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Abstract 

 

Early pandemic diagnostic tool is key important to provide timely pieces of evidence for 

public health decision making in the early pandemic where data was sparse. In this paper, 

we demonstrate how a model can be used to reconstruct the first COVID-19 pandemic wave 

with minimal dataset.  

 

Introduction 

 

The COVID-19 pandemic has been with us more than three years, inflicting devastating 

effects on global populations and economies [1, 2] and now still affecting countries in very 

different ways. Reviewing the COVID-19 pandemic evolution and evaluating previous 

responses is vital important for future pandemic preparedness [3-6].  

 

In the early pandemic information related with COVID-19 transmission was sparse. Different 

types of data stream were available with the pandemic was evolving into different stages. 

Epidemiological data including confirmed cases and mortality was always the first one to be 

collected and reported mostly due to the syndrome surveillance systems [7, 8]. Although 

the reported case is an important metric to tract the pandemic, it is always underestimating 

exposure because of the very limited capacity of viral tests in the beginning of the 

pandemic. The rate of underestimating was estimated mostly by SEIR type compartment 

models [9-12] while a probabilistic convolution model linking the distribution of the time 

from infection to death and the probability of death given infection was developed [13]. The 
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rate varied along the pandemic and depended on the relation between exposure, testing 

capacity and testing behaviour.  

 

Serological data from convenient samples, e.g., blood donors [14] and seroprevalence 

survey [15] became accessible after limited by the availability of antibody testing kits and 

feasibility of large-scale sampling. These data were collected to understand the exposure 

level in the population and its immunological implications. However, extra work of 

adjustment must be done to correct the bias introduced by the antibody decay [16].  

 

Along with seroprevalence survey, viral survey was conducted at the same time or a bit 

later. The viral survey was designed to understand the transmission and prevalence so that 

various non-pharmaceutical interventions could be developed and implemented. UK Office 

for National Statistics conducted a national wide COVID-19 viral testing survey [17] that has 

been successfully tracking the trajectories of COVID-19 infections in the UK since April of 

2020. It has provided a clearer picture of the pandemic evolution and valuable pieces of 

evidence for the future pandemic wave preparedness in the UK [17]. Because of its 

representative sampling across households this study is recognised to have a strong power 

to capture asymptomatic infections which might be missed out by symptomatic testing 

scheme in the early pandemic [18]. However, this study started collecting samples from 

April of 2020 and then reporting the estimates of incidence from May of 2020 while the first 

death due to COVID-19 disease in the UK was documented in February 2020 [19]. This might 

suggest that the transmission of COVID-19 in the community might be much earlier than the 

survey and the survey might not be able to capture the early pandemic.  

 

We developed a dynamic model to link multiple datasets including mortality, 

seroprevalence and virus PCR testing positivity ratio, and estimated the total exposure level 

across different regions of England after accounting for the antibody decay [16]. Here we 

examined and evaluated the model in the context of reconstructing the first COVID-19 

pandemic from three perspectives: validation from ONS Infection Survey, relationship 

between model performance and data abundance and time-varying case reporting rate.  

 

Result 
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Validation from ONS Infection Survey 

Comparing the incidence of SARS-CoV-2 in England estimated by our model with those 

inferred by ONS COVID-19 Infection Survey (Figure 1), we found that our model could reveal 

the first but unobserved epidemic wave of COVID-19 in England from March 2020 to June 

2020 additionally, with the second wave validated by the estimates from ONS Infection 

Survey. Further, we found our model results were highly consistent with those using SEIRS 

type compartmental models with time-varying force of infection [20, 21]. 

 

Relationship between model performance and data abundance  

We then examined the relationship between model performance and data abundance - how 

estimates of exposure from our model change with more serological data points being 

added into the fitting procedure one by one over time (Figure 2). We found a highly robust 

pattern of exposure across different regions of England was estimated in general. 

Specifically, the model could only start estimating the interested quantities: exposure and 

two parameters (infection fatality ratio and antibody decaying rate) when at least two 

serological measurements from April to June 2020 in each region were given as inputs. 

However, these estimates were already highly consistent with those when more serological 

measurements were added although the credible bands were wider. The wide credible 

bands suggested a bigger uncertainty around the estimates when little information was 

available. When three serological measurements in each of region were included the 

estimates of exposure level were gradually stable at the results when all serological 

measurements were used. This might be attributed to the timing of these third serological 

measurements since then the seroprevalence in most regions started decreasing. With 

more and more serological measureemnts being added, the credible bands of estimates of 

exposure were gradually narrowing down.  

 

Time-varying case reporting rate  

While comparing the reported cases with the incidence estimated by our model (Figure 3), 

we found the confirmed cases in England only accounted for 9.1% (95%CrI (8.7%,9.8%) of 

cumulative exposure by the end of October 2020. Further, the relative size of two infection 

waves in England in 2020 estimated by our model, Spring wave from February to June and 
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Autumn wave from September to November, were in completely opposite direction with 

what reported by the confirmed cases. The case reporting rate relative to the total exposure 

was also dramatically different in these two-epidemic waves. If separating the two waves 

from the first of August 2020, we found during January 2020 to August 2020 the case 

reporting rate was only 4.3% (95%CrI (4.1%, 4.6%)) which increased to 43.7% (95%CrI 

(40.7%, 47.3%)) during August 2020 to October 2020, highlighting the dominate effect of 

testing effort in shaping the case curve in the early stage of a pandemic. Limited by the 

capacity of tests in the early stage of a pandemic, reported cases are almost always 

underestimating the total underlying infections in the population.  

 

Discussion 

The comparison exercise with ONS Infection Survey suggests it is a valuable early pandemic 

diagnostic tool, a dynamic model with a concise structure linking minimal dataset e.g. 

mortality, seroprevalence and PCR test positivity ratio, that is sufficiently powerful to 

reconstruct the early epidemic infection wave that had happened before any prevalence 

survey and any massive testing programme. The simple model structure could also avoid 

unnecessary complexity and structure-based uncertainty in a full dynamic model, for 

example, SEIR type compartmental models. The accuracy of model results would be 

improved as more and more information was available.  In this paper we relooked into a 

dynamic model and argued that it is an important tool to quickly reconstruct the early 

pandemic transmission wave when data was sparse and large-scale infection survey was not 

available and feasible, for example, in Low- or Middle-Income Country (LMIC). 
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Figure 1. Comparison of model predicted daily incidence of SARS-CoV-2 in England. The 

green and orange lines show the predictions of median daily incidence by our model and 

ONS Infection Survey while the shaded areas correspond to the 95% CrI.  
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Figure 2. Comparison of estimates of exposure in seven regions of England when serological 

measurements are added one by one. The green and orange lines show the model 
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predictions of median exposure and seroprevalence, respectively, while the shaded areas 

correspond to the 95% CrI.  

 

 

Figure 3. Comparison between estimates of daily incidence with reported cases of SARS-

CoV-2 in England and estimated case reporting rate. In the top figure, the black lines show 

the predictions of median daily incidence by our model while the shaded areas correspond 

to the 95% CrI. The blue lines show the reported confirmed cases in England. In the bottom 

figure, the green lines show the estimates of median case reporting rate in England while 

the shared areas correspond to the 95% CrI.   

 

Materials and methods 

Data sources 

We used publicly available epidemiological data to conduct the analysis, as described below 

 

ONS estimated incidence  

SARS-CoV-2 daily incidence in England in 2020 estimated by UK Coronavirus (COVID-19) 

Infection Survey were retrieved from the Office for National Statistics (ONS) [18] on March 

17, 2023. 
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Model estimated exposure 

Model estimated cumulative exposure to SARS-CoV-2 in seven regions of England were 

obtained from publication [16].  

 

7-day average of reported COVID-19 cases in England 

7-day average of reported COVID-19 daily cases in England in 2020 were retrieved from the 

UK government’s official COVID-9 online dashboard [19] on March 17, 2023.  

 

Method 

We firstly calculated the incidence in England estimated by exposure model [16] by 

computing the difference of cumulative exposure in two successive days and adding 

together to the whole England:  

 

𝐼𝑖(𝑡) = 𝐸𝑖(𝑡 + 1) − 𝐸𝑖(𝑡), 𝑡 = 1,2, … , 𝑛, 𝑖 = 1,2, … ,7 

Equation (1) 

𝐼𝐸𝑛𝑔𝑙𝑎𝑛𝑑(𝑡) =∑𝐼𝑖(𝑡)

7

𝑖=1

 

Equation (2) 

Here, 𝐸𝑖(𝑡) is the daily exposure at region 𝑖 estimated by exposure model [16], 𝑛 is the total 

number of days, 𝑖 = 1, …7 represents London, Southwest, Southeast, Northeast, 

Northwest, East, Midland. 𝐼𝐸𝑛𝑔𝑙𝑎𝑛𝑑(𝑡) represents the daily incidence of England.  

The estimated reporting ratio was calculated by  

𝐼𝐸̅𝑛𝑔𝑙𝑎𝑛𝑑(𝑡) =
1

7
∑ 𝐼𝐸𝑛𝑔𝑙𝑎𝑛𝑑(𝑖), 𝑡 = 4, 5, … , 𝑛 − 4

𝑡+3

𝑖=𝑡−3

 

Equation (3) 

 

𝑟(𝑡) =
𝐼𝐸̅𝑛𝑔𝑙𝑎𝑛𝑑(𝑡)

𝐶(𝑡)
 

Equation (4) 

Here, 𝐶 is the 7-day average reported cases in England.  
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While testing the relationship between model performance and data abundance, we firstly 

obtained all the data and codes from paper [16] and rerun the model by adding the 

seroprevalence measurements one by one into the model.  
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