottom to top

log(νit) = α
(ν)
i + β(ν) log(1− xit) + γ(ν)⊤z

(ν)
it (Both)

log(ϕit) = α
(ϕ)
i + β(ϕ) log(1− xit) + γ(ϕ)⊤z

(ϕ)
it

We use the log-proportion of the unvaccinated population as suggested by Herzog151

et al. [9] and used by other endemic-epidemic models in the literature (Table 1). Thus the152

log-transformed vaccination coverage log(1 − xit) enters the model as a coefficient in the153

log-linear predictors. Additional effects enter as either fixed or random effects [19] of unit154

α (intercepts) or additional covariates z. We consider155

γ(ν)⊤z
(ν)
it = γνsin sin

(
2πt

52

)
+ γνcos cos

(
2πt

52

)
+ γνtime(t− t̃), i = a, r (6)

γ(ϕ)⊤z
(ϕ)
at = γϕsin sin

(
2πt

52

)
+ γϕcos cos

(
2πt

52

)
+ γϕtime(t− t̃) (7)

γ(ϕ)⊤z
(ϕ)
rt = γϕsin sin

(
2πt

52

)
+ γϕcos cos

(
2πt

52

)
+ γϕtime(t− t̃) + γϕgravity log(Pr) (8)

where we have incuded a sine-cosine wave to account for yearly (52 weeks) oscillation156

[20], t̃ denotes the median of the study period (the time trend is centered to make it more157

stable and is intended to capture fluctuations not captured by the sine-cosine wave) and158

log(Pr) is the log population count of region r. The latter is known as the gravity model159
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[24] and reflects the fact that a greater attraction (higher mass) is to be expected from160

populous regions. We fit models to regional units r and age group units a separately.161

While ours is the first endemic-epidemic model for COVID-19 with time-varying vacci-162

nation coverage at weekly granularity, previous models have been constructed for measles163

with vaccination coverage [9–12] (Table 1). While other research groups [9–12] considered164

a different disease (measles) and setting (non-pandemic), their estimated effects of vacci-165

nation coverage are included in Figure 8 as a comparison with our work. We estimate the166

effect of vaccination coverage for models with time constant transmission weights to allow167

for such that we can liken the results for novel vaccines with routing scheduled immuni-168

sation. We then focus on the results for models with time-varying transmission weights169

w = (wii′t) as a constant transmission weight matrix w = (wii′) is not informative for a170

situation with as many changes as expected in the setting considered; an emerging infec-171

tious disease with the introduction of a pharmaceutical countermeasure.172

3.2 Scenario prediction173

We predict the number of expected COVID-19 cases under the alternative scenarios of174

vaccination distribution hence coverage. Using the multivariate path forecasting method175

from Held et al. [23, Appendix A] we predict the mean (first moment) incidence by unit176

(age group or region). The single-step prediction approach is iteratively applied to obtain177

multivariate multi-step predictions. We use the estimated model coefficients in the predic-178

tion approach rather than refitting the model.179

In one scenario we replace the observed vaccination coverage covariate (Figure 5)180

log(1 − xit) with an alternative option which for xrt is the maximum vaccination coverage181

in any region r (Figure 6) and for xat is the number of vaccines given to each age group182

a after redistributing the total vaccines given at any time to be given to all age groups183

by amounts proportional to the size of the age group (see the supporting information (file184

supp) for the redistribution). This scenario projection allows us to determine the expected185

impact of two alternative vaccination distribution schemes.186

In line with recommendations by den Boon et al. [25] we present results with within-187
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Figure 6: Overview of which region has the maximum vaccination coverage in a given week t

provising the alternative uptake scenario we consider for regions. The vertical line

denotes where our predictions begin

model uncertainty ranges. These are obtained by simulating the estimated coefficients (Ta-188

ble 4) from our fitted models assuming a multivariate normal distribution [like 5–7].189

4 Results190

We fit models to regional units r and age group units a separately. We provide here191

an overview of results and refer the interested reader to the supporting information (files192

models-age and models-regions) for full model results (there are results for in total 26193

regions and eight age groups). The models contain the effects outlined in Table 1. Our es-194

timated effect for vaccination coverage in a model with time constant transmission weights195

w = (wii′) is in line with the results obtained by other research groups [9–12] (Table 2 and196

Figure 8). We now focus on the results for time-varying transmission weights w = (wii′t).197

As some of the endemic effects had large confidence intervals when including just a198

simple intercept (intercept that was not unit-specific α(·)), we included effects of unit (age199

group or region) α(ν) in the endemic component. This is one of the strategies outlined200

in Meyer et al. [26]. As we have a large number of units in our analysis of regions we de-201

cided to include a random intercept rather than a fixed intercept for this analysis. How-202
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Table 1: Comparison with the literature (measles) and effects included in our COVID-19 models

Measles COVID-19
Effect Herzog et al. [9] Robert et al. [10] Nguyen et al. [11] Lu and Meyer [12] Region Age

De
fa

ul
t

Vaccination coverage ✓1 ✓2 ✓1 ✓3 ✓ ✓
Sine-cosine wave ✓ ✓ ✓ ✓ ✓ ✓
Population fraction offset in endemic component ✓ ✓4 ✓ ✓ ✓ ✓
Intercepts ✓ ✓ ✓ ✓ ✓ ✓

Ad
di

tio
na

l

Random effects of unit ✓ ✓
Fixed effects of unit ✓
Centered time trend ✓5 ✓ ✓
Previous season’s incidence ✓ NA NA
Geographical size (surface area) ✓
Gravity model in epidemic component ✓ ✓

1: constant, 2: averaged, 3: yearly, 4: is population count rather than fraction, 5: trend is not centered

ever, when using random effects, Akaike’s information criterion can no longer be used for203

model selection and we elected instead to use the Dawid-Sebastani score (DSS) given in204

Held et al. [23]. We calculated the one-step-ahead score for the final observation date ISO205

week 2021-48 based on the predictions and observed data from the rest of the study pe-206

riod (ISO weeks 2020-53 to 2021-47). An overview of the different models is provided in207

Table 3. We see that the best fitting models with time-varying weights both have vaccina-208

tion coverage covariate in the endemic component.209

We present results for the best fitting model (the model with vaccination coverage in210

the endemic component) for each unit (stratum defined by age group or region) type. We211

show the fitted values summed across units in Figure 7. while results for individual units212

are found in the supporting information (files models-age and models-regions). The213

models fit the data well and show similar patterns (Figure 7) with an increase in endemic214

cases in the summer and autumn (June to October; ISO weeks 2021-25 to 2021-40). We215

believe this to be a summer holiday effect as international travel increased after a year with216

many electing to have a “staycation” in 2020, so there is an increase in imported cases217

during this time.218
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Table 2: Vaccination coverage covariate estimates β̂ and standard errors in brackets

Both

Weight option Neither Endemic Epidemic Endemic Epidemic

Re
gio

n Time-constant (1R) – 4.401 (1.343) 3.251 (0.216) 1.677 (1.038) 3.206 (0.216)
Time-varying (2R) – 3.312 (1.035) 2.688 (0.201) 1.739 (0.846) 2.642 (0.2)

Ag
e Time-constant (1A) – 2.042 (0.246) 0.722 (0.062) 2.118 (0.14) 0.422 (0.055)

Time-varying (2A) – 2.234 (0.121) 0.578 (0.07) 2.033 (0.116) 0.238 (0.059)

Table 3: Endemic-epidemic models and goodness of fit (the lowest Dawid-Sebastani score (DSS)

values for the models with time-varying transmission weights are marked in bold)

DSS

Transmission weights Model Region Age

Time-constant neither 15.25 18.57
Time-constant endemic 15.34 20.59
Time-constant epidemic 15.24 16.08
Time-constant both 15.24 18.6
Time-varying neither 13.79 21.22
Time-varying endemic 13.74 18.45

Time-varying epidemic 17.08 23.9
Time-varying both 16.99 19.61
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Figure 7: Model fits for models with time-varying transmission weights with region (above) and

age groups (below)
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4.1 Spatial dispersion219

The model estimates for the models with time-varying transmission weights (Table 4)220

show a greater effect of vaccination coverage (β) in the epidemic component β(ν) than221

the endemic component β(ϕ) when both are included in the models for regions. The ran-222

dom effects for region are greater for the large regions (Geneva/GE, Basel/BS and BL,223

Zug/ZH, and Zurich/ZH) in the endemic component (Figure 9). Bordering regions Ticino224

(TI), Geneva (GE), Basel (BS and BL) and Schaffhausen (SH) have smaller effects in the225

epidemic component which may be due to cross-border medical seeking behaviour. The226

gravity model is included in the region-based model. The effect is positive indicating that227

there is more influx from larger populations (urban centres) and so we would expect to228

see more cases in such regions. It seems stable across models considered. The linear time229

trend does not seem to contribute much, indicating the yearly-duration sine-cosine waves230

may capture most of the fluctuation. The sine-cosine waves are most similar in the epi-231

demic component (γ(ϕ)sin and γ(ϕ)sin ), which is more pronounced for the model with regions.232

The overdispersion ψ is largest for the model without vaccination coverage but is similar233

for the model selected.234

4.2 Contacts235

There is a greater effect of vaccination coverage (β) in the epidemic component β(ν)236

than the endemic component β(ϕ) when both are included in the models for age group but237

effect in the endemic component is much smaller than seen in the regional model in the238

age group-based models with tighter confidence bands. There is no common pattern for239

the fixed effect of age group α(ϕ)
· indicating that this could be an important effect to in-240

clude. Such an effect was not included in the endemic component α(ν)
· due to convergence241

issues. The sine-cosine waves are again rather stable in the epidemic component. The242

overdispersion ψ is largest for the model without vaccination coverage but experiences a243

greater decrease when this covariate is included for the models with age groups. The linear244

time trend again does not seem to contribute much to the models.245
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Table 4: Model coefficient estimates for models with standard errors in brackets

Region Age

neither endemic epidemic both neither endemic epidemic both

γϕsin 0.674 (0.04) 0.687 (0.039) 0.247 (0.049) 0.255 (0.049) 0.443 (0.053) 0.661 (0.042) 0.329 (0.051) 0.604 (0.044)
γϕcos 0.708 (0.023) 0.722 (0.023) 0.818 (0.024) 0.821 (0.024) 0.653 (0.034) 0.913 (0.028) 0.633 (0.03) 0.897 (0.028)
γϕgravity 0.779 (0.033) 0.782 (0.033) 0.838 (0.029) 0.838 (0.029)
γϕtime 0.036 (0.002) 0.036 (0.002) 0.085 (0.004) 0.084 (0.004) 0.018 (0.003) 0.024 (0.002) 0.029 (0.003) 0.028 (0.002)
αϕ

region 0.798 (0.131) 0.802 (0.13) 2.118 (0.15) 2.099 (0.15)
γνsin -9.588 (0.564) -11.467 (0.832) -9.393 (0.425) -10.438 (0.669) -12.641 (0.531) -8.225 (1.141) -13.084 (0.427) -8.334 (1.134)
γνcos -3.972 (0.402) -4.586 (0.45) -3.621 (0.281) -4.004 (0.342) -6.101 (0.337) -7.185 (0.183) -5.937 (0.27) -7.127 (0.182)
γνtime -0.48 (0.036) -0.475 (0.035) -0.446 (0.026) -0.448 (0.026) -0.715 (0.023) -0.033 (0.105) -0.706 (0.021) -0.053 (0.105)
αν

region 3.208 (0.397) 4.092 (0.471) 3.575 (0.294) 3.982 (0.358)
ψ 0.117 (0.005) 0.115 (0.005) 0.101 (0.005) 0.101 (0.005) 0.11 (0.008) 0.055 (0.004) 0.094 (0.007) 0.053 (0.004)
β(ν) 3.312 (1.035) 1.739 (0.846) 2.234 (0.121) 2.033 (0.116)
β(ϕ) 2.688 (0.201) 2.642 (0.2) 0.578 (0.07) 0.238 (0.059)
αϕ
10−19 -1.429 (0.051) -1.681 (0.041) -1.357 (0.048) -1.625 (0.042)
αϕ
20−29 -0.931 (0.053) -1.239 (0.042) -0.753 (0.053) -1.145 (0.047)
αϕ
30−39 -0.974 (0.053) -1.167 (0.04) -0.769 (0.054) -1.073 (0.046)
αϕ
40−49 -1.296 (0.052) -1.406 (0.039) -1.031 (0.057) -1.296 (0.047)
αϕ
50−59 -1.257 (0.053) -1.338 (0.039) -0.948 (0.061) -1.215 (0.049)
αϕ
60−69 -1.449 (0.053) -1.5 (0.039) -1.082 (0.066) -1.354 (0.053)
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Figure 9: Estimated random effects of region in endemic-epidemic model with time-varying

transmission weights and vaccination coverage in the endemic component

4.3 Scenario prediction246

In the alternative scenario with more vaccines given throughout Switzerland (all re-247

gions get the maximum amount given for any region r at each time point), we would ex-248

pect a lower mean incidence in Zurich (ZH), the most populous region which often had249

the greatest vaccination uptake (Figure 5). We find that regions with lower vaccination250

coverage such as Glarus (GL), Appenzell Innerrhoden (AI), and Sankt Gallen (SG) have a251

greater drop in cases under a scenario of increased uptake of vaccination (see the support-252

ing information (file models-regions) for regional prediction plots) in ISO weeks 2021-30253

and 2021-38. Overall less cases would be expected if more vaccines had been distributed254

(Figure 10).255

We also see that the age-based distribution scheme is evident in the comparison with256

an alternative as the greatest expected increases initially are among those groups vacci-257

nated first; over 65 year olds. We see an overall decrease in expected cases for younger age258

groups. The age group 50 − 59 is the youngest group to not only experience decreases but259

first see an increase then a decrease. This occurs at different times (ISO week 2021-34 for260

50 − 59, 2021-37 for 60 − 69, and 2021-38 for 70 − 79 and 80+) but after week 2021-261

38 all age groups would be expected to have fewer cases (see the supporting information262

(file models-age) for prediction plots by age group). On average, an increase would be263

expected but at the end of the study period less cases would be expected. A distribution264

scheme which is more uniform across age groups leads to predicted proportions of cases265
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Figure 10: Predicted cases under the two alternative vaccination strategies for regions (above)

and age groups (below)
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being more equal (see supporting information (file supp) for plot), as would be expected.266

5 Conclusion267

This is the first use of endemic-epidemic modelling with time-varying transmission268

weights and time-varying vaccination coverage concurrently. The vaccination coverage is269

constructed in such a manner that is also takes into account waning immunity. The meth-270

ods chosen for this work are relevant for case counts arising from a surveillance system for271

notifiable diseases and so are useful for researchers and public health agency staff who in-272

teract with such systems daily. The use of these models enable us to explore public health-273

related questions and concerns using statistically sound methodology.274

This work complements our earlier work on time-varying weights in endemic-epidemic275

models [see 5–7]. The question for infectious disease models with transmission weight ma-276

trices has always been and remains how do you choose which matrix to use. Replacing277

who-acquires-infection-from-whom matrices with empirical or synthetic contact matrices278

provided freedom from making assumptions of specific mixing patterns. However, during279

a public health emergency such as COVID-19, assumptions of constant transmission op-280

portunities may be violated due to disease control measures enacted. In such a setting the281

choice of a constant matrix becomes non-trivial as non-outbreak settings (where surveys282

of transmission opportunities are traditionally conducted) may no longer be representative283

at short or long term scale and is is not obvious what should be chosen in such a setting.284

For this reason, we adjusted the matrices to reflect situational changes using external in-285

formation (policy and mobility). This does not fully answer the question but is an attempt286

at determining which transmission weight matrices to use. As the changes to different con-287

tact settings are not as obvious as in previous work [see 6, 7, and note the two flat lines288

in the bottom left panel in Figure 1], we effectively only have changes to contacts driven289

by specific locations. For other researchers wishing to do similar modelling, it should also290

be noted that the mobility data informing mrt is only made available until May 2022 after291

which time it is no longer provided. This is an example of why private corporations should292

not be in charge of data gathering for emergency response–access or collection can and293
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may be revoked at any time. In constructing such scenarios, we did not consider the sit-294

uation of no vaccination as examined by Zwahlen and Staub [27] in their considerations295

of expected excess deaths in the absence of vaccines. As they note, an endemic situation296

with no vaccines and no disease control in place is unlikely. We would thus expect to see297

certain contrasting effects in the time-varying transmission weights and the time-varying298

vaccination coverage.299

We showed that the endemic-epidemic modelling framework can be used to project the300

COVID-19 pandemic under different scenarios of vaccination coverage. This was possible301

as we worked with highly structured vaccine coverage data (which was stratified by week,302

age group, and region). The objective of this project was to determine the role of vaccines303

in slowing the spread of COVID-19 in Switzerland incorporating the specific demographics304

of the country to improve the understanding of the impact of vaccination on the ongoing305

pandemic. Statistical modelling was used with epidemiological data to determine the effect306

unvaccinated or under-vaccinated groups have on the spread of COVID-19 in other parts of307

Switzerland as well as the impact of the vaccination strategy used (age-based distribution).308

The strength of our modelling work is the ability to project the epidemic under dif-309

ferent scenarios for vaccination coverage taking into account waning. The highly struc-310

tured case and vaccine data (given by weeks t, age group a, and region r) allows us to311

obtain multivariate predictions providing stratified mean incidence. This is uniquely in-312

formative and provides granular estimates of changes in numbers of cases. An alterna-313

tive approach which would not allow for the evaluation of the vaccination coverage effect314

estimate (which was the focus of this work) but which could be used to examine similar315

research questions as considered here would be to inform the time-varying transmission316

weights by the level of vaccination coverage. We have not considered such an approach317

in this work as it is out of scope but mention it should other researchers wish to attempt318

it. Meyer et al. [26] note that when you assume a common intercept for the unit, you do319

not have to exclude units without reported cases. This should not be an issue here based320

on visual inspection of the outcome variable data. Later developments [12] have examined321

how to incorporate low case counts in endemic-epidemic models and may be another op-322
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tion to consider for researchers interested in similar questions.323

We used the log-proportion of the unvaccinated population to represent the susceptible324

population. This is based in the law of mass action which relies on a homogeneous mix-325

ing assumption. We believe that our inclusion of time-varying heterogeneous contact and326

spatial dispersion matrices as well as allowing the vaccination coverage to vary over time327

relaxes some of the unrealistic aspects of such an assumption. Our work implicitly assumed328

that in the scenarios of increased uptake of vaccines the alternative amount of vaccine329

would be available which might not be the case in reality and so we note that our work330

provides optimistic estimates. Because the Swiss national identity is very divided (Switzer-331

land itself has notable linguistic divisions), it is perhaps not so surprising that Ticino (TI)332

had early uptake of vaccines (Figure 3.2) as those residents would all other things equal333

be assumed to have read more of the Italian language reporting on COVID-19; Italy being334

the early European epicentre in 2022 could have had an impact. However, Rudolf Steiner-335

based initiatives are head-quartered in Switzerland (particularly in Solothun (SO) which336

never achieves the maximum vaccination coverage in the study period) and are known to337

harbour pseudo-scientific and anti-vaccination sentiments [1] which could serve as a hin-338

drance to improvements in vaccination and health. Waldorf school-driven outbreaks of339

infectious diseases are a known epidemiologic issue [28]. With even more granular infor-340

mation, the effects of undervaccinated school districts could be explored.341

Much has been discussed about herd immunity during the COVID-19 pandemic after342

the introduction of vaccines. Herd immunity is the proportion of population that needs to343

be vaccinated in order to curb disease spread. The modelling approach used here can in344

future also be used to examine the effects of achieving herd immunity, once this threshold345

has been fully determined for this disease.346
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