
1 

 

Title 1 

Modelling the impact of health-related variables, age, migration, and socio-2 

economic factors in the geographical distribution of early tested case-fatality 3 

risks associated with COVID-19 in Mexico 4 

 5 

Authors 6 

*Ricardo Ramírez-Aldana1, Juan Carlos Gomez-Verjan1, Omar Yaxmehen Bello-Chavolla1, 7 

Carmen García-Peña1  8 

 9 

 10 

 11 

 12 

Institutions 13 

1Research Division, Instituto Nacional de Geriatria, Mexico City, Mexico 14 

 15 

 16 

*Corresponding Author: Ricardo Ramirez-Aldana e-mail: 17 

ricardoramirezaldana@gmail.com, Research Division, Instituto Nacional de Geriatria 18 

(INGER), Anillo Perif. 2767, San Jerónimo Lídice, La Magdalena Contreras, 10200, Mexico 19 

City, Mexico.   20 

 21 

  22 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 30, 2020. ; https://doi.org/10.1101/2020.11.26.20239376doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.11.26.20239376
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

 

ABSTRACT 23 

COVID-19 is a respiratory disease caused by SARS-CoV-2, which has significantly 24 

impacted economic and public healthcare systems world-wide.  SARS-CoV-2 is highly 25 

lethal in older adults (>65 years old) and in cases with underlying medical conditions 26 

including chronic respiratory diseases, immunosuppression, and cardio-metabolic 27 

diseases including severe obesity, diabetes, and hypertension. The course of the COVID-28 

19 pandemic in Mexico has led to many fatal cases in younger patients attributable to 29 

cardio-metabolic conditions. Here, we aimed to perform an early spatial epidemiological 30 

analysis for the COVID-19 outbreak in Mexico to evaluate how tested case-fatality risks (t-31 

CFRs) are geographically distributed and to explore spatial predictors of early t-CFRs 32 

considering the variation of their impact on COVID-19 fatality across different states in 33 

Mexico,  controlling for the severity of the disease. As results, considering health related 34 

variables; diabetes and obesity were highly associated with COVID-19 fatality. We 35 

identified that both external and internal migration had an important impact over early 36 

COVID-19 risks in Mexico, with external migration having the second highest impact when 37 

analyzing Mexico as a whole. Physicians-to-population ratio, as a representation of 38 

urbanity, population density, and overcrowding households, has the highest impact on t-39 

CFRs, whereas the age group of 10 to 39 years was associated with lower risks. 40 

Geographically, the states of Quintana Roo, Baja California, Chihuahua, and Tabasco had 41 

higher t-CFRs and relative risks comparing with a national standard, suggesting that risks 42 

in these states were above of what was nationally expected; additionally, the strength of 43 

the association between some spatial predictors and the COVID-19 fatality risks variates 44 

by zone depending on the predictor.    45 

 46 

 Keywords: COVID-19, generalized geographically weighted regression, Mexico, SARS-47 
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 49 

INTRODUCTION 50 

COVID-19 is a respiratory disease caused by SARS-CoV-2 (severe acute respiratory 51 

syndrome coronavirus 2), which has caused almost twenty million cases around the world 52 

and caused 790,000 deaths as of August 20th, 2020 (1). SARS-CoV-2 is a highly 53 

contagious  RNA virus from the Coronaviridae family, with a small genome of about 30,000 54 

nucleotides  closely related to the bat coronavirus (RaTG13) (2). Given its global spread, 55 

there is an urgent need for scientific and health systems around the world to understand 56 

the epidemiology, pathogenicity, and mechanisms of immunological defenses to develop 57 

possible therapeutic and public health alternatives to fight against one of the most 58 

outstanding threats to public health since Spanish Influenza over a hundred years ago (3).  59 

According to the World Health Organization (WHO), the groups most susceptible to 60 

acquire infection and develop adverse outcomes are people with underlying medical 61 

conditions and older adults (>65 years old), particularly those living at nursing homes.  62 

Medical conditions which have been associated with increased susceptibility for adverse 63 

outcomes related to SARS-CoV-2 infection include chronic obstructive pulmonary disease 64 

(COPD), chronic kidney disease (CKD), cardiovascular diseases, liver diseases, moderate 65 

asthma, immunosuppression (HIV/AIDS, bone marrow transplantation, cancer treatment, 66 

and genetic immune deficiencies), and particularly, severe obesity, diabetes, and 67 

hypertension (4). These associations may be related to the strong link between pro-68 

inflammatory cytokines in response to infection and the pathogenesis of SARS-CoV-2, 69 

which can be seen in pneumonia patients with severe COVID-19 disease exhibiting 70 

systemic hyper-inflammation known as cytokine storm or as a secondary hemophagocytic 71 

lymphohistocytosis (5).  72 

On the other hand, accordingly to the OCDE, in the last ten years the countries with the 73 

highest prevalence of cardio-metabolic conditions linked to increased risk of severe 74 
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COVID-19, including obesity, type 2 diabetes, and hypertension, are Mexico and the 75 

United States of America (USA), when considering adults from 15 to 74 years old (6). 76 

Thus, considering that the population pyramid is flattening more and more, indicating an 77 

aging population structure; the high rates of diabetes and obesity in Mexico are likely to 78 

increase susceptibility to higher rates of mortality attributable to COVID-19 even in 79 

younger populations (7).   80 

In response to SARS-CoV-2 spread worldwide, mobility restrictions have been imposed to 81 

reduce community-level transmission; nevertheless, early influence of human mobility 82 

particularly internal and external migration has largely driven the spread of COVID-19 (8). 83 

When considering the high transmissibility of SARS-CoV-2, human mobility gains 84 

relevance in early stages of spread, in which people travelling from other countries can  85 

drive increased rates of transmission (9). SARS-CoV-2 spread related to human mobility is 86 

relevant, particularly considering that the risk of transmission and adverse outcomes are 87 

related to inequalities and suboptimal socio-economic conditions(10). In this sense, the 88 

risk of becoming infected and dying might increase in areas without optimum socio-89 

economic conditions, for instance, spatial units in which people live in overcrowding 90 

households or without access to potable water or drainage. 91 

Spatial analyses allow us to understand how the fatality risks are distributed along a 92 

territory, the presence of spatial clusters, and how the effects of the variables associated 93 

with the risks variate along any given territory. In this sense, several examples of 94 

geoepidemiology studies in autoinflammatory diseases, specific syndromes, infectious 95 

diseases, among others, have been helpful for the development of public health policies 96 

and to understand the structure of disease spread (11–13). In the present work,  we 97 

performed  spatial  analyses in order to derive spatial relationships corresponding to the 98 

geographical phenomenon of the COVID-19 outbreak in Mexico and its associated fatality 99 

risks, using for this task statistical methods including spatial clustering through local 100 
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indicators of spatial autocorrelation and generalized geographically weighted regression. 101 

Additionally, we wanted to identify spatial units or regions in Mexico that should be 102 

considered and analyzed with care to better understand the propagation of the disease 103 

and its associated fatality risks in the early stages of COVID-19 spread.  104 

MATERIAL AND METHODS 105 

Data sources 106 

We obtained state-level variables considering the 32 states in Mexico (Table 1). A first 107 

group of variables were obtained from the epidemiological surveillance entity of Mexico 108 

(Direccion General de Vigilancia Epidemiologica, Secretaria de Salud) at an individual 109 

level, the data set corresponded to observations until April 21st, 2020 (14). These variables 110 

concern health and very general socioeconomic information associated with people who 111 

were suspected for COVID-19 in Mexico and underwent real time RT-PCR for SARS-CoV-112 

2 confirmation. Available variables include the presence of diabetes,  obesity, chronic renal 113 

problems (CKD), chronic obstructive pulmonary disease (COPD), pregnancy, 114 

hypertension, immunosuppression, cardiovascular disease, pneumonia, as well as age, 115 

and whether the  patient was hospitalized, admitted to an intensive care unit  (ICU), or  116 

required intubation. We grouped age into groups as explained in the model selection 117 

process below and we finally used three age groups: 10-39, 40-69, and 70 years old and 118 

over. We also computed the risk of death due to the disease on individuals who were 119 

tested for SARS-CoV-2, or tested case-fatality risks (t-CFRs), by considering as a death 120 

that which was recorded after having a positive test (the information concerning positive 121 

tests and death is available in the epidemiological data set), method consistent with the 122 

official numbers. We aggregated all variables at a state level as counts and used them as 123 

relative frequencies (rates) in all analyses.  124 

Additional variables concerning socio-demographic, economic, mobility, and climatic 125 

features were obtained at a state-level. In terms of socio-demographic variables, from the 126 
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National Institute of Geography and Statistics (INEGI), we extracted information 127 

concerning clustering of individuals: population density (people per ���) in 2015 and the 128 

proportion of people in a household living in an overcrowded place in 2017; literacy rate of 129 

population aged ≥15 years in 2015;  people settled in rural areas in 2010 (%) (a location 130 

was considered as rural when there are <2,500 habitants); and the number of physicians 131 

available by every 1000 people in 2015, which was obtained from the National institute of 132 

Public Health (INSP). In terms of economic variables, we obtained from INEGI the state 133 

contribution to gross domestic product (GDP) in 2018, which we modified by considering 134 

only those values associated with states not containing the biggest cities in Mexico to 135 

improve the linearity assumption with the transformed response. We also obtained 136 

information concerning people living in poverty in 2018 (%), as it is defined and calculated 137 

by CONEVAL according to a multidimensional index obtained from per capita income and 138 

an index of social deprivation (15). In terms of mobility, we extracted from INEGI 139 

information concerning internal migration, as the rate of people aged 5 years and over 140 

living in another state five years before 2014, and external migration, as the rate of people 141 

aged ≥5 years living in another country five years before 2014, both proxies of internal and 142 

external mobility, respectively; and, the number of flights in 2019 by state, which we 143 

calculated from information associated with the number of flights by airport in Mexico 144 

(Ministry of Communication and Transport)(16). Finally, information concerning average 145 

temperature (°C) in March 2020 was obtained from the National Council of Water 146 

(CONAGUA).  147 

The risk of dying in tested individuals (t-CFRs) was chosen as the dependent variable on 148 

the basis of relevant indicators of COVID-19 epidemiology in Mexico; notably, the number 149 

of tests per 100,00 individuals is limited compared to other countries, which decreases 150 

detection rates and given the likely under-detection of mild SARS-CoV-2 cases in this 151 

setting, standardizing deaths by tested cases considers the extent of detection, which 152 
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could similarly be influenced by structural factors (17). The remaining variables obtained 153 

and calculated from the different data sources are treated as explanatory, except for 154 

hospitalization, ICU, and  intubation, which we considered as control variables, being  an 155 

approximate measure of the presence of severe COVID-19 cases and possibly access to 156 

services attending COVID-19 in a region. 157 

 158 

 159 

 160 

 161 
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Table 1. Features extracted for all the analyses by state used to predict tested case-fatality risks of COVID-19 in Mexico. 162 

Abbreviations: GDP, Gross Domestic Product; COPD, Chronic Obstructive Pulmonary Disease; and ICU, Intensive Care Unit. 163 

State 
Deaths caused by 

COVID-19* 

Number 
of tested 

individuals 
(offset)* 

Rural 2006 
(%)** 

Poverty 
2018 (%) 

*** 

Density 
2015+ 

Literacy 
2015 
(%)+ 

GDP 
2018 
(%)+ 

Temperature 
March 2020 

(°C)++ 

Internal 
migration 

2014 
(%)+ 

External 
migration 

2014 
(%)+ 

Physicians 
by 1000 
people 

2015+++ 

Overcrowding 
2017 (%)+ 

AGUASCALIENTES 2 1070 18.84 26.18 233.70 97.00 1.31 19.30 3.60 0.70 1.33 3.90 

BAJA CALIFORNIA 100 2353 6.99 23.26 46.40 97.60 3.14 14.40 3.80 1.90 1.05 6.40 

BAJA CALIFORNIA 
SUR 9 978 15.22 18.07 9.60 96.80 0.98 19.80 8.20 0.50 1.50 10.40 

CAMPECHE 4 229 26.00 46.25 15.60 92.90 2.98 28.00 4.10 0.20 1.16 16.50 

COAHUILA DE 
ZARAGOZA 23 2472 9.95 22.49 19.50 97.10 3.50 22.10 2.10 0.40 1.44 4.50 

COLIMA 2 133 12.41 30.87 126.40 95.60 0.61 26.60 5.60 1.50 1.56 10.70 

CHIAPAS 4 440 52.26 76.41 71.20 84.20 1.56 25.60 1.50 0.50 0.53 20.50 

CHIHUAHUA 36 705 15.51 26.28 14.40 95.00 3.20 16.70 1.20 1.20 1.11 5.60 

CIUDAD DE 
MÉXICO 224 10183 0.35 30.55 5967.30 97.70 17.64 19.40 2.10 0.40 2.99 7.10 

DURANGO 4 407 32.77 37.35 14.20 96.20 1.13 18.40 2.60 0.80 1.17 5.40 

GUANAJUATO 9 2482 30.29 43.38 191.30 93.00 4.11 20.60 1.50 1.00 0.84 5.50 

GUERRERO 16 583 42.44 66.47 55.60 85.50 1.37 26.20 1.90 1.10 0.64 27.60 

HIDALGO 16 608 47.69 43.85 137.30 91.00 1.54 20.50 3.90 0.90 0.66 8.20 

JALISCO 15 3440 13.85 28.43 99.80 95.80 6.91 22.40 2.20 1.10 1.26 5.30 

MÉXICO 71 5759 12.74 42.72 724.20 95.80 8.93 16.30 2.80 0.40 0.81 8.60 

MICHOACÁN  19 1124 32.06 46.04 78.20 90.80 2.43 21.70 1.70 1.20 0.72 10.10 

MORELOS 14 525 13.91 50.82 390.20 94.30 1.13 24.70 3.30 0.90 1.04 10.80 

NAYARIT 5 299 33.48 34.77 42.40 94.30 0.68 24.70 4.30 1.40 1.06 8.10 

NUEVO LEÓN 6 4482 5.64 14.53 79.80 97.40 7.47 22.90 2.70 0.40 1.30 3.10 

OAXACA 7 522 52.89 66.35 42.30 84.20 1.48 24.60 2.00 1.20 0.61 16.90 

PUEBLA 53 1651 29.38 58.92 179.80 90.80 3.39 20.00 2.30 0.60 0.83 9.70 
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QUERÉTARO 6 630 30.13 27.58 174.40 94.70 2.33 22.00 5.60 0.90 0.85 6.90 

QUINTANA ROO 47 982 14.42 27.57 33.60 95.50 1.63 26.80 8.00 0.70 0.96 17.50 

SAN LUIS POTOSÍ 5 1167 37.31 43.40 44.50 92.90 2.11 24.60 2.70 0.80 0.85 6.20 

SINALOA 52 1580 29.17 30.88 51.70 95.20 2.23 22.90 2.50 0.70 1.16 9.20 

SONORA 13 869 14.23 28.19 15.90 96.70 3.26 17.70 2.90 1.10 1.39 7.00 

TABASCO 55 1266 44.98 53.65 96.90 93.80 2.61 27.60 2.30 0.30 0.92 12.00 

TAMAULIPAS 7 1210 12.74 35.07 42.90 96.00 2.82 25.20 1.80 0.30 1.20 6.90 

TLAXCALA 5 587 21.77 48.38 318.40 95.20 0.56 16.30 3.40 0.60 0.81 9.50 

VERACRUZ 13 1520 39.33 61.78 113.00 89.80 4.59 23.70 3.00 0.60 0.87 12.60 

YUCATÁN 12 959 17.01 40.80 53.10 91.90 1.46 26.90 3.60 0.40 1.39 13.90 

ZACATECAS 3 419 42.73 46.76 21.00 94.90 0.88 19.10 2.10 1.40 0.89 5.00 

 164 

* Dirección General de Epidemiología, Secretaría de Salud (General Direction of Epidemiology, Health Ministry) 

**Instituto Nacional de Salud Pública, Encuesta Nacional de la Dinámica Demográfica (National Public Health Institute, National Survey of Demographic 

Dynamic)  

*** Estimations obtained by CONEVAL (Consejo Nacional de Evaluación de la Política de Desarrollo Social, National Council for the Evaluation of Social 

Development Policy) based on the ENIGH (National Survey of Household Income and Expenditure) 2008, 2010, 2012, 2014, 2016, and 2018. 

+ Instituto Nacional de Estadística y Geografía (National Institute of Statistics and Geography) 

++ Consejo Nacional del Agua (CONAGUA) (National Water Comission) 

+++ Instituto Nacional de Salud Pública (INSP) (The National Institute of Public Health of Mexico) 

 165 

 Table 1(continued) 166 

State 
Diabetes 

(%)* 

Obesity 

(%)* 

Chronic 

renal 

problems 

(%)* 

COPD 

(%)* 

Pregnancy 

(%)* 

Hyper-

tension 

(%)* 

Immuno-

deficiency 

(%)* 

Cardio-

vascular 

(%)* 

Pneumonia 

(%)* 

ICU 

(%)* 

Intubated 

(%)* 

Hospitalized 

(%)* 

Age group 

10-39(%)* 

Age group 

40-69(%)* 

Age group 70 

years and 

over(%)* 

AGUASCALIENTES 7.216 14.204 1.947 1.833 0.573 13.402 1.833 2.864 7.446 0.458 0.916 12.257 54.296 33.333 4.582 

BAJA CALIFORNIA 12.420 18.059 1.570 1.713 1.071 22.484 2.355 3.854 21.485 1.213 2.784 27.195 49.179 43.683 3.854 

BAJA CALIFORNIA 
SUR 11.350 10.763 0.978 0.978 2.544 14.677 2.153 3.131 13.503 1.566 1.370 17.613 53.816 35.225 4.892 
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CAMPECHE 11.111 16.239 0.000 0.855 0.000 12.821 2.137 2.137 16.667 2.137 1.282 26.923 46.581 45.299 5.556 

COAHUILA DE 
ZARAGOZA 11.965 16.079 2.015 1.847 0.756 16.037 2.603 2.981 8.942 1.847 0.672 14.484 47.397 44.249 5.584 

COLIMA 14.388 19.424 5.036 2.878 2.158 15.827 2.158 3.597 25.899 2.878 2.878 33.094 52.518 34.532 7.194 

CHIAPAS 11.836 13.050 1.973 2.883 1.669 15.630 2.276 2.731 17.299 3.642 3.035 27.314 49.469 39.150 4.856 

CHIHUAHUA 15.385 13.501 2.826 4.710 1.413 21.821 3.297 5.181 33.438 9.733 3.925 45.997 45.997 40.816 7.849 

CIUDAD DE 
MÉXICO 10.796 15.511 1.658 1.872 0.618 14.970 2.688 3.049 14.670 2.044 2.113 20.356 44.619 47.926 4.767 

DURANGO 15.615 13.621 2.990 4.983 0.831 24.917 4.485 5.980 19.767 2.326 2.159 33.389 43.355 39.203 13.787 

GUANAJUATO 10.131 11.997 1.908 3.942 1.399 14.455 2.755 2.671 10.428 1.696 1.526 17.338 50.996 34.718 6.867 

GUERRERO 15.456 17.531 2.801 3.216 1.245 17.635 1.763 3.734 26.349 5.394 4.253 33.091 43.154 44.813 7.573 

HIDALGO 18.491 15.976 4.142 4.734 1.479 19.970 4.438 2.071 21.893 1.627 2.959 31.953 42.751 44.231 9.172 

JALISCO 10.876 13.425 3.533 3.625 1.475 16.559 2.888 3.840 12.442 1.874 1.260 20.399 49.124 37.665 7.957 

MÉXICO 12.899 15.374 2.358 2.358 0.838 15.140 2.747 3.079 24.318 2.864 3.254 33.164 45.733 44.564 5.943 

MICHOACÁN  13.541 16.003 2.752 4.272 1.376 19.406 2.462 4.345 22.230 2.172 2.462 29.616 41.999 41.202 11.369 

MORELOS 14.397 14.786 2.918 4.086 1.167 17.899 2.724 2.529 24.708 4.086 3.502 34.825 43.774 42.218 9.728 

NAYARIT 16.188 16.449 4.178 4.700 0.261 23.760 3.394 4.439 20.888 2.350 2.350 30.548 41.253 45.431 9.922 

NUEVO LEÓN 10.250 11.597 1.594 1.374 0.879 14.702 2.198 3.023 7.227 0.989 0.632 11.761 49.217 40.918 5.001 

OAXACA 15.768 12.656 3.631 5.394 1.141 16.183 3.423 3.008 25.519 1.971 2.697 33.299 43.050 44.295 9.232 

PUEBLA 14.850 16.630 2.948 3.281 1.001 16.407 2.169 3.504 23.637 2.503 3.003 31.535 40.712 48.498 8.343 

QUERÉTARO 11.736 14.425 3.423 2.689 0.978 17.359 4.890 3.178 17.604 1.711 2.200 28.362 47.677 38.631 6.846 

QUINTANA ROO 11.429 15.238 1.270 0.635 1.905 9.206 2.857 2.222 23.492 6.032 4.762 38.413 51.111 30.476 4.127 

SAN LUIS POTOSÍ 12.211 11.469 2.723 4.785 1.650 16.007 2.805 3.548 16.089 2.063 1.815 24.340 48.102 35.066 9.901 

SINALOA 12.863 19.911 2.218 3.549 0.641 21.883 2.661 3.401 19.961 2.366 1.676 32.134 40.069 48.053 9.463 

SONORA 13.734 18.842 2.043 2.838 2.270 23.156 2.724 5.675 20.318 1.476 1.022 29.512 48.354 41.317 7.151 

TABASCO 15.422 21.687 1.205 2.088 1.526 20.321 1.124 2.972 13.976 3.614 1.687 21.365 42.570 50.361 5.221 

TAMAULIPAS 13.875 15.107 2.381 1.888 1.888 18.062 2.545 3.530 9.278 1.642 0.903 16.256 49.015 42.529 5.008 

TLAXCALA 14.211 10.702 2.456 2.807 0.877 15.088 3.684 2.632 18.947 4.211 1.930 22.982 43.333 45.789 7.544 

VERACRUZ 13.582 15.734 2.965 3.252 1.387 18.747 3.396 2.965 18.890 2.726 1.435 31.707 46.389 42.037 8.082 

YUCATÁN 10.733 16.718 1.651 2.786 1.342 18.885 1.238 2.683 13.829 3.096 2.167 22.910 47.678 40.454 7.637 
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ZACATECAS 14.390 16.211 4.007 5.100 1.821 25.137 4.736 4.918 23.133 2.186 1.457 27.687 41.712 41.894 14.026 

 

* Dirección General de Epidemiología, Secretaría de Salud (General Direction of Epidemiology, Health Ministry) 

**Instituto Nacional de Salud Pública, Encuesta Nacional de la Dinámica Demográfica (National Public Health Institute, National Survey of Demographic 

Dynamic)  

*** Estimations obtained by CONEVAL (Consejo Nacional de Evaluación de la Política de Desarrollo Social, National Council for the Evaluation of Social 

Development Policy) based on the ENIGH (National Survey of Household Income and Expenditure) 2008, 2010, 2012, 2014, 2016, and 2018. 

+ Instituto Nacional de Estadística y Geografía (National Institute of Statistics and Geography) 

++ Consejo Nacional del Agua (CONAGUA) (National Water Comission) 

+++ Instituto Nacional de Salud Pública (INSP) (The National Institute of Public Health of Mexico) 
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COVID-19 t-CFRs estimation by state 167 

We obtained quantile maps associated with raw and smoothed t-CFRs of COVID-19 168 

cases. The risks by state were smoothed by using an empirical Bayes estimator, which is 169 

a biased estimator that improves variance instability proper of risks estimated in small-170 

sized spatial units (18); however, the analyses were performed with both raw and 171 

smoothed risks to compare results. We also obtained maps concerning relative risks, 172 

understanding them as a comparison of the observed number of events by state to a 173 

national standard, the latter using the expected number of events considering as if risks in 174 

a state were the same as those at a national level.   175 

Spatial weight estimation and spatial autocorrelation 176 

We obtained queen contiguity weights (19), which consider as neighbors those states 177 

sharing at least a point in common, obtaining a squared matrix of dimension 32 with all 178 

entries equal to zero or one, where a one indicates that two states are neighbors. From 179 

these neighbors, weights are calculated by integrating a matrix in a row-standardized form. 180 

Moran's I statistic (20) was obtained as a measure of global spatial autocorrelation and its 181 

significance was assessed through a random permutation inference technique based on  182 

simulations. Local indicators of spatial autocorrelation (LISA) were obtained (21) and used 183 

to derive significant spatial clustering through four cluster types: High-High, Low-Low, 184 

High-Low, and Low-High. For instance, the Low-Low cluster indicates states with low 185 

values of a variable that are significantly surrounded by regions with similarly low values.  186 

 Spatial multivariable linear model 187 

A multivariable Generalized Geographically Weighted Regression (GGWR) was fitted (22). 188 

In this model, a dependent variable is measured for each spatial unit and independent 189 

variables (inputs) are simultaneously considered as well, such that the corresponding 190 

parameters depend on the coordinates in which the state is spatially located (centroids in 191 

the case of polygons); therefore, a parameter is associated with each state and 192 
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independent variable. To be able to estimate such model, a weighting diagonal matrix is 193 

considered, we used Gaussian spatial weighting to generate it. These weights determine 194 

the relationship from any state to another in terms of the distance (Euclidean) between 195 

states and a bandwidth. The bandwidth determines which spatial units are similar under 196 

the GGWR and can be selected using automatized methods, we used a cross-validation 197 

(CV) method with an adaptive scheme, i.e. a different bandwidth was used for each unit. 198 

Since the response variable is a count (number of deaths), a GGWR with a Poisson 199 

distribution and logarithm link function was used, including as offset term the number of 200 

people tested with COVID-19 in a logarithmic scale, thus modelling the t-CFRs  instead of 201 

just the number of deaths. 202 

A global multivariable model for all states, a Poisson multivariable linear model 203 

(generalized linear model or GLM) with offset and a logarithmic link function, was also 204 

fitted and significant variables were identified (23). To obtain the best possible model, 205 

including variables with the greatest effect on the risks and satisfying as much as possible 206 

all statistical assumptions, we used the following selection process: 1) We fitted 207 

univariable Poisson models with offset and logarithmic link function, identified significant 208 

effects, and ordered them in absolute value from highest to lowest, 2) We  identified 209 

variables with good and acceptable linear association with the log-transformed mortality 210 

risk by obtaining scatter plots between variables and the transformed risk, including a 211 

smoothed LOESS (locally estimated scatterplot smoothing) curve; and, when possible, 212 

variables were transformed to improve this assumption, as for GDP as explained above, 3) 213 

VIF was used to asses multicollinearity; thus, we fitted a model including variables with 214 

acceptable and good linear association, and eliminated any variable with a VIF>10, 4) We 215 

added to the resulting model one by one  significant variables in the univariable models. 216 

First, we added the variable with the highest effect and fitted the associated model 217 

identifying whether VIF>10. If not, we added the variable, and if VIF>10, the model was 218 
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not modified. We proceeded with the resulting model repeating the same process with the 219 

second highest effect; and so on, 5) From this process, we ended with a model consisting 220 

on all variables with the greatest univariable effects (0.08 and above in absolute value), 221 

better linear behavior, and without multicollinearity (VIF<=10), 6) We used residuals 222 

associated with other three Poisson models concerning ICU, intubated, and 223 

hospitalization, including a subset of variables pertaining to the model for fatality risk as 224 

inputs, thus obtaining the effects each confounder has over the risks without the effects 225 

that explanatory variables have over these confounders. These residuals and the 226 

corresponding estimated parameters do not have a meaning, 7) We evaluated goodness-227 

of-fit and validated all model assumptions. For age, we obtained age groups: 0-1, 2-9, 10-228 

19, …, 80-89, and 90 years old and over, fitted the corresponding univariable Poisson 229 

models with offset, and identified significant age groups and the direction of the 230 

association to obtain a new set of age groups: 10-39, 40-69, and 70 and more; and 231 

proceeded with these variables as with the others. 232 

The GGWR with the same variables as in the GLM was fitted and multiplicative effects 233 

over the t-CFRs (i.e. the exponentiated estimated parameters) associated with each 234 

variable were calculated. Maps associated with these effects were obtained, presenting 235 

only those associated with the explanatory variables that were significant in the global 236 

model. All statistical analyses were conducted using R version 3.6.2 through the spdep, 237 

rgdal, and spgwr packages for spatial analyses and car package for the correlation 238 

analysis and GeoDa 1.14.0 was used also for some spatial analyses. The significance 239 

level for all analyses was 5% (i.e., alpha=0.05). 240 

RESULTS 241 

t-CFR description and spatial autocorrelation of COVID-19 t-CFRs between states 242 

Maps for quartiles corresponding to the raw and smoothed t-CFRs are similar, except for 243 

two states, Tlaxcala, which from a category using the raw risks moves to the next superior 244 
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one in the smoothed risks, the opposite occurring for Veracruz. Thus, only the map 245 

concerning the smoothed values is shown (Figure 1A). We observed the largest t-CFRs 246 

(above 4%) in Quintana Roo, Baja California, Chihuahua, and Tabasco, and the greatest 247 

relative risks (2.00-4.00) in Baja California, Chihuahua, Quintana Roo, and Tabasco 248 

(Figure 1B). Globally, there is a non-significant spatial autocorrelation (Moran’s I=-0.079, 249 

p=0.390); however, there is a noticeable Low-Low cluster on the northeast around San 250 

Luis Potosi and two Low-High clusters around Yucatan and Sonora (Figure 2). These 251 

Low-High clusters make sense since the associated states, especially Sonora, are 252 

surrounded by the states with the highest t-CFRs in all the country. We verified that the 253 

spatial autocorrelation value and clustering were exactly the same using both the raw 254 

values or those obtained with the Bayes spatial technique. 255 

 256 

Figure 1. Maps associated with COVID-19 deaths in Mexico by state until April 21st, 257 

2020. A) Quartiles corresponding to tested case-fatality risks smoothed through an 258 

empirical Bayes procedure. B) Relative risk. 259 

 260 

Figure 2. Spatial clustering associated with tested case-fatality risks of COVID-19 in 261 

Mexico by state until April 21st, 2020, considering queen contiguity. A) Significant 262 

spatial clustering obtained through Local Indicators of Spatial Autocorrelation (LISA) 263 

comparisons. There are four types of clusters: High-High, Low-Low, High-Low, and Low-264 

High, e.g. a Low-Low cluster (blue) indicates states with low values of a variable 265 

significantly surrounded by regions with similarly low values.  B) P-values associated with 266 

the spatial clustering in A), C) Scatter plot associated with the smoothed risks vs. their 267 

corresponding spatially lagged values, including the associated linear regression fitting, 268 

whose slope is the Moran's I statistic. 269 
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Fit of multivariable generalized global and geographical linear models for COVID-19  270 

tested case-fatality risks  271 

Through a preliminary analysis obtained by fitting a Poisson multivariable linear model with 272 

offset and including all variables, we found the presence of serious multicollinearity 273 

problems, since we obtained Variance Inflation Factors (VIF) with values above 50 for 274 

some variables. A correlation analysis between all variables was performed (Figure 3A), 275 

including the response (raw t-CFRs) identifying very correlated variables. Thus, we 276 

followed the model selection process as explained above. Our final global model included 277 

as inputs: diabetes, obesity, GDP, internal and external migration, age group of 10 to 39 278 

years, physicians-to-population ratio, cardiovascular disease, ICU, hospitalization, and 279 

intubated. The latter three variables are confounders and to eliminate effects of other 280 

variables on them, they are used as residuals associated with appropriate Poisson models 281 

with independent variables: diabetes, obesity, age, physicians-to-population ratio, 282 

cardiovascular disease, plus ICU for the model associated with the intubated variable.  283 

Goodness-of-fit in our final model was assessed, finding that all variables were jointly 284 

significant (LR=472.19, p-value<0.001). Additionally, through a PP-plot associated with the 285 

standardized residuals and associated Anderson-Darling test (A=0.260, p-value = 0.689) 286 

and scatter plots between the fitted values and standardized residuals, and a similar plot 287 

using the root of the residuals instead, we determined that the link function and the way 288 

the explanatory variables are related with the response seems correct. However, we found 289 

some overdispersion (Chi-squared statistic divided by its degrees of freedom of 1.972). 290 

There were not any significant pairwise interaction effects.   291 

A multivariable GGWR with a Poisson distribution, adaptive kernel, and the same input 292 

variables was also fitted. In Table 2, we present a summary of the multiplicative effects 293 

over the risks, exponentiated parameters, i.e. minimum, quartiles, and maximum, 294 

associated with each variable for all states in the GGWR and the global values 295 
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corresponding to the GLM. Pearson residuals associated with the GGWR are shown in 296 

Figure 3B, showing that the worst fit corresponded to two states: Veracruz and Yucatan. 297 

 298 

Figure 3. Figures associated with the selection and goodness-of-fit of a 299 

multivariable generalized geographically weighted model (GGWR); with a Poison 300 

distribution, offset, and a logarithm link function, used to explain tested case-fatality 301 

risks. A) Correlation plot including the raw risks, and B) Representation of Pearson 302 

residuals by state. 303 

Table 2: Statistics by variable (minimum, maximum, and quartiles) associated with the 304 

multiplicative effects by state over the tested case-fatality risks under the GGWR and 305 

analogous effects and p-values associated with a global model (all models consider a 306 

Poisson distribution, offset term, and logarithmic link function). 307 

Variable Min 1st quartile Median 3rd quartile Max 
Global 

Effect p-value 

Intercept 0.004 0.005 0.005 0.005 0.005 0.005 <0.001 

Diabetes 1.147 1.148 1.150 1.151 1.154 1.152 <0.001 

Obesity 1.121 1.122 1.123 1.125 1.125 1.122 <0.001 

ICU (residual) 1.219 1.220 1.220 1.222 1.225 1.223 <0.001 

GDP (modified) 1.298 1.298 1.298 1.300 1.307 1.304 <0.001 

Internal 

migration 1.250 1.252 1.262 1.268 1.276 1.267 <0.001 

External 

migration 1.322 1.323 1.325 1.332 1.361 1.349 
0.018 

Age group 10-39 0.907 0.907 0.908 0.909 0.910 0.908 <0.001 

Intubated 

(residual) 1.214 1.216 1.219 1.221 1.222 1.219 
<0.001 

Physicians’ ratio 1.845 1.853 1.856 1.859 1.865 1.866 <0.001 

Cardiovascular 0.948 0.951 0.953 0.954 0.955 0.951 0.478 

Hospitalization 

(residual) 0.957 0.957 0.957 0.959 0.960 0.958 
0.009 

 308 

 Predictors of COVID-19 spatial lethality in Mexico  309 

The exponentiated estimated parameters under the GGWR for each state were obtained 310 

for each variable (not shown) and maps were obtained based on the .shp file provided in 311 
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(24). Nevertheless, we only present the maps for those explanatory variables that 312 

significantly impacted over the log-transformed t-CFRs in the global model (GLM) (Figure 313 

4). These significant variables were diabetes, obesity, GDP, internal and external 314 

migration, age group of 10 to 39 years, and physicians-to-population ratio. However, care 315 

should be taken when the map for GDP is interpreted considering this variable 316 

corresponds to GDP on states not having the biggest cities, as an interaction term 317 

between GDP and a binary variable, thus having a fixed value of zero in four states, which 318 

are represented as blank spaces in the map. All estimated terms were interpreted by 319 

considering fixed values for all variables except the one being interpreted.   320 

 321 

Figure 4. Multiplicative estimated effects over the tested case-fatality risks due to 322 

COVID-19 under a GGWR for those variables that significantly impact the response 323 

under a global model (Poisson models with offset and a logarithmic link function). 324 

 325 

Age and metabolic predictors of t-CFRs in Mexico 326 

Prevalence of obesity has a global (for all states) significant positive association 327 

(multiplicative effect) with the COVID-19 t-CFRs (1.122; 95%CI 1.081-1.166), locally the 328 

effect is between 1.120 in Quintana Roo to 1.125 in Sinaloa, having a similar effect on all 329 

Mexico, though slightly larger on the north and center.  For diabetes, there is also a 330 

significant positive association with the t-CFRs (1.152; 95%CI 1.079-1.230)  with local 331 

effects between 1.147 in Colima to 1.154  in Yucatan, having a positive effect in all 332 

Mexico; but specially in the center, south, and Yucatan peninsula. On the other hand, the 333 

proportion of individuals between 10 and 39 years old has a significant negative 334 

association with the COVID-19 t-CFRs (0.907; 95%CI 0.873-0.944), locally the effect is 335 

between  0.907 in Chiapas to 0.910, thus having a similar association in all the country.  336 

Mobility and socio-economic predictors of t-CFRs in Mexico  337 
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The percentage of internal migration in the spatial unit a patient comes from has a 338 

significant positive association with the COVID-19 t-CFRs (1.267; 95%CI 1.183-1.356), 339 

locally the effect is between 1.250 in Durango to 1.276 in Quintana Roo having more effect 340 

in the south, center, and Yucatan peninsula. The percentage of external migration in the 341 

spatial unit a patient comes from is also significantly positively associated with the COVID-342 

19 t-CFRs (1.349; 95%CI 1.052-1.728), locally the effect is between 1.322  in Morelos to 343 

1.361 in Baja California, this effect exists over all Mexico, but it is stronger in the North and 344 

Baja California peninsula. Physicians-to-population ratio is also significantly positively 345 

associated with the t-CFRs (1.866; 95%CI 1.625-2.142), with local effects between 1.845 346 

in Colima to 1.865 in Yucatan, having a slightly larger effect on the north and Yucatan 347 

peninsula. Finally, GDP excluding the states having the biggest cities in the country 348 

(Nuevo León, México, Ciudad de México, and Jalisco) is also significantly positively 349 

associated with the t-CFRs  (1.304; 95%CI 1.198-1.429), locally the effects are between 350 

1.298 in Oaxaca and 1.307 in Baja California.  351 

DISCUSSION 352 

Here, we show the relevance of spatial analyses to allow us not only to understand how t-353 

CFRs  are distributed along Mexico and the presence of spatial clusters related to COVID-354 

19 t-CFRs , but also how some variables are associated with these risks, with an 355 

association that variates along all territory. Through our analysis, we were able to identify 356 

spatial units or regions in which care could have been considered to avoid SARS-CoV-2 357 

spread and its related adverse outcomes. Identifying these areas, might allow to 358 

understand the propagation of the disease in other possible waves of SARS-CoV-2 spread 359 

or similar infectious pathogens.   360 

Considering the global results, variables that are significantly associated with an increase 361 

on the COVID-19 t-CFRs  include percentages associated with diabetes, obesity, external 362 

and internal migration, physicians-to-population ratio, and GDP in states that do not 363 
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include one of the greatest four cities in Mexico, whereas the proportion of individuals 364 

between 10 to 39 years old  is significantly associated with a decrease on the risks. The 365 

association of cardio-metabolic diseases with adverse COVID-19 outcomes has been well 366 

documented and has been linked to mild, but sustained chronic inflammation, which may 367 

synergize with the cytokine storm associated with severe SARS-CoV-2 infection (25).  368 

Regarding other type of factors, internal and external migration have a very strong 369 

association with an increase of COVID-19 mortality, being external migration the variable 370 

with the second highest impact. This phenomenon is very particular for infectious diseases 371 

where greater movements of people move a disease from a geographical zone to another, 372 

which has occurred for instance for Mycobaterium tuberculosis or HIV/AIDS (26–28). The 373 

other two variables are related to urbanization, density, and economic importance of the 374 

states, specially physicians-to-population ratio. From the correlation plot, it can be seen 375 

that there is a very large positive association between physicians-to-population ratio and 376 

population density and overcrowded households, and a large negative association 377 

between this variable and both the rural and poverty proportions by state. On the other 378 

hand, the positive association between GDP and the fatality risks might also be related 379 

with states in which, due to the importance of economic activity, mobility could not be 380 

stopped after self-isolation measures, but that also do not have the health infrastructure 381 

that those states with the biggest cities have, in which, in spite of having many cases, 382 

there were less deaths.     383 

The greatest t-CFRs, both raw and smoothed, corresponded to the states of Chihuahua, 384 

Quintana Roo, Baja California, and Tabasco (raw values of 5.11%, 4.79%, 4.34%, and 385 

4.25%, respectively). It is noticeable how the relative risks in all these states have values 386 

between 2.5 and 3, suggesting that in these states the risks are above of what is nationally 387 

expected.  We observed the presence of a spatial cluster concerning states with low risks; 388 
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however, at least till the date associated with our dataset, there was no important 389 

clustering of states with high risks using the LISA technique. 390 

The fact that Quintana Roo is an important touristic center explains the presence of 391 

COVID-19 cases. However, according to our models, the elevated t-CFR is mostly 392 

associated with the presence of diabetes and internal migration, besides of the physicians-393 

to-population ratio, whose possible interpretation was discussed above. In Chihuahua and 394 

Baja California, the variables with a particular positive association with t-CFR were 395 

external migration, obesity, and GDP, whereas in Tabasco these variables correspond to 396 

diabetes and internal migration. 397 

Globally, physicians-to-population ratio, which is heavily associated with more urbanity, 398 

overcrowding households and population density, and with less poverty, has the highest 399 

positive effect on the t-CFRs, though relatively similar on all Mexico. External migration 400 

has the second highest association with the t-CFRs particularly in those states in the north 401 

in which the risks were the highest, whereas internal migration has the fourth highest 402 

association, after GDP, with particular importance in the center, south, and Yucatan 403 

peninsula. The effect of obesity and diabetes over the risks is similar; for obesity, there is 404 

relatively a similar impact on all the country, whereas for diabetes there is a little higher 405 

effect on the center, south, and Yucatan peninsula. Age between 10 and 39 years old was 406 

the only variable associated with a less risks, which agrees with previous results analyzed 407 

using Mexican data, having a relatively similar effect on all the country (4,10). 408 

Economic effects, such as poverty, may be better studied in a disaggregated model 409 

including it as a measure at an individual level. Unfortunately, such information is 410 

unavailable in the epidemiological data set, and at most, information concerning poverty at 411 

a municipality level could be attached to each individual, being state the spatial unit 412 

containing municipalities. However; we would still be using aggregated values and in the 413 

methodology used to calculate poverty in Mexico, the state values are estimators obtained 414 
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from a representative sample, whereas the municipality values are estimated through 415 

small area estimation techniques; thus, being the former more reliable. In this sense, all 416 

analyses were performed at a state instead of at a municipal level. The reason behind this 417 

decision is that there were a lot of municipalities with zero values in the early time point we 418 

chose to focus our analysis, in both the number of COVID-19 cases and mortality and 419 

modelling such information with the probability distributions available for GGWR and other 420 

spatial linear models would not be possible. To obtain similar results we would require 421 

different tools, as zero-inflated geographical models. This could be possible future 422 

research work, including the identification of what are the characteristics of those 423 

municipalities with zero cases of the disease or no mortality. Additional future work 424 

corresponds also to analyze the data from a spatio-temporal framework, thus, the data set 425 

could be updated and the risks and associated factors followed through time for each 426 

state. 427 

Our results are robust in terms of the model since it fits the data well and most of the 428 

statistical assumptions were satisfied; and, though there is some overdispersion, after 429 

fitting a quasi-Poisson linear model, we obtained the same results except that external 430 

migration was now significant at a 0.1 level. In terms of confounders, we fitted models with 431 

these variables as they are, as residuals, and as the first component in a Principal 432 

Component Analysis, finding in all cases that obesity, GDP, internal migration, age group 433 

of 10 to 39 years, and physicians-to-population ratio were significant. 434 

In terms of the response, we obtained risks with the projected population in 2020 as 435 

denominator (population-fatality or mortality risks), and obtained similar results (maps) as 436 

the ones we present here, in terms of which states are on the highest quantiles, and in 437 

terms of similar clustering (29). Of notice is that using the projected values, we found a 438 

High-High cluster we did not find before in the Baja California peninsula. In fact, through 439 

the use of the Kulldorff’s spatial scan statistic (30), we also identified a cluster there, 440 
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including three additional states (Sonora, Chihuahua, and Sinaloa); thus, it seems that a 441 

cluster in the north of higher risks exists, though it was not identified using the LISA 442 

methodology.  Linear models using the projected values equivalent to the ones we fitted 443 

provided also similar results. For instance, in a model including the same variables as in 444 

our final model, we found the same variables significantly associated with the risks and 445 

direction of the association, except for diabetes, which was no longer significant. Analyses 446 

at an individual level were also fitted, using generalized (logistic) linear mixed models with 447 

a random intercept for state, and including mostly health related variables since socio-448 

economic features are only at a state-level. We found that hospitalized status should be 449 

used separately from ICU and intubated, and that after taking care of multicollinearity, the 450 

results were similar as the ones at a state-level, in terms that  variables significantly 451 

associated with the risks were still obesity, diabetes, and age group of 10 to 39 years, plus 452 

hypertension and cardiovascular. 453 

It is important to notice that we are studying fatality risks associated with those individuals 454 

tested for the disease (t-CFRs); thus, care should be taken if results want to be 455 

extrapolated.  As mentioned above, by using the projected population in 2020, instead of 456 

the tested individuals to model the mortality (population-fatality) risks, we obtained similar 457 

significant associations between the variables and risks, except for diabetes. However, we 458 

think this analysis is somewhat inaccurate in the sense that all health-related variables 459 

correspond to prevalence in individuals in the data set, which do not necessarily agree 460 

with those in the population, the same for age, and if we used  population values by state, 461 

we would waste all the information in the epidemiological data, except for the number of 462 

deaths.  Another option could have been to study case-fatality risks, thus considering the 463 

number of deaths and people infected; however, a similar problem arises, the real number 464 

of people with the disease is much larger than those being tested and results cannot be 465 

extrapolated, and this type of analysis is out of the scope of this study.  Additionally, in any 466 
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analysis, the number of infected and/or deaths are even more poorly estimated when 467 

analyzing the early spread of the disease, particularly in Mexico, in which not enough 468 

population had been tested. Despite these limitations, we were able to identify some 469 

spatial predictors of fatality risks associated with COVID-19 at an early stage of the 470 

pandemic, likely reflecting factors which could have been addressed to mitigate SARS-471 

CoV-2 spread. 472 

In conclusion, metabolic diseases, internal and external migration, physicians-to-473 

population ratio, GDP per capita in states without the biggest cities, and age group 474 

between 10 to 39 years old were significantly associated with early COVID-19 fatality risks 475 

in Mexico. These predictors likely influence the growth of the pandemic moving forward, 476 

but variables as prevalence of metabolic diseases cannot be easily modified in the short-477 

term. However, the identification of important variables in Mexico associated with the risks 478 

and in specific geographical areas, could help to decide necessary public policies which 479 

could have long-term impacts on future epidemic scenarios.  Even though, this is an 480 

analysis in an early stage of SARS-CoV-2 spread, it allows us to understand how the 481 

pandemic evolved within Mexico and the possible measures that should be addressed for 482 

additional waves or similar diseases in Mexico and in specific zones of the country. 483 
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