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Summary1

The coronavirus disease 2019 (COVID-19) pandemic disrupted daily life and changes2

to routines were made in accordance with public health regulations. In 2020, non-3

pharmaceutical interventions were put in place to reduce exposure to and spread of4

the disease. The goal of this work was to quantify the effect of school closure dur-5

ing the first year of COVID-19 pandemic in Switzerland. This allowed us to deter-6

mine the usefulness of school closures as a pandemic countermeasure for emerging7

coronaviruses in the absence of pharmaceutical interventions. The use of multivariate8

endemic-epidemic modelling enabled us to analyse disease spread between age groups9

which we believe is a necessary inclusion in any model seeking to achieve our goal. So-10

phisticated time-varying contact matrices encapsulating four different contact settings11

were included in our complex statistical modelling approach to reflect the amount of12

school closure in place on a given day. Using the model, we projected case counts un-13

der various transmission scenarios (driven by implemented social distancing policies).14

We compared these counterfactual scenarios against the true levels of social distanc-15

ing policies implemented, where schools closed in the spring and reopened in the au-16

tumn. We found that if schools had been kept open, the vast majority of additional17

cases would be expected among primary school-aged children with a small fraction of18

cases percolating into other age groups following the contact matrix structure. Under19

this scenario where schools were kept open, the cases were highly concentrated among20

the youngest age group. In the scenario where schools had remained closed, most re-21

duction would also be expected in the lowest age group with less effects seen in other22

groups.23

2

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 21, 2023. ; https://doi.org/10.1101/2023.03.21.23287519doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.21.23287519
http://creativecommons.org/licenses/by/4.0/


1 Introduction24

It is known that school closures have an effect on social mixing and so school clo-25

sures are considered useful for some infectious disease outbreaks but not necessarily26

all [Cowling et al., 2008]. The implications of school closures are manifold and are27

not restricted to changes in numbers of cases (knock-on effects include decreased so-28

cialisation skills among children and economic impacts through the reduced labour of29

guardians having to shift their focus to child rearing) meaning it is not a policy deci-30

sion to be made lightly. As not everyone in a population attends school, we need age-31

stratified surveillance data to answer the question of what the impact of school closure32

is. In this work, we wish to determine the impact of school closures for COVID-1933

control in Switzerland though the methods are applicable to other countries.34

In earlier work [Bekker-Nielsen Dunbar et al., 2022] we considered evidence which35

suggested the effect of school closure in the canton of Zurich (in terms of reduction in36

disease transmission observed through a decrease in cases) seemed to not be large for37

the early coronavirus outbreak. The canton of Zurich is the most populous region of38

Switzerland. The analysis of data from the canton of Zurich suffered from low num-39

bers of observed cases in the youngest age group. This proof-of-concept study pro-40

vided a starting ground for further developing the methods used to examine these41

kinds of policy questions using endemic-epidemic models with time-varying weights.42

We now consider a longer time frame (until the end of 2020) and a greater popula-43

tion (the whole of Switzerland). This also allows us to evaluate the performance of44

the analysis at a greater resolution. Considering cases at national level rather than re-45

gional level induces additional challenges as social distancing policy varies across the46

country. As our study is not stratified by geographical region–our focus is age groups–47

these differences in policy need to be incorporated. Here we showcase how to incorpo-48
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rate policy indicators which are more nuanced than those used in our previous work.49

The endemic-epidemic framework for infectious disease modelling is a class of50

time-series based regression models used for the analysis of infectious disease case51

counts arising from routine surveillance systems. It is a versatile frameworkmodel52

which has been applied to the analysis of many disease outbreaks with varying char-53

acteristics. Endemic-epidemic modelling is considered a useful tool for emergency re-54

sponse related to infectious disease outbreaks as it fulfils many of the requirements55

for disaster response models raised by Brandeau et al. [2009]. In particular, endemic-56

epidemic modelling addresses real-world infectious disease problems such as detection57

of outbreaks and populations at increased risk and is designed for maximum usability58

by response planners by virtue of being released as open source publications and soft-59

ware which means we avoid issues with disease knowledge being pay-walled during on-60

going outbreaks as seen in the 2014 Ebola virus disease outbreak [Dahn et al., 2015].61

The framework also makes a good compromise between simplicity and complexity,62

and due to its statistical nature is designed in a manner which captures inherent un-63

certainties. Endemic-epidemic modelling facilitates knowing when disease is endemic64

(prevalence levels are in the range of expected values) and when disease is epidemic65

(incidence is higher than expected), at which point control measures may need intro-66

ducing or intensifying. This work provides an insight into how control measures can67

be incorporated in endemic-epidemic models through the inclusion of time-varying68

contact matrices.69

To accomplish our goal, we fit an endemic-epidemic model to a multivariate time70

series of age-stratified COVID-19 cases in Switzerland and then examine two coun-71

terfactual scenarios of the policy implemented; the true school closures consisted of72

schools being closed early in the year and reopening for the second half of the year73

(scenario A). We consider the counterfactual scenarios where schools did not close (al-74
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ways open; scenario B and where the schools remain closed during the second half of75

the year (always closed; scenario C). The additional scenario is possible due to the76

longer time frame considered in this work. Scenario B is similar to the scenario consid-77

ered in our earlier analysis.78

2 Methods79

This work is preregistered and has a study protocol [Bekker-Nielsen Dunbar et al.,80

2022] which is considered a useful manner of working but currently rare in epidemic81

modelling. The protocol outlines the modelling considerations we made before work82

began and may serve as a useful resource for the interested reader.83

2.1 Data84

In this work we consider daily data (t = 1, . . . , 312 = T ) where the study period85

commences on 24th February 2020 and the final observation at time T occurs on 31st86

December 2020. COVID-19 case data is provided by the Swiss public health author-87

ity (Bundesamt für Gesundheit) and includes case counts by date reported stratified88

by age group. We asked for cases given by the same age groups we considered in our89

Zurich analysis as this roughly divides the population into those of compulsory educa-90

tion age (0–14 year olds are required to be in school when school is open), higher edu-91

cation and young workers (15–24), parents (25–44), middle-aged workers (45–65), re-92

tirees (66–79), and the elderly (80+). Our age group thresholds include the commonly93

used cut-off of 65 years of age considered in epidemiology, when health is expected to94

change.95
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Figure 1 shows the case data; the daily number of cases per 100, 000 age group96

population (upper panel), the distribution of cases per 100, 000 population over time97

(middle panel), and cases by weekday reported (lower panel). The upper panel shows98

the oscillatory behaviour known to epidemic curves as well as weekly systematic fluc-99

tuations in surveillance. The middle panel shows a shift in the age distribution of100

cases across the study period which further motivates the inclusion of age groups in101

our modelling approach. The lower panel shows the distribution of cases across the102

days of the week, where we see a systematic fluctuation in the reporting system. The103

legal workdays in Switzerland are Monday through Friday. Most cases are reported on104

Mondays which is the start of the week according to European norms and the number105

of reported cases drops across the week while fewer cases are reported on weekends106

(Saturday and Sunday).107

To capture baseline transmission opportunities between age groups we include a108

contact matrix in our endemic-epidemic model. Contact matrices encapsulate the109

number of contacts an average person in the population has with other population110

members of the same and different ages in different settings such as the workplace111

or school. Their inclusion in the endemic-epidemic framework was an approach in-112

troduced by Meyer and Held [2017] which provided more realism than making an as-113

sumption of mixing patterns for the population. Existing contact diary-based contact114

matrices for Switzerland are only based on a small number of observations (54 obser-115

vations) [Hoang et al., 2019], which led us to use a synthetic contact matrix in place116

of this empirical one. A synthetic contact matrix is constructed on the basis of demo-117

graphic information. We chose to use the synthetic matrices by Mistry et al. [2021]118

as they were both 1) newer and 2) given with a certain level of uncertainty which we119

could incorporate into our modelling approach. The synthetic contact matrix is con-120

structed on the basis of household size, school enrolment records, and employment121

6
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Figure 1: Daily COVID-19 cases per 100, 000 population (upper). Proportion of cases
per 100, 000 population contributed by each age group (middle). Number of
cases reported by weekday (lower)
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data [see Mistry et al., 2021, for details].122

From the synthetic contact matrix we obtain the per capita frequency of contact123

ca,a′,s in setting s (shown in Figure 2 which describes the pattern of mixing in setting124

s) and the numbers of contacts ds in setting s for constructing contact matrices for125

respiratory disease, which are 4.11 for household setting, 11.41 for school setting, 8.07126

for work setting, and 2.79 for general community setting (shown in Figure 3). This127

means school has the largest weight and so changes to these contacts are expected to128

have the biggest impact. These construction weights ds are provided with standard129

errors. When constructing ca,a′ we used the Swiss population (Table 1) rather than130

the Zurich population which we considered in earlier work [see Bekker-Nielsen Dun-131

bar et al., 2022, for the analysis of Zurich] such that the population used to weight the132

synthetic contact matrix was the one being studied. This means the contact matrix133

used in this work is not exactly the same as the one considered previously. The Mis-134

try et al. [2021] contact matrices are created with respiratory diseases in mind where135

school closure is a first line of defence against disease outbreaks. The synthetic con-136

tact matrix was used to inform the time-varying transmission weights wa,a′,t which137

determine the amount of transmission between age group a and age group a′ at time t,138

which is explained in more detail below.139

Contact setting-specific daily policy adjustments ps,t are informed by information140

provided by the Swiss authorities. This information is used to quantify the amount of141

disease control measures enacted. We focus on those measures which have the aim142

to decrease contact. Following the Oxford University policy classifications we con-143

sider: school closure (“C1”), workplace closure (“C2”), and restrictions on gatherings144

(“C4”). We code our policy indicators to take the same levels as the Oxford scheme145

allowing researchers familiar with the controlled vocabulary established by that re-146

search group to comprehend our indicators. We reversed and rescaled the indicators147

8
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Figure 2: Unweighted contact matrices ca,a′,s from Mistry et al. [2021] via Laboratory
for the Modeling of Biological and Socio-technical Systems [2021]
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Table 1: Swiss population

Age group Population count Proportion
0-14 1,294,918 0.150
15-24 901,783 0.105
25-44 2,383,179 0.277
45-65 2,511,163 0.292
66-79 1,061,320 0.123
80+ 453,670 0.053

such that ps,t ∈ [0, 1] where 0 reflects a situation of maximal measures in place and148

1 is full relaxation of measures (source information is in our study protocol https:149

//osf.io/fgrdy).150

The non-pandemic school closure adjustment hs,t is created based on information151

from Schweizerische Konferenz der kantonalen Erziehungsdirektoren [2018] and re-152

flects closures of school during the academic year due to half term and other school153

holidays. These closures reduce contact independently of disease control measures;154

notably Easter is a period where less contacts in school settings would be expected155

as Switzerland is a predominantly Christian country. The adjustment takes values156

hs,t ∈ [0, 1] where 0 means that all schools in Switzerland are closed on that day and157

1 means all schools are open. The values hs,t takes for the school setting are shown in158

Figure 3 while hs,t ≡ 1 for all other contact settings (meaning no adjustment). The159

calculation of hs,t is informed by population data from Eurostat [Eurostat, 2021] (pop-160

ulation by region). The construction of ps,t, hs,t, and wa,a′,t is explained in more detail161

in the following section.162

163
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panel shows the product, γs,t
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2.2 Model164

In an endemic-epidemic model, case counts Yat are indexed by time t and age group165

a. The age groups considered are 0–14, 15–24, 25–44, 45–65, 66–79, and 80+ years;166

the same used in Bekker-Nielsen Dunbar et al. [2022]. Case counts given past cases as-167

sumed to follow an overdispersed negative binomial distribution with age-dependent168

overdispersion parameters ψa. The mean λat is additively decomposed into endemic169

and epidemic components. Log-linear predictors for the endemic and epidemic com-170

ponents are given by νat and ϕat respectively. The endemic component is additionally171

weighted by population fractions ea, where we used population data from Eurostat172

[2021] (population by age group), given in Table 1 to inform this part of the model.173

The epidemic component is an autoregressive process driven by cases in other174

age groups a′ in previous time periods t − d up to a maximum lag of dmax where ud175

determines by how much previous cases are weighted. We chose to use a Poisson-176

distributed lag distribution ud such that the majority of the weight need not be given177

to the immediately preceeding cases allowing for a serial interval of more than a single178

day. The maximum lag represents the maximum length of the serial interval we might179

conceive in our modelling efforts; we chose dmax = 7 as the literature suggests early180

types of COVID-19 have a serial interval within a week.181

Our endemic-epidemic model with time dependent [Bekker-Nielsen Dunbar et al.,182

2022, Grimée et al., 2021] contact matrix weights [Meyer and Held, 2017] and higher183

order lag [Bracher and Held, 2022] is given by184

12
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Yat | Ya,t−1, . . . , Ya,t−dmax ∼ NegBin(λat, ψa)

λat = νatea︸︷︷︸
endemic

+ϕat
∑
a′

dmax∑
d=1

udwa,a′,tYa′,t−d︸ ︷︷ ︸
epidemic

(1)

ud ∝ κd−1

(d− 1)!
· exp(−κ), κ > 0, d = 1, . . . , dmax

Transmission between age groups is determined by a time-dependent contact ma-185

trix wa,a′,t. The time-varying contact matrix wa,a′,t is the total average contacts at186

time t constructed by a weighted sum187

wa,a′,t =
∑
s

γs,t · ca,a′,s (2)

where γs,t is a weight that depends on the setting s the contact occurred in and188

changes occuring at time t. It is created from the combination of the weights used to189

construct contact matrices (ds given by Mistry et al. [2021] which depend on setting190

s), the time-dependent setting-specific policy adjustments (ps,t which depend on time191

t and setting s) and whether an adjustment needs to be made to incorporate non-192

pandemic school closure due to school holidays (hs,t which depends on setting s as it193

only affects schools and time t):194

γs,t = ds · ps,t · hs,t (3)

Since school holidays in Switzerland vary not only between regions, but also within195

them, we construct binary indicators for all of the sub-regions r within a region R196

where we assign 1 to a specific day t if t is not a school holiday and 0 otherwise. In a197

13
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second step, we average the binary indicators of all sub-regions r within a region R in198

order to obtain a regional average indicator for that day. Subsequently, we use popu-199

lation weights to calculate the national indicator hs,t. The sub-regions are unweighted200

in our averaging as we were not able to determine population sizes at school district201

level. We calculate202

hs,t =


∑

R

∑
r∈R 1{t is not a school holiday in subregion r}(t) /nr(R)

populationR
s = school

1 otherwise
(4)

where 1 is an indicator function and nr(R) denotes the number of sub-regions203

within region R. This gives us a population-weighted indicator with values hs,t ∈ [0, 1]204

which incorporates the variation of number of school children in regions.205

We fit the model (1) with predictors206

log(νat) = α(ν)
a + β

(ν)
1 x1t + β

(ν)
2 x2t + γ(ν) sin(2πt/365 + δ(ν)) (5)

log(ϕat) = α(ϕ)
a + β

(ϕ)
1 x1t + β(ϕ)

2zt + γ(ϕ) sin(2πt/365 + δ(ϕ))

where αa denotes a fixed effect of age group a, x1t is an indicator for public hol-207

idays, x2t is an indicator for weekends, and zt are effect-coded weekday effects with208

Monday as the reference value (six in total). Effect-coded variables are also known as209

sum-to-zero contrasts. This means Monday always takes the value −1 and the week-210

day of interest takes the value 1 while all other weekdays are 0. We include a non-211

linear time trend in the form of a sine-cosine wave expressed by its amplitude γ and212

phase δ [Paul et al., 2008]. Our model has 31 parameters (estimates are given in Ta-213

ble 2) which are estimated using a maximum likelihood approach computed with stan-214
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dard errors. Information on the full model selection procedure (where we also consid-215

ered effects of temperature, testing rate, and a linear time trend) can be found in the216

supporting information.217

2.3 Counterfactual scenario prediction218

Determining the expected size of the outbreak is crucial to policy makers who need to219

determine how resources are to be allocated. As the outbreak is ongoing, the predicted220

final size considered here is the predicted number of infections over the time window221

considered rather than the traditional metric considered by users of compartmental222

models: the total number of infections over the entire outbreak period. Predicted223

cases are based on a path trajectory (a long-term expected prediction calculated re-224

cursively on the basis of one-step predictions) following Held et al. [2017] assuming no225

changes to the model parameters across the scenarios considered. This means we pre-226

dict the model (1) with the given ea and fitted ν̂at, ϕ̂at, and ûd effects for three differ-227

ent versions of wa,a′,t (for scenarios A, B, and C). The two counterfactual scenarios are228

implemented by including transmission weights informed by γs,t,a,a′ = ds · qs,t,a,a′ · hs,t229

where γ now depends on age group. In particular we consider three scenarios (pro-230

vided with the shorthand names we use based on their effect on the youngest age231

group):232

Scenario A (“true measures”) This is the true measures scenario where schools233

closed in the spring and reopened in the summer where wa,a′,t is populated by234

the relevant policy information without adjustment as in (2). This is the same235

scenario considered in model fitting to obtain the model coefficients used in pre-236

diction of final size and simulation of uncertainty for the prediction.237

Scenario B (“schools open”) This is a scenario where schools are never closed for238
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the youngest age group (0–14), i.e. remain open across the entire study period.239

All other measures are as in Scenario A.240

qs,t,a,a′ =


1 a = 0–14 or a′ = 0–14 and s = school

ps,t a ̸= 0–14 and a′ ̸= 0–14 and s = school

ps,t s ̸= school

(6)

Scenario C (“schools closed”) This is a scenario where schools close and remain241

closed. School closure once again affects age group 0–14 and their contacts. All242

other measures are as in Scenario A. We implement this by setting243

qa,t,a,a′ =


ps,t t < t0 and a = 0–14 or a′ = 0–14 and s = school

ps,t a ̸= 0–14 and a′ ̸= 0–14 and s = school

0 t ≥ t0 and a = 0–14 or a′ = 0–14 and s = school

(7)

where t0 denotes the date schools are first closed (16th March 2020).244

The changes only affect age group 0–14 when the contact matrix is multiplied by245

γs,t,a,a′ so the 0–14 row and column in Figure 2 are changed in the school setting (school246

aged children and their contacts). The time series of all four setting specific policy in-247

dicators ps,t for the different scenarios can be seen in Figure ?? (the building blocks248

of (2), (6), (7)). The truth (scenario A) is expected to lie somewhere between the two249

counterfactual scenarios (scenarios B and C). Examining the deviation these scenarios250

have allows use to evaluate the effect of disease control measures used. It is implicitly251

assumed that the fitted effects ν̂at, ϕ̂at, ûd do not vary across scenarios.252

To incorporate parameter uncertainty in our projections, we utilise Monte Carlo253

simulation. We sample the weights ds with uncertainty estimates given in Mistry et al.254
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[2021] assuming they are independently normally distributed. To incorporate model255

uncertainty we sample the coefficients ν̂at, ϕ̂at of our fitted endemic-epidemic model256

assuming a multivariate normal distribution; the asymptomatic normal distribution257

of the maximum-likelihood estimates. Using these n = 1000 samples we then use the258

path trajectory prediction approach to obtain n simulated expected case counts under259

the scenarios considered. This enables us to incorporate uncertainty in our projections.260

We examine the expected increase in cases when schools are always open (scenario B)261

and the expected decrease in cases when schools are always closed (scenario C) and262

compare this with the expected number of cases under the policy used (scenario A).263

We also conducted sensitivity analyses of the assumptions made in constructing264

the transmission weights wa,a′,t. The sensitivity analyses attempt to provide further re-265

alism with respect to how household contacts may be affected by school closure. This266

provides additional extensions to the analysis of Zurich data as here we only consid-267

ered household contacts to not be affected by policy ps,t|household ≡ 1. The sensitivity268

analyses can be found in the supporting information.269

3 Results270

In total 256 models were fit to the outbreak data and Bayesian information criterion271

was used as a goodness-of-fit measure to determine the best fitting model (see the272

supporting information for details). We chose this as Bayesian information criterion273

should fit the correct model in theory while Akaike information criterion would be ex-274

pected to overfit. Due to diverging estimates in the model–likely due to low values in275

the transmission weights matrix wa,a′,t or low case counts Yat observed in certain age276

groups–models which did not have converging effects were excluded from the selection277

process. Divergence was determined on the basis of the size of the standard deviation278
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of the estimated model coefficients. It may happen that the additive decomposition279

into endemic and epidemic components is not identifiable.280

In particular, α(ν)
80+ (the fixed effect of the oldest age group in the endemic com-281

ponent) was excluded due to having a very small estimate with a huge standard er-282

ror. This means the coefficient α(ν)
80+ was restricted to be zero on the log-scale while283

the corresponding epidemic effect α(ϕ)
80+ was estimated from the data. The best fitting284

model has 31 parameters including the lag parameter κ. The model contains system-285

atic fluctuations in the form of weekly effects, as we expected based on the exploration286

of the case data, and additional fluctuations in the form of the sine-cosine waves. As287

we only use one year’s worth of data in this work, we cannot denote this fluctuating288

trend “seasonality” but with a longer time frame it would be expected to capture such289

effects. There is not much knowledge about seasonal variation of COVID-19 at the290

time of analysis so we note that with only one harmonic in the epidemic component291

and not even a whole year of data, this may induce additional uncertainty in our sim-292

ulations and predictions.293

3.1 Model fit294

The model has a good fit to the case data based on visual inspection (Figure 4 up-295

per panel). The serial interval peaks somewhat early (Figure 4 lower panel) compared296

with what is expected from the literature. This has been observed in other endemic-297

epidemic models for COVID-19 and is thus likely an artefact of the model. The model298

estimates fewer cases on public holidays and weekends, which aligns with our intuition299

based on the exploratory data analysis of the case counts.300

There are much greater effects of age in the endemic component, exp(α(ν)) ranges301

from 9.450 to 130.061 (and α(ν) ≡ 1) compared with the epidemic component where302
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Table 2: Model parameter estimates

Endemic Epidemic Other parameters

Coefficient Estimate Std. Error Coefficient Estimate Std. Error Coefficient Estimate Std. Error

α
(ν)
0-14 2.806 0.218 α(ϕ)

0-14
-3.776 0.059 ψ0−14 0.229 0.030

α
(ν)
15-24 4.868 0.185 α(ϕ)

15-24
-2.482 0.043 ψ15−24 0.125 0.013

α
(ν)
25-44 4.036 0.185 α(ϕ)

25-44
-2.172 0.027 ψ25−44 0.067 0.007

α
(ν)
45-65 2.673 0.288 α(ϕ)

45-65
-2.170 0.023 ψ45−65 0.059 0.006

α
(ν)
66-79 2.246 0.321 α(ϕ)

66-79
-1.883 0.027 ψ66−79 0.074 0.009

α(ϕ)
80+

-0.945 0.018 ψ80+ 0.043 0.009

β(ϕ)
day of the week Tuesday

0.378 0.021

β(ϕ)
day of the week Wednesday

0.119 0.022

β(ϕ)
day of the week Thursday

-0.032 0.022

β(ϕ)
day of the week Friday

0.001 0.022

β(ϕ)
day of the week Saturday

-0.404 0.023

β(ϕ)
day of the week Sunday

-0.684 0.024

β
(ν)
weekend -0.850 0.100
β
(ν)
public holiday -0.582 0.462 β(ϕ)

public holiday
-0.327 0.063

β
(ν)
amplitude 2.070 0.191 β(ϕ)

amplitude
0.711 0.018

β
(ν)
phase -2.487 0.030 β(ϕ)

phase
1.447 0.012

logκ 0.082

exp(α(ϕ)) are all between 0.023 and 0.389. The fixed effect of age in the epidemic303

component which smaller in size shows a more obvious pattern of age dependency;304

being older makes a case more likely. The effect of day of the week is greater for all305

exp(β(ϕ)) compared with the weekend effect exp(β(ν)). However Friday seems to have306

less average autocorrelation. Public holidays have a greater effect on cases in the epi-307

demic component based on the estimated effect size; this could reflect changes in con-308

tact patterns hence transmission opportunities on those days. The sine-cosine wave309

takes greater amplitude values in the endemic component, meaning the wave has stronger310

variation (relative to the baseline). The greatest value of the overdispersion (excess311

variance) parameter ψa is found the for the youngest age group ψ̂0−14 while the small-312

est value is found for the oldest age group ψ̂80+.313

314
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Table 3: Comparisons of the number of cases in scenario A (true measures) with the
number of cases in scenarios B (schools open) between 17th March 2020 and
90 days and C (schools closed) between 12th May 2020 and 90 days

B - A B / A C - A C / A

Age P10 P50 P90 P10 P50 P90 P10 P50 P90 P10 P50 P90

0-14 162.9 240.0 404 1.76 1.82 1.87 -27.5 -20.85 -16.98 0.91 0.92 0.93
15-24 45.1 89.9 218 1.06 1.09 1.12 -16.6 -9.38 -5.98 0.99 0.99 1.00
25-44 192.9 362.3 821 1.10 1.12 1.15 -64.4 -36.03 -23.15 0.98 0.99 0.99
45-65 153.3 311.5 773 1.07 1.09 1.12 -55.2 -30.08 -18.96 0.98 0.99 0.99
66-79 48.9 113.8 323 1.04 1.06 1.08 -13.5 -6.92 -4.05 0.98 0.99 0.99
80+ 37.3 90.5 271 1.04 1.05 1.07 -9.5 -4.69 -2.62 0.98 0.99 0.99
Total (summed) 641.7 1,207.1 2,820 1.09 1.11 1.13 -186.0 -107.83 -71.69 0.98 0.99 0.99

3.2 Disease control scenarios315

316

The path trajectories allow us to examine temporal changes that are not evident317

when projections are summarised as a final size estimate. The counterfactual sce-318

narios’ path trajectories are compared in Figure 5 which shows the ratio of predicted319

cases under a counterfactual scenario and predicted cases under the original scenario320

A for the 90 days after measures were introduced (scenario B) or lifted (scenario C).321

This means we conditioned on fewer days when predicting for scenario B and had322

higher case counts included in our prediction of scenario C (as April was included).323

Large temporal differences are not found in the final epidemic size estimates (Fig-324

ure 6). Scenarios A and C differ with regards to when schools are closed. They show325

much more distinct behaviour for school-aged children. We see the difference in pat-326

terns for age group 0–14 seems to be correlated with school holidays hs,t (Figure 3).327

The final epidemic size estimates (with uncertainty bounds) within each scenario328

are given in Figure 6 and are calculated by summing the predicted number of cases329

across the 90 day projection window. Table 3 shows the differences and ratios between330

expected cases of scenario A and scenarios B and C for the 90 day periods. Due to331
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the time-sensitive nature of the policy questions being considered, the focus of this332

work was not calibration (the match of observations and predictions) but rather the333

differences in scenarios. We discuss the difficulties of forecasting in more detail in our334

discussion. We are most interested in the ratio between the predicted case counts: the335

percentage increase and decrease in cases is approximately ten per cent for both sce-336

narios (the ratio is 1.11 for scenario B and 0.99 for scenario C). Most of the effect is337

found among the youngest group, which have 82 per cent more cases for scenario B338

and 8 per cent fewer cases for scenario C. The relative difference in expected cases be-339

tween scenarios A and B suggests that case numbers would not have increased a lot of340

schools were left open and regarding scenario C, as expected; closing schools decreases341

cases.342

4 Discussion343

In our earlier work attempting to provide evidence-based information for policy mak-344

ers, we found than an endemic-epidemic model (a two-component model for infectious345

disease) provided a good fit for data from Zurich, Switzerland [Bekker-Nielsen Dunbar346

et al., 2022]. The model had effects of day of the week, public holidays, testing rate,347

and age in the endemic components and the same effects as well as a centred linear348

time trend in the endemic component. This model suggested if there was no school349

closure, an increase in cases would be expected in the youngest age group (0–14) in350

April and later in other age groups, with the next age group expected to experience351

an increase in cases compared with the true school closure implemented being the par-352

ents of the first age group (25–44; parents). In this work, the main group of concern353

was the oldest age group (80+) and they were found to be consistently the lowest in354

terms of expected increase in cases compared with what was expected when schools355

24

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 21, 2023. ; https://doi.org/10.1101/2023.03.21.23287519doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.21.23287519
http://creativecommons.org/licenses/by/4.0/


were closed. Here we extended this work further motivated by the fact the useful-356

ness of school closure to combat COVID-19 was not fully determined by end of the357

“first wave”. Schools in Switzerland re-opened after the summer of 2020 but at the358

time questions of whether to close them remained. In our work we were able to ex-359

amine school closure at greater spatial and temporal scale than previously which is360

a strength of the approach. Other countries were observed to have different levels of361

school closure during the study period compared with Switzerland and so the “ideal”362

amount of closure remains to be determined. We note that school closures are a pri-363

mary measure for disease control but other measures such as masked students or vac-364

cinated students which seek to reduce within-class disease risk may be a better op-365

tion later in the outbreak [Endo et al., 2021]. We remain cognisant that the purpose366

of school is not just educational and it is important to investigate the impact of this367

as the knock-on effects to children’s health of remote learning are expected to be a368

topic of interest for years to come. While the current work considers only the options369

of schools open or closed, the methodology used could also be used to examine use370

of masks in educational settings, provided evidence is available to inform the time-371

varying transmission weights and so is very versatile.372

In the age group 80+ we find that incidence is completely explained by the epi-373

demic component ϕ so the endemic component was not identifiable and diverged. It is374

not ideal that α(ν)
80+ was restricted to be zero but the alternative approach of setting all375

α(ν) values to be the same would also not have been ideal since the results imply they376

differ across age groups (Table 2). The analysis we present is ecological as we aggre-377

gated our indicators across the federation of Switzerland although they differ across378

regions. Ideally we would have liked to have done a spatio-temporal analysis across379

age groups but as we were interested in specific age groups rather than ten-year age380

bands, we had to choose to focus on age over age and space.381
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The uncertainty shown in the plot is the uncertainty of the predicted mean. Sce-382

nario C has more data to predict in the one-step prediction approach used to calculate383

this mean due to its prediction window starting later. We suspect fewer cases early384

on in the study period to be the cause of more uncertainty in the left panels of Fig-385

ure 5. There is less uncertainty on the predictions in scenario C but we also observed386

fewer cases (the incidence was low in the summer). Due to the time-sensitive nature of387

the policy questions being considered, the focus of this work was not calibration (the388

match of observations and predictions) but rather the differences in scenarios. How-389

ever, we note that there are greater discrepancies between the predicted number of390

cases and the true number of cases for the real scenario in the analysis of scenario B391

(Figure 6). Scenario B underestimates the number of cases while Scenario C some-392

times overestimates the number while the total number of observed cases is within the393

predictions. The predicted means are made on the basis of the same model which was394

fit over the entire study period (Figure 1). The reason for predicting a 90 day window395

rather than the entire year is that we find it unlikely that a decision maker at a public396

health agency would not revisit a decision made within a 90 day period, so predicting397

cases until the end of the period the model is fit on strikes us as a less useful exer-398

cise. Additionally the biology of the disease changed due to a different variant of the399

disease becoming dominant (“delta”/B.1.617.2) in the ecological niche and this infor-400

mation is not included in our modelling work. Indeed, the model does not have change401

points and the large increase in cases at the end of the study period (which the model402

is fit to) might influence its ability to predict lower case counts.403

We briefly summarise the comparison of results with the Zurich analysis [see Bekker-404

Nielsen Dunbar et al., 2022, for details]. By virtue of the shorter time frame of the405

earlier analysis, we are unable to note similarities and differences with scenario C as406

this information is not available at Zurich level. The model for Zurich contains more407
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effects than the model used here. The Zurich model has β(ν)
weekdays, β

(ϕ)
t , β(ν)

testing rate,408

and β
(ν)
testing rate. Notably, the Zurich analysis has additional time effects while our cur-409

rent model only contains a non-linear time trend in the form of the sine-cosine waves.410

While the models are different, the estimated discrete-time serial interval ûd is sim-411

ilar. Some of the building blocks used to construct the models are the same for the412

two studies: ps,t and ds are the same in the two studies. The relative increase (de-413

termined by calculating the ratio of predicted cases under scenario B and scenario414

A) takes values closer to 1 (no difference) for all age groups but the youngest. For415

Zurich the relative increase in these age groups is no more than five per cent, while416

it is slightly larger for the current work (ranging from 1.05 to 1.82 compared to 1.01417

to 1.05). Many of the P90 values in Table 3 are a ten-fold increase with those found418

for Zurich. The ratio for the youngest age group (0–14) is much greater in the current419

work with no overlap with the values found in the previous work.420

Finally we note that the existence of pharmaceutical countermeasures does not421

guarantee their use. Vaccines are recommended to prevent disease, disability, and422

death in children [World Health Organization, 2022]. However, with novel vaccines423

for pandemic control, children may be included in secondary but not primary trials424

and so may not be included in immunisation programmes as soon as a prophylaxis is425

tested safe and made available to the population. For this reason, we believe gaining426

an understanding of the impact of school closures in the absence of vaccine to still be427

an interesting and relevant area of research.428

Data Availability Statement429

The protocol for this study can be accessed at https://osf.io/fgrdy which includes430

description of where to source data used. The code used in this work can be accessed431
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at https://gitlab.switch.ch/suspend/COVID-19-school-CH. The majority of the432

data used in this work is publicly available; descriptions and access options can be433

found in the study protocol [Bekker-Nielsen Dunbar et al., 2022].434
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