
Pharmaceutical and Non-Pharmaceutical Interventions for1

Controlling the COVID-19 Pandemic2

Jeta Molla1,2,3,*, Suzan Farhang-Sardroodi 2,3,4,*, Iain R Moyles 1,2,3,+, and Jane M3

Heffernan 1,2,3
4

1Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada5
2Centre for Disease Modelling (CDM), Mathematics Statistics, York University, Toronto, Ontario, Canada6

3Modelling Infection and Immunity Lab, Mathematics Statistics, York University, Toronto, Ontario, Canada7
4Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, Canada8

*Equal contribution as first author9
+imoyles@yorku.ca10

April 1, 202311

Abstract12

Disease spread can be affected by pharmaceutical (such as vaccination) and non-pharmaceutical13

interventions (such as physical distancing, mask-wearing, and contact tracing). Understanding the14

relationship between disease dynamics and human behavior is a significant factor to controlling in-15

fections. In this work, we propose a compartmental epidemiological model for studying how the16

infection dynamics of COVID-19 evolves for people with different levels of social distancing, nat-17

ural immunity, and vaccine-induced immunity. Our model recreates the transmission dynamics of18

COVID-19 in Ontario up to December 2021. Our results indicate that people change their behaviour19

based on the disease dynamics and mitigation measures. Specifically, they adapt more protective20

behaviour when the number of infections is high and social distancing measures are in effect, and21

they recommence their activities when vaccination coverage is high and relaxation measures are in-22

troduced. We demonstrate that waning of infection and vaccine-induced immunity are important for23

reproducing disease transmission in Fall 2021.24

Keywords: SIR Model, COVID-19, Physical Distancing, Pharmaceutical (Vaccination) and Non-Pharmaceutical25

Interventions, Waning Immunity26

1 Introduction27

Coronavirus disease 2019 (COVID-19) has been a global challenge leading to millions of infections28

and thousands of deaths globally. Before the availability of vaccines, most countries relied solely on29

the implementation of a range of non-pharmaceutical interventions (NPIs) such as partial closings of30

business, lock-downs, and mask-wearing to curb the spread of SARS-CoV-2 and avoid overburdening31

healthcare systems [1–3]. With the development of COVID-19 vaccines, policy makers started vaccina-32

tion campaigns with the aim to protect individuals and relax NPIs. Vaccines became the most important33
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intervention for mitigating disease severity and spread, allowing the return of social and economic activ-34

ities [4–8].35

Human behaviour plays an important role on the efforts to control the transmission of the COVID-1936

virus, since the effectiveness of mitigation measures depends on NPI compliance and vaccine acceptance.37

People are most likely to adapt protective behaviour when mortality or the perception of risk is high, and38

resume normal life as the perceived risk declines [9–11]. Hence, it is crucial to consider the effects of39

behaviour change over time so that the design of effective infection mitigation policies can be achieved.40

Since the onset of the COVID-19 pandemic, many studies have developed mathematical models to41

describe the dynamics of transmission of the disease [12–14]. Many of the proposed models are ex-42

tensions of the classical Kermack-McKendrick Susceptible-Infectious-Recovered (SIR) epidemic model43

[15], which predicts the number of individuals who are susceptible to infection, actively infected, or44

have recovered from infections at any given time [16]. Several studies have extended the SIR model45

by considering additional compartments to account for asymptomatic cases, hospitalizations, quaran-46

tine, vaccination, disease induced death and /or heterogeneity of the population [17]. These epidemic47

models can also be coupled with models describing behaviors that are affected by and affect the disease48

transmission dynamics [18, 19]. Some the proposed COVID-19 compartmental models have considered49

how individuals respond to the disease dynamics and how the disease dynamics are affected by these50

behavioural responses [20–30].51

In this study, we extend a compartmental SEPIR model first published by Moyles et al. [20]. The52

model divides the population into five possible disease states: Susceptible (S), Exposed (E), Pre-53

symptomatic (P ), Infected (I) (both symptomatic IS and asymptomatic IA), and Recovered (R). It54

also includes three classes of social distancing over each disease state. Additionally, infections are delin-55

eated into those that are known and unknown. The model was used to study the first several months of56

the COVID-19 pandemic, and NPI compliance in Ontario, Canada. However, Moyles et al. [20] did not57

include vaccination, waning immunity, or viral variants as these were concerns after publication of their58

work. The main purpose of our study is to adapt their model to include vaccination, which confers some59

immunity to the disease, and waning from all sources of immunity. The effects of waning immunity have60

been incorporated in some epidemiological models of the COVID-19 pandemic [8,31–35]. Furthermore,61

we extend the model to include variants of concern by allowing modification of the transmissibility of62

the disease over time. We do not include the Omicron variant in our study since data acquisition became63

more difficult as governments reduced testing and started lifting NPIs.64

Since vaccination is imperfect, we introduce a complimentary compartment Sw for those who have65

received vaccines, but do not gain immunity. This class represents a non-existent but perceived immunity66

to the disease and as such we modify the model to account for a change in behaviour related to NPIs as67

a consequence. This compartment will also be a transient compartment for people who have waning68

immunity as there will be misalignment between when the protection from vaccine has diminished and69

when it has been perceived to have diminished.70

To the best of our knowledge, no previous studies have studied the coupled effects of dynamic social71

distancing and cost-based relaxation, waning immunity, vaccination, and new variants of concern on72

the progression of the pandemic. Our study is organized as follows. In Section 2.1 we introduce the73

extended SEPIR model including new parameters, values for which are derived from existing literature74

or fit to data from Public Health Ontario (PHO) [36, 37]. We then present the estimated parameters75

using time horizons of public policy implementations in Ontario developed by Dick [38]. Additionally,76

we investigate the effect of waning immunity. We compare our results to publicly accessible data on77
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Figure 1: Schematic representation of the Susceptible- Exposed - Pre-symptomatic Infectious -
Infectious Asymptomatic - Infectious Symptomatic - Recovered (SEPIR) with three levels of so-
cial distancing from no social distancing (subscript 0) to full isolation (subscript 2) (Panel (c)),
and null, vaccine-induced or perceived immunity (Panel (b), superscript ξ = u, v, w). Xξ =
[Sξ, Eξ, P ξ, P ξ

M , IξS , I
ξ
SM

, IξA, I
ξ
AM

, Rξ
S , R

ξ
A, R

ξ
SM

, Rξ
AM

]. Known infections (via testing) are shown with
subscript M .

positivity rate, daily incidence and seroprevalence [36, 39]. Following Moyles et al., [20], we focus our78

work on the Canadian province of Ontario. We discuss the conclusions of our work in Section 4.79

2 Methods80

2.1 SEPIR Model81

We developed a compartmental mode based on the model proposed by Moyles et al. [20] which al-82

lows the various classes to change transmission dynamics through isolation and contact reduction. The83

Moyles et al. model is depicted in Figure 1, Panels (a) and (c). We extend the model to include vaccine-84

induced immunity, and perceived immunity (shown in Panel (b)) and waning immunity. Briefly, Panel (a)85

shows disease progression from susceptible (S) to recovered (R) through the different infection stages:86

non-infectious (E), pre-symptomatic infectious (P ), asymptomatic infectious (IA), and symptomatic in-87

fectious (IS). Reported infections are denoted with subscript M . A natural waning immunity rate ωI88

indicates the fraction of the recovered population that can once again become susceptible. Superscript89

ξ is shown in Panel (b) which illustrates the transition between individuals that are unvaccinated (u),90

vaccinated (v), or with perceived immunity (w). p is the rate of vaccination, ωV is the waning rate from91

vaccine induced immunity, and ωW it the waning rate of perceived immunity. Panel (c) illustrates move-92

ment between three social distancing classes, with subscripts 0, 1 and 2 denoting no social distancing,93

some social distancing and complete isolation, respectively. Individuals can move up and down the so-94

cial distancing ladder. Note that the disease progression pathway shown in Panel A is the same for all95

3
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individuals in different social distancing states (faded colours in Panel (a)). Movement between social96

distancing classes is allowed unless infection status is known (and requires full social distancing for all97

reported infections). Note that all infections transition from a susceptible state through to recovery but98

with rates and probabilities dependent on the immunity and social distancing status. As such, we denote99

our variables Xξ
i where X ∈ {S,E, P, IS , IA, RS , RA} is the disease state, the subscript i ∈ {0, 1, 2}100

is the physical distancing level, and the superscript ξ ∈ {u, v, w} indicates immunity status. The M101

subscript in panel (a) indicates those who have tested positive for the virus and are thus isolated from the102

population until recovery. We summarize each of the model disease classes as follows:103

• Susceptible individuals denoted by
(
S(t)ξi

)
, who are eligible to be infected by the pathogen.104

• Exposed individuals denoted by
(
E(t)ξi

)
, who have been infected but are incubating the virus.105

They are not transmissible and have a low enough viral load that they would not test positive for106

COVID-19.107

• Pre-symptomatic individuals denoted by
(
P (t)ξi

)
, who are infectious but have not had the disease108

long enough to show symptoms.109

• Infected-symptomatic individuals denoted by
(
IS(t)

ξ
i

)
who are infectious and have started show-110

ing symptoms.111

• Infected-asymptomatic individuals denoted by
(
IA(t)

ξ
i

)
, who are infectious and never show symp-112

toms.113

• Removed-symptomatic individuals denoted by
(
RS(t)

ξ
i

)
, who were symptomatic, but are no114

longer infectious.115

• Removed-symptomatic individuals denoted by
(
RA(t)

ξ
i

)
, who were asymptomatic, but are no116

longer infectious,117

with t as time in days since the onset of the pandemic, taken here to be March 10, 2020. For each of118

the population classes, we consider three levels of physical distancing: no isolation (subscript 0), partial119

isolation at contact reduction δ (subscript 1) and full isolation (subscript 2). All compartments sum to120

the total population, N , which is constant in time as we do not consider recruitment from birth or death.121

The governing differential equations for the full model depicted in Figure 1 are detailed in the Appendix.122

Table 1: The table shows what type of immunity each compartment has with N ξ =
[Sξ, Eξ, P ξ, P ξ

M , IξS , I
ξ
SM

, IξA, I
ξ
AM

] and Rξ = [Rξ
S , R

ξ
A, R

ξ
SM

, Rξ
AM

], where ξ ∈ {u, v, w}.

Classes No immunity Infection Vaccine Perceived
induced immunity induced immunity induced immunity

N u ✓
Ru ✓
N v ✓ ✓
Rv ✓ ✓ ✓
Nw ✓ ✓
Rw ✓ ✓

4
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2.2 COVID-19 Testing123

In this study, we compare the number of cumulative and active reported infections, seroprevalence, daily124

incidence, and positivity rate calculated by our model with the data provided by Public Health Ontario.125

Active reported infections126

Active reported infections, MA are defined by the sum of reported pre-symptomatic, asymptomatic, and127

symptomatic cases with different immunity levels who have not yet recovered, i.e. would not yield a128

negative test result. We define them as129

MA =
∑

ξ∈{u,v,w}
i∈{0,1,2}

(
P ξ
Mi

+ IξSMi
+ IξAMi

)
. (1)130

Note that we assume that all reported infections will fully isolate.131

Cumulative reported infections132

We define M to be the cumulative newly reported cases. We define the rate of change of cumulative133

reported incidence as a sum of pre-symptomatic, asymptomatic, and symptomatic infections who have134

tested positive at time t as follows135

Ṁ =
∑

ξ∈{u,v,w}
i∈{0,1,2}

(
ρξsI

ξ
Si

+ ρξa(P
ξ
i + IξAi

)
)
. (2)136

Total Vaccination Administered137

Cumulative Vaccination, VA is the total vaccines administered. The rate of change here is defined by the138

sum of all eligible vaccine recipients who vaccinate at time t with rate p and is defined as139

V̇A =

2∑
i=0

p
(
Su
i + Eu

i + P u
i + IuAi

+Ru
Ai

)
. (3)140

Importantly we assume that those who have symptomatic infection, have recovered from symptomatic141

infection, or have tested positive for having an infection are ineligible to receive a vaccine.142

Seroprevalence143

Serology testing, which tests someone’s blood to see if they have antibodies for COVID-19, is used as144

a measure of population-level infection and immunity. Seroprevalence, SR is estimated by the number145

of people who test positive for COVID-19 antibodies based on serology data. Herein, we assume that146

people with COVID-19 antibodies will belong to the recovered class and thus147

SR =
∑

ξ∈{u,v,w}
i∈{0,1,2}

(
Rξ

Si
+Rξ

Ai
+Rξ

SMi
+Rξ

SAi

)
. (4)148
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We note that individuals that wane out of the recovered classes will not have positive serology tests in149

our model.150

Daily Reported Infection Incidence151

DI refers to the number of newly diagnosed COVID-19 cases per day, and is defined as152

DI = M(t)−M(t− 1). (5)153

Positivity Rate154

Since we assume that all individuals are eligible for testing then we can define the test positivity rate
as the number of positive tests (daily incidence) divided by total tests administered across the entire
population. We define the testing rate of symptomatic infections to be ρs, and assume that the testing
rate for all populations that are not infected or that have asymptomatic infection to have testing rate ρa.
Thus, we define the total tests TT

TT =
∑

ξ∈{u,v,w}
i∈{0,1,2}

[
ρξa

(
Sξ
i (t) + Eξ

i (t) + P ξ
i (t) + IξAi

(t) +Rξ
Si
(t) +Rξ

Ai
(t)

)
+ ρξsI

ξ
Si

]

and the test positivity rate

ρ+ :=
DI

TT
.

2.3 Physical distancing functions155

We model the transition between the different social distancing classes as in [20], by assuming that156

individuals who are not vaccinated move from social distancing class 0 to class 1 with rate µu given by157

µu = µmax

(
[KM −Kc]+

[KM −Kc]+ +K0 −Kc

)(
[MA −Mc]+

[MA −Mc]+ +M0 −Mc

)
, (6)158

where µmax is the maximal rate of social distancing, [·]+ = max(·, 0), and KM is the doubling rate given
by

KM =
dM/dt

M ln(2)
.

We assume that individuals transition from social distancing class 1 to class 2 with rate µu/2 to take159

into account that people who have already reduced their contacts will be slower in fully isolating. Fur-160

thermore, we assume that individuals who are vaccinated are also slower in transitioning from social161

distancing class 0 to 1 by setting µv = µw = µu/2. As we can see from the definition of the physical162

distancing function µ, the number of total and active reported cases determine if individuals will physical163

distance, and these two quantities are provided from testing.164

6
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Additionally, individuals decrease social distancing based on some cost, C, with rate ν defined as165

in [20],166

ν = νmax

(
[C − Cc]+

[C − Cc]+ + C0 − Cc

)
, (7)167

where νmax is the maximal rate at which physical distancing can be relaxed. The cost of social distancing,
primarily introduced by [20], is extended as follows

Ċ =
NCrit

N

∑
ξ∈{u,v,w}

((Sξ
2 + Eξ

2) + (1− δ)(Sξ
1 + Eξ

1)), (8)

where the full cost occurs to those in all immunity groups who are susceptible or exposed (i.e. would test168

positive for the virus). As was done by Moyles et al. in [20], the cost is scaled to be in days where one169

day represents the cost of the entire population, N , fully or partially isolating. Individuals in the social170

distance class 1 have reduced transmissibility by a factor δ, and we assume this comes at a reciprocal171

burden cost of (1− δ) per day.172

2.4 Parameter Values and Estimation173

In this study we estimate parameters (i) Kc: critical approximate disease doubling rate to induce social174

distancing, (ii) Mc: critical active cases to induce social distancing, and (iii) ρa: testing rate for asymp-175

tomatic person to test positive as these parameters are assumed to vary within different public health176

mitigation periods. Additionally, we estimate p, the percentage of vaccinated people. We estimate these177

parameters in different time windows defined by the time period over which certain policies were in ef-178

fect to investigate how their values change based on NPIs and pharmaceutical interventions. We choose179

the date and the category of the implemented NPI as developed by Dick et al. [38] where the authors180

used government resources and creditable news agencies to provide the timeline of categorized public181

health interventions from March 12, 2020, to January 5, 2022. In Table 2, we provide the dates of each182

time window and the corresponding policy.183

For parameter fitting we use data from Public Health Ontario [36, 37] on cumulative and active184

reported cases, and total vaccines administered from March 10, 2020 to November 30, 2021. We start185

with an initial value for the first time window for the values of the parameters Kc,Mc, ρa and p, and186

then employ a non-linear least squares method to find the values of the parameters so that the simulated187

cumulative and active reported cases, and total number of vaccinations, best fit the data. For the second188

time window we use as initial value of the fitted values from the first time window, and estimate the189

values of the parameters again using the same fitting method. We repeat the same procedure until we190

have estimated the values of the parameters for all time windows.191

The remaining model parameters are assigned the values listed in Tables 2 and in the Appendix.192

2.5 Initial Conditions193

We initialize all compartments to be zero except for the symptomatic infectious I0S and the susceptible194

S0, assuming that I0S(t = 0) = 0.002N/Ncrit and S0(t = 0) = 0.98N/Ncrit, where t = 0 is the initial195

time and Ncrit is the critical population at which healthcare resources are overwhelmed.196

7

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 3, 2023. ; https://doi.org/10.1101/2023.03.31.23288023doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.31.23288023
http://creativecommons.org/licenses/by-nc/4.0/


Table 2: Estimated values of Kc,Mc, ρ and p.

Time
window

Important dates Rationale β Kc Mc ρa p

1 10-Mar-2020 07-Jun-2020 Lockdown and gradual reopening - 0.0635 0.0239 0.0094 -

2 07-Jun-2020 20-Aug-2020 Stage 2 and 3 mosaic - 0.0635 0.0239 0.0061 -

3 20-Aug-2020 25-Dec-2020 Tightening Measures, second wave - 0.0160 0.0000 0.0021 -

4 25-Dec-2020 19-Jan-2021 Tightening Measures, second wave - 0.0000 0.2885 0.0024 -

5 19-Jan-2021 28-Jan-2021 Stay at home - 0.0000 0.0000 0.0024 -

6 28-Jan-2021 15-Feb-2021 Stay at home - 0.0031 0.0000 0.0038 -

7 15-Feb-2021 12-Mar-2021 Reopening scenarios 1.5β 0.0048 0.0000 0.0040 0.0011

8 12-Mar-2021 04-Apr-2021 Reopening scenarios 1.5β 0.0070 0.0000 0.0020 0.0000

9 04-Apr-2021 09-May-2021 Emergency stay at home 1.5β 0.0000 0.3312 0.0024 0.0002

10 09-May-2021 10-Jun-2021 Emergency stay at home 1.5β 0.0000 0.0000 0.0029 0.0016

11 10-Jun-2021 15-Jun-2021 S1 1.5β 0.0096 0.0097 0.0040 0.0187

12 15-Jun-2021 29-Jun-2021 S1 1.5β 0.0096 0.0097 0.0043 0.0153

13 29-Jun-2021 15-Jul-2021 S2 2β 0.0096 0.0097 0.0010 0.0288

14 15-Jul-2021 01-Sep-2021 S3 2β 0.0096 0.0097 0.0003 0.0221

15 01-Sep-2021 30-Nov-2021 S3 2β 0.0096 0.0097 0.0020 0.0230

2.6 Sensitivity Analysis197

We perform a sensitivity analysis on the waning parameters ωI , ωV , ωW and the vaccine efficacy ϵ.198

To do so we generate 1000 samples of the parameters ϵ, ωI , ωV , and ωW using the Latin hypercube199

method [40]. We assumed that the quickest vaccine induced immunity ωV or infection induced immunity200

ωI , can wane is 4 months, and the slowest is 2 years [35]. The quickest the perceived induced immunity201

ωW can wane is 4 months, and the slowest is 1 years [41]. We did not test the sensitivity of our model202

on the other parameters since our model is an extension of the model presented in [20] and the authors203

carried out sensitivity analysis on the model parameters. However, the waning parameters ωI , ωV , and204

ωW and the vaccine efficacy ϵ are new parameters.205

We take into account that the emergence of SARS-CoV-2 variants can affect transmission rate of206

the disease. If we define β as the transmission coefficient for the wild-type strain then when the Alpha207

variant (B.1.1.17) was dominant between February 15 and June 29, 2021 we modify the transmission208

coefficient to 1.5β accounting for the higher reproduction number of this variant [42]. Similarly, from209

June 29, 2021 to December 31, 2021 the Delta variant (B.1.617.2) was dominant and we modify the210

transmission to 2β [42]. For a subset of parameters, reasonable values were specified based on Health211

statistics, see Table 1 and 3 in the Appendix.212

3 Results213

3.1 Time windows214

We provide the fitting results for each time window in Table 2. From the start of the pandemic until215

August 20, 2020 (time windows 1 and 2), the values of the parameters Kc and Mc remain the same216

8
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Figure 2: The minimum and maximum number of active cases per day, obtained by numerically solving
the model equations, for different values of ϵ, ωI , ωV and ωW .

indicating that individuals had the same level of vigilance during that time period, while the testing217

rate ρa is high during the first time window, but it decreases during the second time window. The218

decrease in the values of Kc and Mc between August 20 and December 25, 2020 shows that individuals219

became more cautious, while testing decreases further compared to the previous time period. During220

that time window, more strict measures were implemented in Ontario explaining the increased vigilance.221

During time window 4, we observe that the value of Kc drops, but the values of Mc and ρa increase.222

Increase in the value of Mc indicates that more cases are needed to induce social distancing, but the223

critical doubling rate is zero meaning that any increase in the doubling rate leads to more vigilance.224

Increase in the value of Mc and reduction in the value of Kc might occur during the exponential phase225

of spread of the disease when the number of cases might not be high, but the doubling rate is high and226

individuals are more cautious knowing that the number of cases is exponentially growing. From January227

19 to February 15, 2021 (time windows 5 and 6), a stay-at-home order was in effect in Ontario, and228

this resulted in people increasing social distancing as the value of Mc remains zero implying that any229

number of cases triggers social distancing. From February 15 to April 4, 2021 (time windows 7 and230

8), although the government was considering relaxation of the mitigation measures, the values of Mc231

remain zero showing that individuals were still vigilant and continue to social distance if the number of232

cases is non-zero. During time windows 9 and 10, the stay-at-home order was again in effect. Although,233

the value of Mc increased during time window 9, the value of Kc remains zero for both time windows234

indicating that people are reducing their contacts if the doubling rate is greater than zero. Finally, from235

June 10 to November 30, 2021 (time windows 11 to 15), the values of Kc and Mc remain constant and236

increase compared to the time period between May 9 and June 15. It is possible that the increase in237

vaccine coverage resulted in people being more relaxed about social distancing, and would reduce their238

social activities only when the doubling rate or number of cases would surpass the value of Kc and Mc,239

respectively.240
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Figure 3: Comparison between model simulations and Ontario Data Catalogue. Model predictions fits
to data from [36] in panel (a) and (b), and fits to data from [37] in panel (c), from March 10 2020 to
November 30 2021. The green vertical dashed line shows the vaccination starting date. In the red (green)
shade area the diseases transmission rate of the variants, was assumed to be one and half times (double)
greater than the transmission rate of wild type.

3.2 Waning immunity241

In Figure 2 we present the results from our sensitivity analysis on the daily minimum and maximum242

active cases given by the 1000 samples of the parameters ϵ, ωI , ωV , ωW and the estimated values of243

Kc,Mc, ρ and p. The values for ωI and ωV are chosen on a per-day basis, and We observe that the244

minimum and maximum number of daily active cases are similar in magnitude up to December 25,245

2020, which implies that model predictions are not affected by the waning immunity parameters up to246

this date. The minimum number of cases (blue line) corresponds to values of the parameters ωI between247

0.0013 and 0.0016, and ωV between 0.0015 and 0.0020, (both very close to the assumed two-year upper248

bound) we can see that the model predicts no infection after July 29, 2021. . This shows that if we249
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assume slow waning rates, the model does not capture the fourth wave, meaning that the number of250

individuals left in the susceptible compartment is not sufficiently large for the disease to spread. On the251

other hand, the model overestimates the number of active cases after July 29, 2021, if we assume that252

the infection and vaccine induced immunity fade quickly (red line) with ωV ∈ (0.0075, 0.0082) and253

ωI ∈ (0.0062, 0.0074) near the assumed 4-month lower bound in waning time.254

3.3 Model Prediction Vs. Observed Data255
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Figure 4: The simulation results for the seroprevalence, daily incidence and positivity rate have been
projected with health data from March 10 2020 to November 30, 2021.

The results from the model fitting of Kc, Mc, ρa and p are illustrated in Figure 3. Here, we also256

plot data on cumulative reported infections (top panel), active reported infections (middle panel), and the257

total vaccines administered (bottom panel) [37]. We observe a satisfactory model prediction of observed258

data for cumulative incidence and total vaccination administered criteria between March 10, 2022, and259
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November 30, 2021. For active reported infections, the fit is satisfactory until August 2021 after which260

there is an overshoot compared to the data.261

Further, we compare the model results with data which was not used to fit the model, particularly262

seroprevalence, daily incidence, and positivity rate. The evolution of model predicted seroprevalence263

in different cohorts, daily incidence, positivity rate, and the corresponding health data are depicted over264

time in Figure 4. Although, there is a relatively good agreement between data and simulation for daily265

incidence and positivity rate, the estimated seroprevalence is higher than the data suggest. The data266

on seroprevalence are based on studies from blood donors aged 16+ from Canadian Blood Services267

(CBS) [39, 43]. We note here that our model does not distinguish between serology and T-cell medi-268

ated immunity whereas the CBS data report the results from serological testing only. It is possible for269

individuals to have T-cell immunity even when antibody levels have waned. A recent study reported270

that high T-cell memory levels can protect against COVID-19 infection [44]. Additionally, we assume a271

well-mixed population in our model. This can also increase our estimates as we do not include contact272

networks. Finally, our model presents immunity from the entire population irrespective of age whereas273

the CBS serological testing is conducted in ages 16+ only. The inclusion of age structure and con-274

tact matrices may reduce our seroprevalence estimates. However, even with age-structuring Dick et al.275

estimated seroprevalence higher than suggested by the data, although less of a difference than we see276

here [35] Given these points we find that it is not surprising that our model and the data do not agree. In277

future, we will consider a model with age-structure to see if this will provide immunity estimates closer278

to the serological testing data.279

280

4 Discussion281

In this work, we proposed a compartmental model coupling the effects of dynamic social distancing and282

cost-based relaxation, different immunity levels, vaccination, and new variants of concern to study which283

can recreate the history of the COVID-19 pandemic up to December 2021 in Ontario. The model can284

predict different quantities of interest including active cases, vaccination, daily incidence and positivity285

rate. However, our model predictions on the seroprevalence are different from the data which could286

be due to the challenges on estimating population seroprevalence from serological testing and/or the287

homogeneous mixing assumption for our model.288

We concluded that if we assume that it takes 2 years for disease or vaccine induced immunity to wane,289

our model does not capture the fourth wave in Ontario. Our sensitivity analysis showed that waning290

immunity would not change anything in the model predictions on active cases until December 25, 2020.291

However, the model is more sensitive after December 25, 2020, and the values of the waning parameters292

affect the fitting results. Our simulations and sensitivity analysis showed that waning immunity is crucial293

to capture more accurately the disease dynamics and predict multiple waves over a long time period. In294

future work, we want to extend the time period to include the Omicron variant and study the effect of295

evading immunity on disease dynamics.296

We estimated key parameters affecting the vigilance of individuals at different time windows and297

found that NPIs influence how they increase or decrease their contacts. For example, they are more298

cautious when stricter measures are introduced such as stay-at-home orders or lockdowns. Our results299

also indicate that people started being more relaxed about social distancing after May 2021, which is300
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approximately when vaccine coverage increased in Canada. This shows the importance of having a301

model that incorporates dynamic human behaviour in order to capture how people change their behaviour302

based on the disease dynamics and NPIs.303

As a case study, we used different health data from Ontario to evaluate our model predictions. How-304

ever, our modeling framework can be easily adapted to any other country or province for which relevant305

data are available. Our modelling approach can provide important insights how NPIs and vaccination306

can influence the health decisions people make during epidemics, and better understand how disease307

dynamics are affected by those decisions.308
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Appendix440

Sensitivity analysis441

In Figure 5 we present the scatterplots for the estimated parameters Kc,Mc, ρ and p versus the waning442

rates ωI , ωV , and ωW . The results show that there is no relationship between Kc,Mc, ρ and ωI , ωV , ωW .443

The waning rates ωI , ωV and ωW determine how fast the infection or vaccine-induced immunity, and the444

perceived-induced immunity wane, and it would be expected that they do not influence the values of the445

behaviour parameters ρ,Mc,Kc since individuals do not know when their immunity wanes. While there446

is no relationship between p and ωI , the results indicate a negative relationship of moderate strength447

between p and ωV , and p and ωW . This implies that as the rate at which individuals transition from u to448

w decreases, the vaccination rate has to increase to fit the vaccination data.449

Figure 5: Scatterplots of the parameters Kc,Mc, ρ, p versus ωI , ωV and ωW .
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Differential Equation Models450

The differential equation models for people with natural immunity (Eq: A.9), vaccine/perceived induced451

immunity (Eq: A.10) and perceived induced immunity (Eq: A.11) are given by the following equations.452

4.1 Natural Immunity453
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Ėu
0= FSu

0
− µEu

0 + (ν/2)Eu
1 + (1− q2)νE

u
2 − σEu

0 − pEu
0 + wEw

0

Ėu
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1

Ėu
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2 + wEw

2

Ṗ u
0 = σEu
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2 − ϕP u

0 − ρaP
u
0 − pP u

0 + wPw
0
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1
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2 = σEu
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u
0 + (µ/2)P u
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u
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2
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u
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M
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u
A0

+ (µ/2)IuA1
− νIuA2

− γIuA2
− ρaI

u
A2

− pIuA2
+ wIwA2

İuAM
= ρa(I

u
A0
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+ IuA2

) + (1− q)ϕP u
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+ wIwAM

Ṙu
S0
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u
S0
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S1
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u
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Ṙu
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= γIuS1
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u
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u
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u
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A2
− wIR
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u
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u
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+ wRw
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(A.9)

4.2 Vaccine/Perceived Induced Immunity454

Ṡv
0 = −FSv

0
− µSv

0 + (ν/2)Sv
1 + (1− q2)νS

v
2 + qvpS

u
0 − w′

IS
v
0
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Ṡv
1 = −FSv

1
− (µ/2)Sv

1 + q1µS
v
0 − (ν/2)Sv

1 + q2νS
v
2 + qvpS

u
1 − w′
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v
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Ṡv
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v
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1 − νSv
2 + qvpS

u
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v
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0
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1
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2 )− ϕP v

M
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v
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v
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v
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− γIvA1
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v
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u
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İvA2
= (1− q)ϕP v

2 + (1− q1)µI
v
A0

+ (µ/2)IvA1
− νIvA2

− γIvA2
− ρvaI

v
A2

+ qvpI
u
A2

İvAM
= ρva(I

v
A0

+ IvA1
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) + (1− qv)ϕP
v
M − γIvAM

Ṙv
S0

= γIvS0
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u
S0
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v
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− µRv
S0

+ (ν/2)Rv
S1

+ ν(1− q2)R
v
S2

Ṙv
S1

= γIvS1
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u
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v
S1

+ µq1R
v
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Ṙv
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u
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Ṙv
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v
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Ṙv
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u
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v
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A1
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A0

− νRv
A2

Ṙv
AM

= γIvAM
+ qvpR

u
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v
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(A.10)

Perceived Induced Immunity455

Ṡw
0 = −FSw

0
− µSw

0 + (ν/2)Sw
1 + (1− q2)νS

w
2 + (1− qv)pS

u
0 + wI(R

v
S0

+Rw
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+Rv
A0

+Rw
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+Rv
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+Rw
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+Rv
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+Rw
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+Ru
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+Ru
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)− wSw
0 + w′
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v
0

Ṡw
1 = −FSw

1
− (µ/2)Sw

1 + q1µS
w
0 − (ν/2)Sw

1 + q2νS
w
2 + (1− qv)pS

u
1 + wI(R

v
S1

+Rw
S1

+Rv
A1

+Rw
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)

− wSw
1 + w′
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v
1

Ṡw
2 = (1− q1)µS
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w
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v
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+Rw
S2

+Rv
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v
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Ėw
0 = FW0 − µEw

0 + (ν/2)Ew
1 + (1− q2)νE

w
2 − σEw

0 + (1− qv)pE0 − wEw
0
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Table 3: Force of Infections

Infectious︷ ︸︸ ︷(
IuS0

+ IvS0
+ IwS0

)
+ α(P u

0 + IuA0
+ P v

0 + IvA0
+ Pw

0 + IwA0
+ δ(P u

1 + IuA1
+ P v

1 + IvA1
+ Pw

1 + IwA1
)) + δ(IuS1

+ IvS1
+ IwS1

)

Fξ0 = Ncritβξ0
N (Infectious), ξ0 = Su

0 , S
w
0 , εS

v
0 Fξ1 = Ncritδβξ1

N (Infectious), ξ1 = Su
1 , S

w
1 , εS

v
1

Ėw
1 = FW1 − (µ/2)Ew

1 + q1µE
w
0 − (ν/2)Ew

1 + q2νE
w
2 − σEw

1 + (1− qv)pE1 − wEw
1

Ėw
2 = (1− q1)µE

w
0 + (µ/2)Ew

1 − νEw
2 − σEw

2 + (1− qv)pE2 − wEw
2

Ṗw
0 = σEw

0 − µPw
0 + (ν/2)Pw

1 + (1− q2)νP
w
2 − ϕPw

0 − ρvaP
w
0 + (1− qv)pP0 − wPw

0

Ṗw
1 = σEw

1 − (µ/2)Pw
1 + q1µP

w
0 − (ν/2)Pw

1 + q2νP
w
2 − ϕPw

1 − ρvaP
w
1 + (1− qv)pP1 − wPw

1

Ṗw
2 = σEw

2 + (1− q1)µP
w
0 + (µ/2)Pw

1 − νPw
2 − ϕPw

2 − ρvaP
w
2 + (1− qv)pP2 − wPw

2

Ṗw
M = ρva(P

w
0 + Pw

1 + Pw
2 )− ϕPw

M − wPw
M

İwS0
= qϕPw

0 − µII
w
S0

− γIwS0
− ρvsI

w
S0

− wIwS0

İwS1
= qϕPw

1 + qIµII
w
S0

− γIwS1
− ρvsI

w
S1

− wIwS1

İwS2
= qϕPw
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w
S0

− γIwS2
− ρvsI

w
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− wIwS2

İwSM
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) + qϕPw
M − γIwSM
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İwA0
= (1− q)ϕPw
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+ (ν/2)IwA1

+ (1− q2)νI
w
A2

− γIwA0
− ρvaI

w
A0

+ (1− qv)pIA0 − wIwA0

İwA1
= (1− q)ϕPw

1 − µIwA1
+ q1µI

w
A0

− (ν/2)IwA1
+ q2νI

w
A2

− γIwA1
− ρvaI

w
A1

+ (1− qv)pIA1 − wIwA1

İwA2
= (1− q)ϕPw

2 + (1− q1)µI
w
A0

+ (µ/2)IwA1
− ν2I

w
A2

− γIwA2
− ρvaI

w
A2

+ (1− qv)pIA2 − wIwA2

İwAM
= ρva(I

w
A0

+ IwA1
+ IwA2

) + (1− q)ϕPw
M − γIwAM

− wIwAM

Ṙw
S0

= γIwS0
+ (1− qv)pR

u
S0

− wIR
w
S0

− wRw
S0

− µRw
S0

+ (ν/2)Rw
S1

+ ν(1− q2)R
w
S2

Ṙw
S1

= γIwS1
+ (1− qv)pR

u
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− wIR
w
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S1
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w
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− (µ/2)Rw
S1

− (ν/2)Rw
S1

+ νq2R
w
S2

Ṙw
S2

= γIwS2
+ (1− qv)pR

u
S2

− wIR
w
S2

− wRw
S2

+ (µ/2)Rw
S1

+ µ(1− q1)R
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− νRw
2

Ṙw
SM

= γIwSM
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u
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− wIR
w
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− wRw
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Ṙw
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= γIwA0
+ (1− qv)pR

u
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− wIR
w
A0

− wRw
A0

− µRw
A0
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w
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Ṙw
A1

= γIwA1
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u
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− wIR
w
A1

− wRw
A1
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w
A0

− (µ/2)Rw
A1

− (ν/2)Rw
A1

+ νq2R
w
A2

Ṙw
A2

= γIwA2, + (1− qv)pR
u
A2

− wIR
w
A2

− wRw
A2

+ (µ/2)Rw
A1

+ µ(1− q)Rw
A0

− νRw
A2

Ṙw
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= γIwAM , + (1− qv)pR
u
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− wIR
w
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− wRw
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(A.11)

Where {FSu
0
, FSu

1
, FSv

0
, FSv

1
, FSw

0
, FSw

1
} are force of infections and defined in Table 3.456
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Parameter Definition Value Reference
R0 Basic reproduction number 2.4 [20]
β Transmission rate 0.223 Calculated
σ Latent period 2 days−1 [20]
ϕ Pre-symptomatic period 4.6 days−1 [20]
γ Infectious period 10 days−1 [20]
δ Reduction in transmission due to social distancing in class 1 0.25 Chosen
α Reduction in transmission due to being asymptomatic 0.5 Chosen
Q Proportion of infected individuals who show symptoms 0.69 Median

value
µmax Maximal rate at which an un-vaccinated individual transitions from a

less socially distant class to a more socially distant class
1 days−1 Chosen

µv
max, µ

w
max Maximal rate at which a vaccinated individual transitions from a less

socially distant class to a more socially distant class
0.5 days−1 Chosen

νmax Maximal rate at which an un-vaccinated individual moves from a more
socially distant class to a less socially distant class

1 days−1 Chosen

νv
max, ν

w
max Maximal rate at which a vaccinated moves from a more socially distant

class to a less socially distant class
2 days−1 Chosen

µI Rate at which people showing symptoms choose to isolate 0.01 days−1 Chosen
q0 Proportion of S0 socially distancing into S1 0.9 Chosen
q2 Proportion of S2 relaxing social distancing into S1 0.6 Chosen
qI Proportion of symptomatic individuals IS0

who isolate into IS1
0.6 Chosen

Cc Critical cost to induce social relaxation 50 days Chosen
C0 Cost that leads to half the maximal rate of social relaxation 100 days Chosen

Table 4: Values of the model parameters.

Table 5: Model Parameters

Fixed parameters

parameter Definition Value comment

qv (1− qv) is the fraction of people with perceived induced immunity 1 Chosen

ρva Testing rate of vaccinated people 0.5ρa Chosen

ε (1− ε) is the efficacy of the vaccine 0.0 Chosen

ωW Media waning rate 0.07 Chosen

ωI Disease waning rate 0.005 Chosen

ωV Vaccine waning rate 0.005 Chosen
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